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Abstract
We prove an existence result for systems of differential inclusions driven by
multivalued mappings which need not assume closed or convex values everywhere,
and need not be semicontinuous everywhere. Moreover, we consider differentiation
with respect to a nondecreasing function, thus covering discrete, continuous and
impulsive problems under a unique formulation. We emphasize that our existence
result appears to be new even when the derivator is the identity, i.e. when derivatives
are considered in the usual sense. We also apply our existence theorem for inclusions
to derive a new existence result for discontinuous Stieltjes differential equations.
Examples are given to illustrate the main results.
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1 Introduction
Stieltjes differential equations are equations of the form

x′
g(t) = f

(
t, x(t)

)
, t ∈ [t0, t0 + T), (t0 ∈R, T > 0), (1.1)

where, roughly speaking, the Stieltjes derivative of x with respect to g is

x′
g(t) = lim

s→t

x(s) – x(t)
g(s) – g(t)

,

where the derivator function g : R −→ R is nondecreasing. We include in Sect. 2 the pre-
cise definitions and basic properties established in [7, 8].

The definition of Stieltjes derivative is consistent with Stieltjes integration, in the sense
that every bonna fide (absolutely continuous) function can be recovered as the indefinite
Lebesgue–Stieltjes integral of its g-derivative. Although we shall constantly refer to results
in [8], we remark that there exist much older, similar notions of derivatives with respect
to functions and fundamental theorems for Stieltjes integrals, see for example [3].
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As explained in [8], the importance of Stieltjes derivatives is that (1.1) offers a techni-
cally simple unified framework for difference and differential equations, and even allows
for impulses on countable sets of fixed times. In a similar way, it is shown in [9] that Stieltjes
differential inclusions represent a more general context for the study of impulsive differ-
ential inclusions. In Sect. 3 we focus our attention to Stieltjes differential inclusions of the
form

x′
g(t) ∈ F

(
t, x(t)

)
, t ∈ [t0, t0 + T), (1.2)

and we obtain an existence result which, to the best of our knowledge, is new even in the
particular case when g is the identity, i.e. the case of usual derivatives—thus generalizing
the results in [2]. Finally, in Sect. 4 we use the result we obtained for (1.2) to obtain a new
existence result for (1.1) with discontinuous functions f (t, x).

2 Preliminares
Let g : R → R be a nondecreasing left-continuous function. Let us recall the definition of
the g-derivative introduced in [8]. To that end, we first introduce the following two sets:
first, the set of points around which g is constant,

Cg =
{

t ∈R : g is constant on (t – ε, t + ε) for some ε > 0
}

,

and, second, the set of discontinuity points of g , which can be expressed as

Dg =
{

t ∈R : g
(
t+)

– g(t) > 0
}

,

where g(t+) denotes the limit of g at t from the right.
Now the g-derivative of a real valued function x = x(t) at a point t ∈R \ Cg is

x′
g(t) =

⎧
⎪⎪⎨

⎪⎪⎩

lim
s→t

x(s) – x(t)
g(s) – g(t)

, if t /∈ Dg ,

x(t+) – x(t)
g(t+) – g(t)

, if t ∈ Dg ,
(2.1)

provided that the corresponding limit exists.
Notice that we do not define g-derivatives at points t ∈ Cg , nor is it necessary because Cg

is a null-measure set for μg (the Lebesgue–Stieltjes measure induced by g); see [8, Propo-
sition 2.5]. Notice also that

μg
({t}) = g

(
t+)

– g(t) = 0 if and only if t ∈R \ Dg .

In this paper we shall consider integration in the Lebesgue–Stieltjes sense, and we
shall call “g-measurable” any function (or set) which is measurable with respect to the
Lebesgue–Stieltjes σ -algebra generated by g .

The following concept of g-absolute continuity is crucial in this paper. We consider the
maximum norm in R

n.
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Definition 2.1 Let a, b ∈ R, a < b. We say that a function f : [a, b] −→ R
n is absolutely

continuous with respect to g on [a, b] (or g-absolutely continuous on [a, b], and we denote
it by f ∈ACg([a, b])) if to each ε > 0 there is some δ > 0 such that, for any family {(an, bn)}m

n=1

of pairwise disjoint open subintervals of [a, b], the inequality

m∑

n=1

(
g(bn) – g(an)

)
< δ

implies

m∑

n=1

∥∥f (bn) – f (an)
∥∥ < ε.

Next we state the two versions of the fundamental theorem of calculus.

Theorem 2.2 ([8, Theorem 2.4, Proposition 5.2]) Let a, b ∈ R, a < b, and c : [a, b) −→ R
n.

Assume that c ∈ L1
g ([a, b)), the Banach space of Lebesgue–Stieltjes integrable functions with

respect to μg , and consider its indefinite Lebesgue–Stieltjes integral

C(t) =
∫

[a,t)
c(s) dg(s) for all t ∈ [a, b].

Then C is g-absolutely continuous on [a, b] and there is a g-measurable set N ⊂ [a, b] such
that μg(N) = 0 and

C′
g(t) = c(t) for all t ∈ [a, b) \ N .

Theorem 2.3 (Fundamental theorem of calculus for the Lebesgue–Stieltjes integral) Let
a, b ∈ R, a < b, and f : [a, b] −→R

n. The following conditions are equivalent.
(1) The function f is g-absolutely continuous on [a, b].
(2) The function f fulfills the following properties:

(a) There exists f ′
g (t) for g-almost all t ∈ [a, b) (i.e., for all t ∈ [a, b) except on a set of

μg -measure zero).
(b) f ′

g ∈ L1
g ([a, b)).

(c) For each t ∈ [a, b], we have

f (t) = f (a) +
∫

[a,t)
f ′
g (s) dg(s). (2.2)

Remark 2.4 Observe that f ′
g (b) plays no role in Theorem 2.3. This is natural because

μg({b}) = 0 if b /∈ Dg (so we do not have to worry about f ′
g (b)), and if b ∈ Dg then f ′

g (b)
does not exist because f (t) is not defined for t > b.

For more properties of g-absolutely continuous functions we refer to [7, 8]. For selfcon-
tainedness, we include the following result.

Proposition 2.5 ([8, Proposition 5.3]) If f is g-absolutely continuous on [a, b], then it has
bounded variation and it is continuous from the left at every t ∈ [a, b). Moreover, f is con-
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tinuous in [a, b] \ Dg , and if g is constant on some interval (α,β) ⊂ [a, b], then f is constant
on (α,β) as well.

Finally, we recall the concept of g-continuity and its relation with g-absolute continuity.

Definition 2.6 Let f : [a, b] −→ R
n and t ∈ [a, b]. We say that f is g-continuous at t if for

every ε > 0 there exists δ > 0 such that

[
s ∈ [a, b],

∣∣g(s) – g(t)
∣∣ < δ

] ⇒ ∥∥f (s) – f (t)
∥∥ < ε.

We say that f is g-continuous on [a, b] if it is g-continuous at every point t ∈ [a, b].

We denote by BCg([a, b]) the set of g-continuous bounded functions. It is proven in [7]
that BCg([a, b]) is a Banach space with the supremum norm and, moreover, ACg([a, b]) ⊂
BCg([a, b]). We have the following sufficient condition for relative compactness of sets of
g-absolutely continuous functions in BCg([a, b])

Proposition 2.7 ([7, Proposition 5.6]) Let S ⊂ ACg([a, b]) be such that {f (a) : f ∈ S} is
bounded. Assume that there exists h ∈ L1

g ([a, b)) such that

∥∥f ′
g (t)

∥∥ ≤ h(t) for g-almost all t ∈ [a, b), and for all f ∈ S .

Then S is relatively compact in BCg([a, b]).

3 Stieltjes differential inclusions
Let t0, T ∈ R, T > 0, and consider the intervals

I = [t0, t0 + T] and J = [t0, t0 + T). (3.1)

In this section we study the existence of ACg -solutions of the problem

x′
g(t) ∈ F

(
t, x(t)

)
for g-a.a. t ∈ J , x(t0) = x0, (3.2)

where x0 ∈R
n and F : J ×R

n →P(Rn) are given, whereP(Rn) denotes the set of all subsets
of Rn. Every multivalued mapping considered in this paper shall be assumed to be strict,
i.e., to assume nonempty values.

Definition 3.1 A solution of (3.2) is a function x ∈ACg(I) such that x(t0) = x0 and

x′
g(t) ∈ F

(
t, x(t)

)
, g-a.a. t ∈ J .

We shall prove an existence result for problem (3.2) by generalizing the ideas of [4], who
studied the particular case when g is the identity and assumed upper semicontinuity of
F(t, ·) on R

n for a.a. t ∈ I . In this paper, besides considering derivatives in a wider sense,
we show that upper semicontinuity may fail at many points provided that they belong
to the graph of another multivalued mapping satisfying some technical conditions with
respect to F .
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We shall base our arguments on the following new concept of contingent g-derivative
for multivalued mappings. This concept is based on the analytical description of the con-
tingent derivative in the usual sense given by [1, Proposition 2, p. 177].

Definition 3.2 Let K : IK →P(Rn) where IK is a nonempty subset of the reals.
The contingent g-derivative of K at a point (t, x) ∈ graph(K) is the set denoted by

Dg K(t, x) defined as follows: we say that v ∈ Dg K(t, x) if there exist {hk}k∈N ⊂R, t + hk ∈ IK

for k ∈N, and {xk}k∈N ⊂R
n such that

1. hk > 0 for all k ∈N and {hk}k∈N converges to 0;
2. xk ∈ K(t + hk) for all k ∈N and

lim
k→∞

xk – x
g(t + hk) – g(t)

= v.

Remark 3.3 In the conditions of Definition 3.2, if t /∈ Dg , then {xk}k∈N necessarily con-
verges to x. Indeed, in that case we see that g(t + hk) converges to g(t) so

0 ≤ ‖xk – x‖ =
∥∥
∥∥

xk – x
g(t + hk) – g(t)

∥∥
∥∥
(
g(t + hk) – g(t)

) k→∞−→ 0.

For a better understanding of this definition, let us consider K(t) = {γ (t)} for some γ :
Iγ →R

n. Then it follows directly from the definition that, if γ is g-differentiable from the
right at a point t0 ∈ Iγ , then Dg K(t0,γ (t0)) = {γ ′

g (t0)}. Remember that to be g-differentiable
from the right is equivalent to being g-differentiable for points in Dg .

Equipped with the notion of contingent g-derivative we can introduce our assumptions
on F(t, x). We assume that F : J × R

n → P(Rn) satisfies the following conditions, in the
spirit of [2]:

(H1) (i) for all t ∈ J ∩ Dg , F(t, ·) assumes convex and compact values and it is upper
semicontinuous on R

n;
(ii) for g-a.a. t ∈ J \ Dg , F(t, x) is convex and compact for every x ∈R

n \ K(t), and
F(t, ·) is upper semicontinuous on R

n \ K(t), where the set K(t) is either
empty, or there exist Kp : Ip ⊂ J \ Dg −→P(Rn), p ∈N, such that

K(t) =
⋃

{p:t∈Ip}
Kp(t),

and if x ∈ Kp(t) for some p, then

∞⋂

r>0

coF
(
t, Br(x)

) ∩ Dg Kp(t, x) ⊂ F(t, x), (3.3)

where co means closed convex hull and Br(x) is the open ball centered at x
with radius r > 0;

(H2) for all x ∈R
n, there exists a g-measurable selection of F(·, x), that is, there exists a

g-measurable function fx : J →R
n such that fx(t) ∈ F(t, x) for g-a.a. t ∈ J ;

(H3) there exists M ∈ L1
g (J , [0,∞)) such that, for all x ∈R

n and g-a.a. t ∈ J ,

‖y‖ ≤ M(t) for any y ∈ F(t, x).
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Remark 3.4 Note that (H3) ensures that the g-measurable selections in (H2) are g-
integrable on J . Indeed, let x ∈ R

n be fixed and fx a selection in the conditions of (H2).
Then fx(t) ∈ F(t, x) for g-a.a. t ∈ J , so (H3) implies that

∫

[t0,t0+T)

∥
∥fx(t)

∥
∥dg(t) ≤

∫

[t0,t0+T)
M(t) dg(t) < +∞.

First, we recall the following result that characterizes weakly sequentially compact sets
of integrable functions (see [6, Theorem IV.8.9]).

Theorem 3.5 Let (X,M,μ) be a measure space and let L1
μ(X) denote the set of μ-integrable

functions. A set S ⊂ L1
μ(X) is weakly sequentially compact if and only if

1. S is bounded;
2. for each {Em}m∈N ⊂M such that Em+1 ⊂ Em, m ∈N, and

⋂
m∈N Em = ∅, we have

lim
m→∞

∫

Em

f dμ = 0 uniformly for f ∈ S .

We also need [6, Corollary V.3.14], a result that ensures that it is possible to obtain a
sequence converging strongly to a point in a Banach space from one that converges weakly
to that same point.

Theorem 3.6 Let X be a Banach space and {xm}m∈N a sequence in X converging weakly to
x. Then some sequence of convex combinations of the elements xm converges strongly to x.

Finally, we recall the following elementary topological property that will be key for the
proof of the main result of this section.

Lemma 3.7 Let S ⊂ R
n be a compact set in the usual topology and let x ∈ R

n \ S. Then
there exists ε0 > 0 such that x /∈ S + Bε0 (0).

Proof The mapping ϕ(y) = ‖x – y‖ is continuous on R
n. Since S is compact, ϕ attains a

minimum in S, i.e., there exists y0 ∈ S such that ‖x – y‖ = ϕ(y) ≥ ϕ(y0) for all y ∈ S and
ϕ(y0) > 0 because x 
= y0. Therefore x /∈ S + Bε0 (0) for ε0 = ϕ(y0). �

We can now state and prove the following lemma that gives us some information about
pointwise limits of sequences of g-absolutely continuous functions and their g-derivatives.
This result can be seen as a generalization of [4, Theorem 4.1].

Lemma 3.8 Let I and J be as in (3.1) and let xk : I →R
n, k ∈N, be a sequence of functions

such that
(i) xk ∈ACg(I), k ∈N;

(ii) xk(t) → x(t) for all t ∈ I for some x : I →R
n;

(iii) there exists L ∈ L1
g (J) such that for every k ∈N we have

∥∥(xk)′g(t)
∥∥ ≤ L(t), g-a.a. t ∈ J .
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Then x ∈ACg(I) and

x′
g(t) ∈

∞⋂

i=1

co
∞⋃

k=i

{
(xk)′g(t)

}
for g-a.a. t ∈ J .

Proof Consider the set S = {(xk)′g : k ∈ N} ⊂ L1
g (J), which is bounded thanks to condition

(iii). Moreover, S satisfies 2 in Theorem 3.5. Indeed, let us denote byLSg(J) the Lebesgue–
Stieltjes σ -algebra on J induced by g and define

ν(E) =
∫

E
L(s) dg(s), E ∈LSg(J).

Then [10, Theorem 1.29] ensures that ν is a measure, and so given any sequence of g-
measurable sets {Em}m∈N ⊂ J under the hypotheses of 2 in Theorem 3.5, we have

lim
m→∞

∫

Em

L(s) dg(s) = lim
m→∞ν(Em) = lim

m→∞ν

( m⋂

k=1

Ek

)

= ν(∅) = 0.

Now, condition (iii) implies that condition 2 in Theorem 3.5 holds.
Hence, S is weakly sequentially compact. Thus there exists a subsequence {(xkl )

′
g}l∈N

converging weakly to a function, say y ∈ L1
g (J), which implies that for every t ∈ I we have

x(t) = lim
l→+∞

xkl (t) = lim
l→+∞

(
xkl (t0) +

∫

[t0,t)
(xkl )

′
g(s) dg(s)

)
= x(t0) +

∫

[t0,t)
y(s) dg(s).

Hence x ∈ACg(I) and x′
g(t) = y(t) for g-a.a. t ∈ I , see Theorem 2.2.

Now, Theorem 3.6 ensures the existence of a sequence of convex combinations of (xkl )
′
g ,

which we denote by {yj}j∈N, converging strongly in L1
g (J) to y. Hence, there exists a subse-

quence {yjq}q∈N such that yjq (t) → y(t) for g-a.a. t ∈ J . For every q ∈N we have

yjq (t) ∈ co
∞⋃

l=1

{
(xkl )

′
g(t)

} ⊂ co
∞⋃

k=1

{
(xk)′g(t)

}
,

so going to the limit as q tends to infinity, we get

x′
g(t) = y(t) ∈ co

∞⋃

k=1

{
(xk)′g(t)

}
, g-a.a. t ∈ I.

Moreover, since for each fixed i ∈ N the sequence {xk}∞k=i also converges to x, a repetition
of the previous arguments shows that

x′
g(t) ∈ co

∞⋃

k=i

{
(xk)′g(t)

}
, g-a.a. t ∈ I.

Hence,

x′
g(t) ∈

∞⋂

i=1

co
∞⋃

k=i

{
(xk)′g(t)

}
, g-a.a. t ∈ I. �
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We now have all the necessary tools to prove the following existence result for (3.2). To
the best of the authors’ knowledge, this result is new even in the particular case of g(t) = t,
i.e., when g-derivatives reduce to derivatives in the usual sense.

Theorem 3.9 Let F : I ×R
n →P(Rn) satisfy (H1)–(H3). Then (3.2) has at least a solution.

Proof Consider the sequence xk : [t0, t0 + T] → R
n, k ∈ N, defined as follows: for each

k ∈N, denote tk,j = t0 + jT/k, j = 0, 1, 2, . . . , k. Define xk(t0) = x0,

xk(t) = xk(tk,j) +
∫

[tk,j ,t)
fk,j(s) dg(s), t ∈ (tk,j, tk,j+1], j = 0, 1, 2, . . . , k – 1,

where fk,j is a g-measurable selection of F(·, xk(tk,j)), j = 0, 1, 2, . . . , k – 1, whose existence is
guaranteed by (H2). Then, if we define fk : [t0, t0 + T) →R

n as

fk(t) = fk,j(t), t ∈ [tk,j, tk,j+1), j = 0, 1, 2, . . . , k – 1,

it follows that

xk(t) = x0 +
∫

[t0,t)
fk(s) dg(s), t ∈ [t0, t0 + T].

Moreover, Remark 3.4 ensures that fk ∈ L1
g ([t0, t0 + T)) and so {xk}k∈N is well-defined and

Theorem 2.2 implies that xk ∈ACg(I) and x′
g(t) = fk(t) for g-a.a. t ∈ J .

Note that {xk(t0) : k ∈N} = {x0} and for every k ∈N we have

∥
∥(xk)′g(t)

∥
∥ =

∥
∥fk(t)

∥
∥ ≤ L(t), g-a.a. t ∈ [t0, t0 + T),

so Proposition 2.7 guarantees that {xk}k∈N is a relatively compact subset ofBCg([t0, t0 +T]).
Therefore, there exists a subsequence converging to a function, say x. Clearly, x(t0) = x0.
Moreover, applying Lemma 3.8 to such subsequence, we deduce that x ∈ACg(I) and there
exists E ⊂ J such that μg(E) = 0 and

x′
g(t) ∈

∞⋂

j=1

co
∞⋃

k=j

{
(xk)′g(t)

}
=

∞⋂

j=1

co
∞⋃

k=j

{
fk(t)

}
, t ∈ J \ E.

Let us prove that

x′
g(t) ∈

∞⋂

r>0

coF
(
t, Br

(
x(t)

))
for all t ∈ J \ E. (3.4)

Fix t ∈ J \ E; for each k ∈ N, we can find ik ∈ {0, 1, 2, . . . , k – 1} such that t ∈ [tk,ik , tk,ik+1).
Hence,

x′
g(t) ∈

∞⋂

j=1

co
∞⋃

k=j

{
fk(t)

} ⊂
∞⋂

j=1

co
∞⋃

k=j

F
(
t, xk(tk,ik )

)
. (3.5)



López Pouso et al. Advances in Difference Equations        (2020) 2020:227 Page 9 of 14

Moreover, note that tk,ik converges to t from the left as k → ∞, because

0 ≤ t – tk,ik < tk,ik+1 – tk,ik =
T
k

.

Therefore, since each xk is left-continuous (see Proposition 2.5) and xk(t) converges to x(t),
it follows that xk(tk,ik ) converges to x(t). Hence, for every r > 0 there exists k0 ∈N such that

∥
∥xk(tk,ik ) – x(t)

∥
∥ < r for all k ≥ k0,

and therefore (3.5) yields

x′
g(t) ∈ co

∞⋃

k=k0

F
(
t, xk(tk,ik )

) ⊂ coF
(
t, Br

(
x(t)

))
.

This implies (3.4) because r > 0 was arbitrary.
Now we are ready for the proof of x′

g(t) ∈ F(t, x(t)) for g-a.a. t ∈ J \E. We start by remov-
ing some inconvenient g-null measure sets from J \ E. For each p ∈N, define the set

Ap =
{

t ∈ J \ (E ∪ Dg) : x(t) ∈ Kp(t), x(s) /∈ Kp(s) for all s ∈ (t, t + εt) and some εt > 0
}

.

For every t ∈ Ap take the greatest εt possible in the conditions of the definition of Ap. The
infinite sum

∑

t∈Ap

εt

is convergent (bounded by the length of the interval J) and therefore, at most a count-
able set of εt can be positive. Hence μg(Ap) = 0 because Ap is countable and contains no
discontinuity points of g .

We consider the g-null measure set Ê = E ∪ A1 ∪ A2 ∪ · · · and, without loss of generality,
we assume that condition (H1) (ii) is satisfied for all t ∈ J \ (Ê ∪ Dg).

Now we fix t ∈ J \ Ê and we consider two cases to prove that x′
g(t) ∈ F(t, x(t)).

Case I: t ∈ J \ (Ê ∪ Dg) and x(t) ∈ Kp(t) for some p ∈N. Since t /∈ Ap, there exist numbers

hk > 0, hk → 0 as k → ∞, and x(t + hk) ∈ Kp(t + hk) for all k, (3.6)

then the definition of contingent g-derivative ensures that

x′
g(t) = lim

k→∞
x(t + hk) – x(t)
g(t + hk) – g(t)

∈ Dg Kp
(
t, x(t)

)
.

Thus, condition (H1)(ii) implies that x′
g(t) ∈ F(t, x(t)).

Case II. t ∈ J ∩Dg or t ∈ J \ (Ê∪Dg) and x(t) /∈ K(t). In both cases, condition (H1) ensures
that F(t, x(t)) is convex and compact and F(t, ·) is usc at x(t).

Reasoning by contradiction, assume that x′
g(t) /∈ F(t, x(t)). Then, since F(t, x(t)) is a com-

pact subset of Rn, Lemma 3.7 implies that there exists ε0 > 0 such that

x′
g(t) /∈ F

(
t, x(t)

)
+ Bε0 (0). (3.7)
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Moreover, since F(t, ·) is usc, it is ε-δ-usc (see [5, Proposition 1.1]), so there exists δ > 0
such that

F(t, y) ⊂ F
(
t, x(t)

)
+ Bε0/2(0), for all y ∈ R

n,
∥∥y – x(t)

∥∥ < δ. (3.8)

Take k0 ∈N such that

∥
∥xk(tk,ik ) – x(t)

∥
∥ < δ for all k ≥ k0.

Then (3.8) yields

F
(
t, xk(tk,ik )

) ⊂ F
(
t, x(t)

)
+ Bε0/2(0) ⊂ F

(
t, x(t)

)
+ Bε0/2(0) for all k ≥ k0.

Now, since F(t, x(t)) + Bε0/2(0) is a convex and closed set, it follows that

co
∞⋃

k=k0

F
(
t, xk(tk,ik )

) ⊂ F
(
t, x(t)

)
+ Bε0/2(0) ⊂ F

(
t, x(t)

)
+ Bε0 (0),

and we deduce from (3.5) that x′
g(t) ∈ F(t, x(t)) + Bε0 (0), a contradiction with (3.7). �

The result of Theorem 3.9 may fail if (3.3) is not satisfied just at one point as we show in
the following example.

Example 3.10 Problem (3.2) with g(t) = t, t0 = 0, T = 1, x0 = 0, and

F(t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

{1} if x < 0,

{1/2} if x = 0,

{–1} if x > 0,

has no solution. Observe that F(t, ·) assumes convex and compact values and it is usc on
R \ {0}.

In this case we should take K(t) = {0} for all t ∈ [0, 1], and we have

⋂

r>0

coF
(
t, (–r, r)

) ∩ D K(t, 0) = [–1, 1] ∩ {0} = {0} 
⊂ F(t, 0).

Our next example shows that Theorem 3.9 is so general that it can be applied in cases
where the nonlinear part is not usc or convex and compact valued on dense subsets of Rn.
Once again we consider the particular case of g(t) = t to highlight that Theorem 3.9 is new
even in the classical setting of usual derivatives.

Example 3.11 We shall construct an ill-behaved multivalued mapping F : [0, 1] × R −→
P(R) using a function ϕ : R −→R which is discontinuous at every rational number.

First, consider a bijection r : N −→Q, denote rp = r(p) for each p ∈N, and define

ϕ(x) =
∑

rp<x
2–p for each x ∈R.
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Obviously, 0 < ϕ(x) < 1 for all x ∈R and ϕ is increasing. Moreover, ϕ is continuous at every
irrational and discontinuous at every rational. More precisely, for each p ∈N we have

ϕ
(
r–

p
)

= ϕ(rp) < ϕ(rp) + 2–p = ϕ
(
r+

p
)
.

This implies that we can find δp > 0 such that

|y – rp| < δp ⇒ ϕ(y) > ϕ(rp)/2. (3.9)

Now we fix λ ∈ (0, 1) and we define F(t, x) for a.a. t ∈ I = [0, 1] and all x ∈R as follows:

F(t, x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[λϕ(x),ϕ(x)] for t ∈ A, x /∈ Q,

(λϕ(x),ϕ(x)) ∩Q for t ∈ A, x ∈ Q,

[–ϕ(x – t), –λϕ(x – t)] for t ∈ B, x – t /∈Q,

(–ϕ(x – t), –λϕ(x – t)) ∩Q for t ∈ B, x – t ∈Q,

where

A =
∞⋃

l=1

(
1
2l

,
1

2l – 1

)
and B =

∞⋃

l=1

(
1

2l + 1
,

1
2l

)
.

Note that F is not explicitly defined for t ∈ C = {(2l)–1 : l ∈ N} ∪ {0}, nor is it necessary as
it is countable, and thus m(C) = 0. We shall show that the hypotheses of Theorem 3.9 are
satisfied regardless of the values of F on C ×R. Also note that F(t, x) is neither convex nor
compact if t ∈ A and x ∈ Q or if t ∈ B and x – t ∈ Q. Moreover, if t ∈ A, then F(t, ·) is not
usc at rational numbers because ϕ jumps upwards at rationals.

Clearly, (H3) is satisfied with M(t) = 1, t ∈ [0, 1]. Condition (H2) is easy to check: for each
fixed x ∈R\Q, we can take the selection fx(t) = ϕ(x) for t ∈ A, and fx(t) = –ϕ(x– t) for t ∈ B.
Observe that fx(t) may not be an element of F(t, x) on Cx = {t ∈ B : x – t ∈Q} = B ∩ (x –Q),
but this does not matter because Cx is a countable set. For the case x ∈ Q, just take any
q ∈ (λϕ(x),ϕ(x)) ∩Q and consider fx(t) = q for t ∈ A, fx(t) = –ϕ(x – t) for t ∈ B. In any case,
fx is piecewise monotone, hence measurable.

Now for condition (H1). Define

K(t) =
∞⋃

p=1

Kp(t), t ∈ A ∪ B,

where, for each p ∈N,

Kp(t) =

⎧
⎨

⎩
{rp} if t ∈ A,

{t + rp} if t ∈ B.

Clearly, D Kp(t, rp) = {0} for all t ∈ A, and

D Kp(t, t + rp) = {1} for all t ∈ B.
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For a.a. t ∈ I and every x ∈R \ K(t), the set F(t, x) is closed and convex.
Let us prove that, for a.a. t ∈ I , the multivalued mapping F(t, ·) is usc at every fixed

x ∈R \ K(t). If t ∈ A, then ϕ is continuous at x, so for each ε > 0 there exists δ > 0 such that

|y – x| < δ ⇒ ∣
∣ϕ(y) – ϕ(x)

∣
∣ < ε ⇒ ∣

∣μϕ(y) – μϕ(x)
∣
∣ < ε for any μ ∈ [–1, 1].

Hence, if t ∈ A, and |y – x| < δ, then

F(t, y) ⊂ [
λϕ(y),ϕ(y)

] ⊂ (
λϕ(x) – ε,ϕ(x) + ε

)
= F(t, x) + (–ε, ε).

The proof is similar for t ∈ B, but the only difference is that we have to use the fact that ϕ

is continuous at x – t, because x /∈ Kp(t) = {t + rp} for any p.
Finally, we have to check that (3.3) holds. If t ∈ A, then, for each fixed p ∈N, there exists

δp > 0 such that (3.9) holds if |y – rp| < δp. Then, if |y – rp| < δp and z ∈ F(t, y) ⊂ [λϕ(y),ϕ(y)],
then

z ≥ λϕ(y) > λϕ(rp)/2.

Hence

coF
(
t, (rp – δp, rp + δp)

) ⊂ [λϕ(rp)/2,∞),

which implies that

⋂

r>0

coF
(
t, (rp – r, rp + r)

) ⊂ [λϕ(rp)/2,∞) ⊂ (0,∞).

Then the intersection in (3.3) is empty and therefore condition (3.3) holds.
Checking condition (3.3) for t ∈ B and x = t + rp for some p is easier. Clearly,

⋂

r>0

coF
(
t, (t + rp – r, t + rp + r)

) ⊂ (–∞, 0],

and DKp(t, t + rp) = {1}.

4 An existence result for Stieltjes differential equations
Let the intervals I and J be as in (3.1) and consider the following initial value problem:

x′
g(t) = f

(
t, x(t)

)
, g-a.a. t ∈ J , x(t0) = x0. (4.1)

As a corollary of Theorem 3.9 we obtain the following existence principle for (4.1).

Theorem 4.1 Let f : J ×R
n →R

n satisfy (i), (ii) and
(i) for all x ∈R

n, the map f (·, x) is g-measurable;
(ii) there exists L ∈ L1

g (J , [0,∞)) and N ⊂ J with μg(N) = 0, such that

∥
∥f (t, x)

∥
∥ ≤ L(t), for all x ∈R

n and all t ∈ J \ N ;
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(iii) for all t ∈ J \ (N ∪ Dg), f (t, ·) is continuous on R
n \ K(t), where K(t) =

⋃∞
p=1 Kp(t),

and for each p ∈N and x ∈ Kp(t), we have

∞⋂

r>0

cof
(
t, Br(x)

) ∩ Dg Kp(t, x) ⊂ {
f (t, x)

}
; (4.2)

(iv) for all t ∈ Dg , f (t, ·) is continuous on R
n.

Then the initial value problem (4.1) has at least one solution.

To conclude this section, we present the following example in which is possible to apply
the previous result to obtain the existence of solution for the corresponding initial value
problem.

Example 4.2 Let g : R →R be a nondecreasing left-continuous map, ϕ as in Example 3.11
and ψ a continuous function such that ψ–1(Q) is countable. Define f : J ×R →R as

f (t, x) = ϕ
(
ψ

(
αx + βg(t)

)
χ J\Dg (t) + tχDg (t)

)
,

with α > 0, β ∈ (–∞, –α) ∪ (0, +∞). Note that 0 < f (t, x) < 1 for all (t, x) ∈ J ×R, so

∞⋂

r>0

cof
(
t, Br(x)

) ⊂ [0, 1]

for all (t, x) ∈ J ×R. Consider the initial value problem

x′
g(t) = f (t, x), t ∈ J , x(t0) = x0.

Let us show that the previous problem has at least a solution by proving that the hypothe-
ses of Theorem 4.1 are satisfied.

Conditions (ii) and (iv) follow directly from the definition of f . For condition (i), fix x ∈R.
The map

t ∈ J �→ ϕ
(
ψ

(
αx + βg(t)

)
χ J\Dg (t) + tχDg (t)

)

is Borel-measurable as it is the composition of Borel-measurable maps. Hence, it is g-
measurable as the Borel σ -algebra is contained in the Lebesgue–Stieltjes σ -algebra defined
by g .

Finally, for condition (iii), write ψ–1(Q) = {sp : p ∈N} and define γp : J →R, p ∈ N, as

γp(t) =
sp – βg(t)

α
,

Kp : J → P(R), p ∈ N, as Kp(t) = {γp(t)} and K(t) =
⋃∞

p=1 Kp(t). Note that, for each p ∈ N,
γp is g-differentiable everywhere in J and γ ′

g (t) = –β/α, t ∈ J . Therefore, Dg Kp(t,γp(t)) =
{–β/α}, p ∈ N, so Dg Kp(t,γp(t)) ⊂ (–∞, 0) ∪ (1, +∞), depending on the value of β .

Fix t ∈ J \ Dg . If x ∈ Kp(t) for some p ∈ N, then the intersection in (4.2) is empty, so the
condition is trivially satisfied. On the other hand, if x ∈ R \ K(t), it follows that ψ(αx +
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βg(t)) /∈Q since

αx + βg(t) 
= sp, for all p ∈N.

Hence ϕ is continuous at ψ(αx + βg(t)) and so f (t, ·) is continuous at x as it is the compo-
sition of continuous functions. That is, the hypotheses of Theorem 4.1 are satisfied and
so the initial value problem has at least a solution.
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