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1 Introduction
In this article, we investigate the existence and uniqueness of periodic solutions or positive
periodic solutions for the following system of differential equations:

⎧
⎨

⎩

x′(t) = a(t)x(t) – f1(t, x(t), y(t)) + g1(t),

y′(t) = –b(t)y(t) + f2(t, x(t), y(t)) – g2(t),
(1.1)

where a, b ∈ C(R, R+) are ω-periodic for some ω > 0, f1(t, x, y), f2(t, x, y) ∈ C(R × R+ ×
R+, R+) and g1(t), g2(t) ∈ C(R, R+) are ω-periodic functions in t with gi(t) ≤ 1, i = 1, 2. Here
we remark (1.1) is a new system in the context of one-order differential equations. By using
recent fixed point theorems for increasing ϕ-(h, τ )-concave operators, we not only get the
existence and uniqueness of periodic solutions for (1.1), but also we can give convergent
sequences which can approximate the unique solution. This is a significant improvement
compared with some results in the literature. Different from other articles, we discuss a
differential equation system by new operator methods.

During the past decades, many people have studied the theories of differential equations
in economical, population dynamics, control, ecology and epidemiology; see the mono-
graphs [1–5] for example. Owing to its theoretical and practical significance, the study of
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periodic solutions for differential equations has been paid much attention to and it has a
fast development in ordinary and partial differential equations; see the papers [6–22] and
the references therein. In these papers, some good results have been established on the
existence of periodic solutions. Very recently, there were some articles reported on the
existence of periodic solutions for several systems of differential equations; see [23–26]
for example. In [23], Radu Precup discussed the existence of multiple positive periodic
solutions for the following differential system:

⎧
⎨

⎩

u′
1(t) = –a1(t)u1(t) + ε1f1(t, u1(t), u2(t)),

u′
2(t) = –a2(t)u2(t) + ε2f2(t, u1(t), u2(t)),

(1.2)

where for i ∈ {1, 2} : ai ∈ C(R, R),
∫ ω

0 ai dt �= 0, εi = sign
∫ ω

0 ai(t) dt, fi ∈ C(R × R2
+, R+), and

ai, fi(·, u1, u2) are ω-periodic functions for some ω > 0. The method used to resolve (1.2)
is a different version of Krasnosel’skii’s fixed point theorem in cones.

In [25], the authors studied the following system of differential equations:

⎧
⎨

⎩

u′
i(t) = ui(t)[ai(t) – fi(t, u(t), v(t))], i = 1, 2, . . . , n,

v′
j(t) = vj(t)[bj(t) + gj(t, u(t), v(t))], j = 1, 2, . . . , m,

(1.3)

where u(t) = (u1(t), u2(t), . . . , un(t))T , v(t) = (v1(t), v2(t), . . . , vm(t))T , and fi, gj for i = 1, 2,
. . . , n, j = 1, 2, . . . , m, are ω-periodic functions in t. By applying a fixed point theorem, they
gave the existence of positive periodic solutions for system (1.3).

However, there are still few papers that studied periodic solutions for systems of differen-
tial equations and the uniqueness of solutions is seldom obtained in literature. Motivated
by some recently published articles [27–34], we will study the uniqueness of periodic so-
lutions for system (1.1). We will give the existence and uniqueness of periodic solutions
or positive periodic solutions for system (1.1) and construct an iterative to approximate
the unique solution. Also, we can get the existence and uniqueness of periodic solutions
or positive periodic solutions for the following system:

⎧
⎨

⎩

x′(t) = –a(t)x(t) + f1(t, x(t), y(t)) – g1(t),

y′(t) = b(t)y(t) – f2(t, x(t), y(t)) + g2(t),
(1.4)

where a, b, f1(t, x, y), f2(t, x, y) and g1(t), g2(t) are the same as in (1.1).
From the articles mentioned above, we know that fi – gi (i = 1, 2) in (1.1) and (1.4) may be

nonnegative or negative, while the fi (i = 1, 2, . . . , n), gj (j = 1, 2, . . . , m) in (1.2) and (1.3) are
always nonnegative. So systems (1.1), (1.4) are different from (1.2), (1.3) and other ones in
the literature. Moreover, our results indicate that the unique periodic solution exists in a
product set, and can be approximated by making an iterative sequence for any initial point
in the product set.

2 Preliminaries
We shall find a unique periodic solution for system (1.1) and for this purpose we use oper-
ator methods as in [35]. For ω-periodic functions a, b ∈ C(R, R+) and f1, f2 ∈ C(R, R), from
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[23], the unique ω-periodic solution (x, y) of the system

⎧
⎨

⎩

x′(t) = a(t)x(t) – f1(t),

y′(t) = –b(t)y(t) + f2(t),
(2.1)

can be written as
⎧
⎨

⎩

x(t) =
∫ t+ω

t H1(t, s)f1(s) ds,

y(t) =
∫ t+ω

t H2(t, s)f2(s) ds,
(2.2)

where

H1(t, s) =
e–

∫ s
t a(ξ ) dξ

1 – e–
∫ ω

0 a(ξ ) dξ
, H2(t, s) =

e
∫ s

t b(ξ ) dξ

e
∫ ω

0 b(ξ ) dξ – 1
, (t, s) ∈ (R, R). (2.3)

Set

m1 = min
t∈[0,ω]

∫ t+ω

t
H1(t, s) ds, m2 = min

t∈[0,ω]

∫ t+ω

t
H2(t, s) ds,

M1 = max
t∈[0,ω]

∫ t+ω

t
H1(t, s) ds, M2 = max

t∈[0,ω]

∫ t+ω

t
H2(t, s) ds.

Clearly, (x, y) is a periodic solution of system (1.1) if and only if (x, y) is a solution of the
following integral equation system:

⎧
⎨

⎩

x(t) =
∫ t+ω

t H1(t, s)f1(s, x(s), y(s)) ds –
∫ t+ω

t H1(t, s)g1(s) ds,

y(t) =
∫ t+ω

t H2(t, s)f2(s, x(s), y(s)) ds –
∫ t+ω

t H2(t, s)g2(s) ds,
(2.4)

which can be regarded as an operator equation.
Now we present some notations, concepts and lemmas which have already become

known in previous work; see [35–37] and the references therein. Let (E,‖ · ‖) be a real
Banach space which is partially ordered by a cone P ⊂ E. For any x, y ∈ E, x ∼ y means
that there are α > 0 and β > 0 such that αx ≤ y ≤ βx. Take h > θ (i.e., h ≥ θ and h �= θ ),
we consider a set Ph = {x ∈ E | x ∼ h}. Clearly, Ph ⊂ P. Take another element τ ∈ P with
θ ≤ τ ≤ h, we define Ph,τ = {x ∈ E | x + τ ∈ Ph}.

Next we list the definition of ϕ-(h, τ )-concave operators and fixed point theorems for
such operators, which are fundamental to our proofs of our results.

Definition 2.1 (See [35]) Suppose that N : Ph,τ → E is an operator which satisfies: for any
x ∈ Ph,τ and λ ∈ (0, 1), there exists ϕ(λ) > λ such that N(λx + (λ – 1)τ ) ≥ ϕ(λ)Nx + (ϕ(λ) –
1)τ . Then we call N a ϕ-(h, τ )-concave operator.

Lemma 2.1 (See [35]) Assume that P is a normal cone and N is an increasing ϕ-(h, τ )-
concave operator satisfying Nh ∈ Ph,τ . Then N has a unique fixed point x∗ in Ph,τ . In addi-
tion, for any w0 ∈ Ph,τ , constructing the sequence wn = Nwn–1, n = 1, 2, . . . , then ‖wn –x∗‖ →
0 as n → ∞.
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Lemma 2.2 (See [36]) Assume that P is normal and N is an increasing ϕ-(h, θ )-concave
operator satisfying Nh ∈ Ph. Then N has a unique fixed point x∗ in Ph. In addition, for any
w0 ∈ Ph, constructing the sequence wn = Nwn–1, n = 1, 2, . . . , then ‖wn – x∗‖ → 0 as n → ∞.

For h1, h2 ∈ P with h1, h2 �= θ . Let h = (h1, h2), then h ∈ P := P × P. Take θ ≤ τ1 ≤ h1,
θ ≤ τ2 ≤ h2, and denote θ = (θ , θ ), τ = (τ1, τ2). Then θ = (θ , θ ) ≤ (τ1, τ2) ≤ (h1, h2) = h. That
is, θ ≤ τ ≤ h. If P is normal, then P = P × P is normal (see [37]).

Lemma 2.3 ([27]) Ph = Ph1 × Ph2 .

Lemma 2.4 ([28]) Ph,τ = Ph1,τ1 × Ph2,τ2 .

3 Existence and uniqueness of periodic solutions
In this section, we will prove the existence and uniqueness of periodic solutions for system
(1.1). Let E = {x ∈ C(R, R) : x(t) = (t + ω) for every t ∈ R}, then E is a Banach space under
the norm

‖x‖∞ = max
t∈[0,ω]

∣
∣x(t)

∣
∣.

We will discuss (1.1) in E × E. For (x, y) ∈ E × E, let ‖(x, y)‖ = ‖x‖∞ + ‖y‖∞. Then (E ×
E,‖(x, y)‖) is also a Banach space. Moreover, let

P =
{

(x, y) ∈ E × E : x(t) ≥ 0, y(t) ≥ 0, t ∈ R
}

, P =
{

x ∈ E : x(t) ≥ 0, t ∈ R
}

,

then P ⊂ E × E and P = P × P is normal and E × E has a partial order: (x1, y1) ≤ (x2, y2) ⇔
x1(t) ≤ x2(t), y1(t) ≤ y2(t), t ∈ R.

For (x, y) ∈ E × E, we define an operator N = (N1, N2) with

N1(x, y)(t) =
∫ t+ω

t
H1(t, s)f1

(
s, x(s), y(s)

)
ds –

∫ t+ω

t
H1(t, s)g1(s) ds,

N2(x, y)(t) =
∫ t+ω

t
H2(t, s)f2

(
s, x(s), y(s)

)
ds –

∫ t+ω

t
H2(t, s)g2(s) ds.

Then N1, N2 : E ×E → E and N : E ×E → E ×E. From (2.4), (x, y) is an ω-periodic solution
of system (1.1) if and only if (x, y) is a fixed point of operator N .

To obtain our results, we first define several functions:

τ1(t) =
∫ t+ω

t
H1(t, s)g1(s) ds, τ2(t) =

∫ t+ω

t
H2(t, s)g2(s) ds, (3.1)

h1(t) =
∫ t+ω

t
H1(t, s) ds, h2(t) =

∫ t+ω

t
H2(t, s) ds. (3.2)

Remark 3.1 From (2.3), we can prove that τ1(t), τ2(t), h1(t) and h2(t) are ω-periodic func-
tions. Moreover, it is easy to show τ1, τ2, h1, h2 ∈ P.

Theorem 3.1 Let τ1, τ2, h1, h2 be given as in (3.1) and (3.2). Moreover, for i = 1, 2,
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(H1) fi(t, x, y): R× [–τ ∗
1 , +∞)× [–τ ∗

2 , +∞) → R is ω-periodic with respect to first variable,
and increasing with respect to the second, third variables, where τ ∗

i = max{τi(t) : t ∈
[0,ω]};

(H2) for λ ∈ (0, 1), there exists ϕ(λ) > λ such that

fi
(
t,λx1 + (λ – 1)x2,λy1 + (λ – 1)y2

) ≥ ϕ(λ)fi(t, x1, y1),

t, x1, y1 ∈ R, x2 ∈ [
0, τ ∗

1
]
, y2 ∈ [

0, τ ∗
2
]
;

(H3) fi(t, 0, 0) ≥ 0 with fi(t, 0, 0) �≡ 0 for t ∈ [0,ω].
Then:

(1) system (1.1) has a unique periodic solution (x∗, y∗) in Ph,τ , where

τ (t) =
(
τ1(t), τ2(t)

)
, h(t) =

(
h1(t), h2(t)

)
, t ∈ [0,ω];

(2) for any point (x0, y0) ∈ Ph,τ , we construct the following sequences:

xn+1(t) =
∫ t+ω

t
H1(t, s)f1

(
s, xn(s), yn(s)

)
ds –

∫ t+ω

t
H1(t, s)g1(s) ds,

yn+1(t) =
∫ t+ω

t
H2(t, s)f2

(
s, xn(s), yn(s)

)
ds –

∫ t+ω

t
H2(t, s)g2(s) ds,

n = 0, 1, 2, . . . , and then we obtain xn+1(t) → x∗(t), yn+1(t) → y∗(t) as n → ∞.

Proof From Remark 3.1, τ = (τ1, τ2) ∈ P, h = (h1, h2) ∈ P. Due to gi(t) ≤ 1, i = 1, 2. For t ∈ R,

τ1(t) =
∫ t+ω

t
g1(s)H1(t, s) ds ≤

∫ t+ω

t
H1(t, s) ds = h1(t),

τ2(t) =
∫ t+ω

t
g2(s)H2(t, s) ds ≤

∫ t+ω

t
H2(t, s) ds = h2(t).

So we get τ1 ≤ h1, τ2 ≤ h2 and thus τ = (τ1, τ2) ≤ (h1, h2) = h.
Now we show that operator N : Ph,τ → E × E is a ϕ-(h, τ )-concave operator. For (x, y) ∈

Ph,τ and λ ∈ (0, 1), we get

N
(
λ(x, y) + (λ – 1)τ

)
(t) = N

(
λ(x, y) + (λ – 1)τ

)
(t)

=
(
N1

(
λ(x, y) + (λ – 1)τ

)
, N2

(
λ(x, y) + (λ – 1)τ

))
(t).

Hence we need to discuss N1(λ(x, y) + (λ – 1)τ )(t) and N2(λ(x, y) + (λ – 1)τ )(t), respectively.
By considering (H2),

N1
(
λ(x, y) + (λ – 1)τ

)
(t)

= N1
(
λx + (λ – 1)τ1,λy + (λ – 1)τ2

)
(t)

=
∫ t+ω

t
H1(t, s)f1

(
s,λx(s) + (λ – 1)τ1(s),λy(s) + (λ – 1)τ2(s)

)
ds – τ1(t)

≥ ϕ(λ)
∫ t+ω

t
H1(t, s)f1

(
s, x(s), y(s)

)
ds – τ1(t)
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= ϕ(λ)
[∫ t+ω

t
H1(t, s)f1

(
s, x(s), y(s)

)
ds – τ1(t)

]

+ ϕ(λ)τ1(t) – τ1(t)

= ϕ(λ)N1(x, y)(t) +
[
ϕ(λ) – 1

]
τ1(t).

Similarly,

N2
(
λ(x, y) + (λ – 1)τ

)
(t)

= N2
(
λx + (λ – 1)τ1,λy + (λ – 1)τ2

)
(t)

=
∫ t+ω

t
H2(t, s)f2

(
s,λx(s) + (λ – 1)τ1(s),λy(s) + (λ – 1)τ2(s)

)
ds – τ2(t)

≥ ϕ(λ)
∫ t+ω

t
H2(t, s)f2

(
s, x(s), y(s)

)
ds – τ2(t)

= ϕ(λ)
[∫ t+ω

t
H2(t, s)f2

(
s, x(s), y(s)

)
ds – τ2(t)

]

+ ϕ(λ)τ2(t) – τ2(t)

= ϕ(λ)N2(x, y)(t) +
[
ϕ(λ) – 1

]
τ2(t).

Hence,

N
(
λ(x, y) + (λ – 1)τ

)
(t)

≥ (
ϕ(λ)N1(x, y)(t) +

[
ϕ(λ) – 1

]
τ1(t),ϕ(λ)N2(x, y)(t) +

[
ϕ(λ) – 1

]
τ2(t)

)

=
(
ϕ(λ)N1(x, y)(t),ϕ(λ)N2(x, y)(t)

)
+

((
ϕ(λ) – 1

)
τ1(t),

(
ϕ(λ) – 1

)
τ2(t)

)

= ϕ(λ)
(
N1(x, y)(t), N2(x, y)(t)

)
+

(
ϕ(λ) – 1

)(
τ1(t), τ2(t)

)

= ϕ(λ)N(x, y)(t) +
(
ϕ(λ) – 1

)
τ (t).

That is,

N
(
λ(x, y) + (λ – 1)τ

) ≥ ϕ(λ)N(x, y) +
[
ϕ(λ) – 1

]
τ , (x, y) ∈ Ph,τ ,λ ∈ (0, 1).

Therefore, we find that N is a ϕ-(h, τ )-concave operator.
In the following, we prove that N : Ph,τ → E × E is increasing. For (x, y) ∈ Ph,τ , one has

(x, y) + τ ∈ Ph. From Lemma 2.3, (x + τ1, y + τ2) ∈ Ph1 × Ph2 , which means that there exist
λ1,λ2 > 0 such that

x(t) + τ1(t) ≥ λ1h1(t), y(t) + τ2(t) ≥ λ2h2(t), t ∈ R.

Consequently, x(t) ≥ λ1h1(t) – τ1(t) ≥ –τ1(t) ≥ –τ ∗
1 , y(t) ≥ λ2h2(t) – τ2(t) ≥ –τ2(t) ≥ –τ ∗

2 .
By considering (H1) and the definitions of N1, N2, we know that N : Ph,τ → E × E is in-
creasing.

Now we show that the important condition Nh ∈ Ph,τ is also satisfied. That is, we need
to prove Nh + τ ∈ Ph. For any t ∈ R,

Nh(t) + τ (t) = N(h1, h2)(t) + τ (t)
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=
(
N1(h1, h2)(t), N2(h1, h2)(t)

)
+

(
τ1(t), τ2(t)

)

=
(
N1(h1, h2)(t) + τ1(t), N2(h1, h2)(t) + τ2(t)

)
.

Clearly, we need to discuss N1(h1, h2)(t) + τ1(t), N2(h1, h2)(t) + τ2(t), respectively. For con-
venience, we set

ri = min
t∈[0,ω]

{
fi(t, m1, m2)

}
, Ri = min

t∈[0,ω]

{
fi(t, M1, M2)

}
, i = 1, 2.

By (H1) and (H3), R1 ≥ r1 > 0, R2 ≥ r2 > 0. Note that mi ≤ hi(t) ≤ Mi, i = 1, 2, and from
(H1),

N1(h1, h2)(t) + τ1(t) =
∫ t+ω

t
H1(t, s)f1

(
s, h1(s), h2(s)

)
ds

≥
∫ t+ω

t
H1(t, s)f1(s, m1, m2) ds

= r1

∫ t+ω

t
H1(t, s) ds = r1h1(t)

and

N1(h1, h2)(t) + τ1(t) =
∫ t+ω

t
H1(t, s)f1

(
s, h1(s), h2(s)

)
ds

≤
∫ t+ω

t
H1(t, s)f1(s, M1, M2) ds

= R1

∫ t+ω

t
H1(t, s) ds = R1h1(t).

So we get r1h1 ≤ N1(h1, h2) + τ1 ≤ R1h1, i.e., N1(h1, h2) + τ1 ∈ Ph1 . Similarly, we can obtain
N2(h1, h2) + τ2 ∈ Ph2 . Hence, by Lemma 2.4,

N(h1, h2) + τ =
(
N1(h1, h2) + τ1, N2(h1, h2) + τ2

) ∈ Ph1 × Ph2 = Ph.

Finally, an application of Lemma 2.1 implies that N has a unique fixed point (x∗, y∗) ∈ Ph,τ .
And, for any given (x0, y0) ∈ Ph,τ , the sequence

(xn, yn) = N(xn–1, yn–1) =
(
N1(xn–1, yn–1), N2(xn–1, yn–1)

)
, n = 1, 2, . . . ,

converges to (x∗, y∗) as n → ∞. Therefore, system (1.1) has a unique periodic solution
(x∗, y∗) in Ph,τ ; and choosing any initial point (x0, y0) ∈ Ph,τ , we have the following se-
quences:

xn(t) =
∫ t+ω

t
H1(t, s)f1

(
s, xn–1(s), yn–1(s)

)
ds –

∫ t+ω

t
H1(t, s)g1(s) ds,

yn(t) =
∫ t+ω

t
H2(t, s)f2

(
s, xn–1(s), yn–1(s)

)
ds –

∫ t+ω

t
H2(t, s)g2(s) ds,

n = 1, 2, . . . , satisfying xn+1 → x∗, yn+1 → y∗ as n → ∞. �
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Let

H1(t, s) =
e
∫ s

t a(ξ ) dξ

e
∫ ω

0 a(ξ ) dξ – 1
, H2(t, s) =

e–
∫ s

t b(ξ ) dξ

1 – e–
∫ ω

0 b(ξ ) dξ
, (t, s) ∈ (R, R). (3.3)

Similar to the proof of Theorem 3.1, we can obtain the following conclusion.

Theorem 3.2 Let τ1, τ2, h1, h2 be given as in (3.1) and (3.2) with H1, H2 are replaced by
(3.3). Assume that the conditions (H1)–(H3) hold. Then:

(1) system (1.4) has a unique periodic solution (x∗, y∗) in Ph,τ , where

τ (t) =
(
τ1(t), τ2(t)

)
, h(t) =

(
h1(t), h2(t)

)
, t ∈ [0,ω];

(2) for any point (x0, y0) ∈ Ph,τ , construct the following sequences:

xn+1(t) =
∫ t+ω

t
H1(t, s)f1

(
s, xn(s), yn(s)

)
ds –

∫ t+ω

t
H1(t, s)g1(s) ds,

yn+1(t) =
∫ t+ω

t
H2(t, s)f2

(
s, xn(s), yn(s)

)
ds –

∫ t+ω

t
H2(t, s)g2(s) ds,

n = 0, 1, 2, . . . , and then one has xn+1(t) → x∗(t), yn+1(t) → y∗(t) as n → ∞.

When g1(t) = g2(t) ≡ 0, we can get the uniqueness of positive periodic solutions for sys-
tems (1.1) and (1.4) by using Lemma 2.2. The proofs are similar to Theorem 3.1.

Corollary 3.1 Let h1, h2 be given as in (3.2). Moreover, for i = 1, 2,
(H4) fi(t, x, y): R × R+ × R+ → R+ is ω-periodic with respect to first variable, and increas-

ing with respect to the second, third variables;
(H5) for λ ∈ (0, 1), there exists ϕ(λ) > λ such that

fi(t,λx,λy) ≥ ϕ(λ)fi(t, x, y), t, x, y ∈ R;

(H6) fi(t, 0, 0) �≡ 0 for t ∈ [0,ω].
Then system (1.1) has a unique positive periodic solution (x∗, y∗) in Ph, where h(t) =
(h1(t), h2(t)), t ∈ R. Further, for any point (x0, y0) ∈ Ph, make the following sequences:

xn+1(t) =
∫ t+ω

t
H1(t, s)f1

(
s, xn(s), yn(s)

)
ds,

yn+1(t) =
∫ t+ω

t
H2(t, s)f2

(
s, xn(s), yn(s)

)
ds,

n = 0, 1, 2, . . . , and then we get xn+1(t) → x∗(t), yn+1(t) → y∗(t) as n → ∞.

Corollary 3.2 Let h1, h2 be given as in (3.2) with H1, H2 are replaced by (3.3). Assume that
the conditions (H4)–(H6) hold. Then system (1.4) has a unique positive periodic solution
(x∗, y∗) in Ph, where h(t) = (h1(t), h2(t)), t ∈ R. Further, for any point (x0, y0) ∈ Ph, put the
following sequences:

xn+1(t) =
∫ t+ω

t
H1(t, s)f1

(
s, xn(s), yn(s)

)
ds,
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yn+1(t) =
∫ t+ω

t
H2(t, s)f2

(
s, xn(s), yn(s)

)
ds,

n = 0, 1, 2, . . . , and then we obtain xn+1(t) → x∗(t), yn+1(t) → y∗(t) as n → ∞.

Remark 3.2 The form of differential system (1.1) is more general. Our method is new to the
study of nonlinear systems of differential equations, which gives the existence and unique-
ness of periodic solutions. Moreover, the unique periodic solution can be approximated
by an iteration.

Remark 3.3 By using the same discussion as with Theorem 3.1 and Corollary 3.1, we can
consider the following differential equation:

x′(t) = a(t)x(t) – f
(
t, x(t)

)
+ g(t),

where a ∈ C(R, R+) is ω-periodic for some ω > 0, f (t, x) ∈ C(R×R+, R+) and g(t) ∈ C(R, R+)
are ω-periodic functions in t with g(t) ≤ 1. We can also give the existence and uniqueness
of periodic solutions or positive periodic solutions. Moreover, the unique periodic solu-
tion can be also approximated by making an iterative sequence.

4 Examples
In this section, we present two simple examples to illustrate the main results.

Example 4.1 Consider the simple system of differential equations:
⎧
⎨

⎩

x′(t) = ax(t) – [y(t) + 1
4b ] 1

3 sin2 t + 1
2 ,

y′(t) = –by(t) + [x(t) + 1
2a ] 1

3 cos2 t – 1
4 ,

(4.1)

where a, b > 0. In this example, we let

f1(t, y) =
(

y+
1

4b

) 1
3

sin2 t, f2(t, x) =
(

x+
1

2a

) 1
3

cos2 t, g1(t) =
1
2

, g2(t) =
1
4

and they are π-periodic functions in t. By direct calculation,

H1(t, s) =
e–a(s–t)

1 – e–aω
, H2(t, s) =

eb(s–t)

ebω – 1
,

τ1(t) =
∫ t+π

t
H1(t, s)g1(s) ds =

1
2a

, τ2(t) =
∫ t+π

t
H2(t, s)g2(s) ds =

1
4b

,

h1(t) =
∫ t+π

t
H1(t, s) ds =

1
a

, h2(t) =
∫ t+π

t
H2(t, s) ds =

1
b

,

and thus τ1 ≤ h1, τ2 ≤ h2, τ ∗
1 = 1

2a , τ ∗
2 = 1

4b . It is easy to see that f1(t, y) : R × [– 1
4b , +∞) → R

and f2(t, x) : R× [– 1
2a , +∞) → R are π-periodic with respect to first variable and increasing

with respect to the second variable. In addition,

f1(t, 0) =
(

1
4b

) 1
3

sin2 t �≡ 0, f2(t, 0) =
(

1
2a

) 1
3

cos2 t �≡ 0, t ∈ R.

Hence, the conditions (H1), (H3) are satisfied.
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In the following, we show that (H2) holds. Let ϕ(λ) = λ
1
3 , then ϕ(λ) > λ for λ ∈ (0, 1), and

for x1, y1 ∈ R, x2 ∈ [0, 1
2a ], y2 ∈ [0, 1

4b ],

f1
(
t,λy1 + (λ – 1)y2

)
=

[

λy1 + (λ – 1)y2 +
1

4b

] 1
3

sin2 t

= λ
1
3

[

y1 +
(

1 –
1
λ

)

y2 +
1
λ

1
4b

] 1
3

sin2 t

≥ λ
1
3

[

y1 +
(

1 –
1
λ

)
1

4b
+

1
λ

1
4b

] 1
3

sin2 t

= λ
1
3

[

y1 +
1

4b

] 1
3

sin2 t

= ϕ(λ)f1(t, y1),

f2
(
t,λx1 + (λ – 1)x2

)
=

[

λx1 + (λ – 1)x2 +
1

2a

] 1
3

cos2 t

= λ
1
3

[

x1 +
(

1 –
1
λ

)

x2 +
1
λ

1
2a

] 1
3

cos2 t

≥ λ
1
3

[

x1 +
(

1 –
1
λ

)
1

2a
+

1
λ

1
2a

] 1
3

cos2 t

= λ
1
3

[

x1 +
1

2a

] 1
3

cos2 t

= ϕ(λ)f2(t, x1).

So, the condition (H2) is satisfied. By Theorem 3.1, system (4.1) has a unique periodic
solution (x∗, y∗) in Ph,τ , where

τ (t) =
(
τ1(t), τ2(t)

)
=

(
1

2a
,

1
4b

)

, h(t) =
(
h1(t), h2(t)

)
=

(
1
a

,
1
b

)

.

Take any initial point (x0, y0) ∈ Ph,τ , making the sequences:

xn+1(t) =
∫ t+π

t

e–a(s–t)

1 – e–aω

{[

yn(s) +
1

4b

] 1
3

sin2 t –
1
2

}

ds,

yn+1(t) =
∫ t+π

t

eb(s–t)

ebω – 1

{[

xn(s) +
1

2a

] 1
3

cos2 t –
1
4

}

ds,

n = 0, 1, 2, . . . , one has xn+1 → x∗(t), yn+1 → y∗(t) as n → ∞.

Example 4.2 Consider the following system of differential equations:

⎧
⎨

⎩

x′(t) = a(t)x(t) – [x(t) + y2(t) + 1] 1
4 sin2 t,

y′(t) = –b(t)y(t) – [x2(t) + y3(t) + 2]
1
6 cos2 t,

(4.2)
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where a(t), b(t) ≥ 0 and a(t), b(t) are π-periodic in t. In this example, we let

f1(t, x, y) =
[
x(t) + y2(t) + 1

] 1
4 sin2 t, f2(t, x, y) =

[
x2(t) + y3(t) + 2

] 1
6 cos2 t,

and they are π-periodic functions in t. Moreover,

f1(t, 0, 0) = sin2 t �≡ 0, f2(t, 0, 0) = 2 cos2 t �≡ 0, t ∈ R.

So the fi(t, x, y): R × R+ × R+ → R+ satisfy (H4) and (H6) in Corollary 3.1. Next, we prove
that the condition (H5) also holds. Let ϕ(λ) = λ

1
2 , then ϕ(λ) > λ, λ ∈ (0, 1). And for λ ∈ (0, 1)

and x, y ≥ 0,

f1(t,λx,λy) =
(
λx + λ2y2 + 1

) 1
4 sin2 t ≥ λ

1
2
(
x + y2 + 1

)
sin2 t = ϕ(λ)f1(t, x, y),

f2(t,λx,λy) =
(
λ2x2 + λ3y3 + 2

) 1
6 cos2 t ≥ λ

1
2
(
x2 + y3 + 2

)
cos2 t = ϕ(λ)f2(t, x, y).

Hence the condition (H5) is satisfied. By Corollary 3.1, system (4.2) has a unique positive
periodic solution (x∗, y∗) in Ph, where h(t) = (h1(t), h2(t)), h1(t) =

∫ t+π

t H1(t, s) ds, h2(t) =
∫ t+π

t H2(t, s) ds with

H1(t, s) =
e–

∫ t
s a(s) ds

1 – e–
∫ π

0 a(s) ds
, H2(t, s) =

e
∫ t

s a(s) ds

e–
∫ π

0 b(s) ds – 1
.

Further, for any point (x0, y0) ∈ Ph, put the following sequences:

xn+1(t) =
∫ t+π

t
H1(t, s)

[
xn(s) + y2

n(s) + 1
] 1

4 sin2 s ds,

yn+1(t) =
∫ t+π

t
H2(t, s)

[
x2

n(s) + y3
n(s) + 2

] 1
6 cos2 s ds,

n = 0, 1, 2, . . . , and then we get xn+1(t) → x∗(t), yn+1(t) → y∗(t) as n → ∞.
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