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A fractional Burgers map is proposed by means of the Caputo-like delta difference
operator. The bifurcation diagrams, phase trajectories and 0-1 test results of the
fractional Burgers map are presented, respectively. This work extends the 0-1 test
algorithm to the discrete fractional chaotic map.
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1 Introduction

The fractional systems have recently received increasing attention, because fractional cal-
culus can accurately explain many realistic problems. Many important results, such as
chaos and bifurcation, on the continuous fractional systems can be found in [1-7]. How-
ever, the studies on discrete fractional systems are still in their infancy, especially in chaos
dynamics. Some pioneering work for the discrete fractional systems can be found in [8—
14]. In addition, researchers get more interesting results for discrete fractional chaotic
systems by means of [15-20]. Although many results have been presented, the identifica-
tion of chaos of the fractional chaotic map is still an open topic.

Very recently, Wu et al. used Lyapunov exponents to identify chaos for the fractional
chaotic map in the [21]. However, this method needs to construct the Jacobian matrix of
fractional chaotic map. In fact, the construction of the Jacobi matrix is relatively tedious
work in the case of a fractional map. In order to avoid the construction of a Jacobian matrix,
in this paper we extend the 0—1 test algorithm [22—28] to a fractional chaotic map, which
provides another reference for the study of the fractional chaotic map.

This article is structured as follows. The basic definitions of discrete fractional calculus
are introduced in Sect. 2. In Sect. 3, the fractional Burgers map is obtained by means of
Caputo-like delta difference. In Sect. 4, the chaotic behaviors of the fractional Burgers map
are investigated. In Sect. 5, the conclusions arising from this study are summarized.

2 Preliminaries

The basic definitions of discrete fractional calculus briefly described in this section. See
references [10—12] for more details. The falling N, = {a@,a + 1,a + 2,...} denotes the time
scale.
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Definition 1 Let x(¢) : N, — R and v > 0, the fractional sum of order v is defined by

t-v

AJx(t) = % (t— o))" Vx(s),  teNgp, (1)

where a is the starting point, o/(s) = s + 1, and ¢® is the falling function defined as ¢t =
I(t+1)
rt+1-v)*

Definition 2 For v > 0, the vth Caputo-like delta difference can be defined as

t—(n—v)

CA;x(t) = ﬁ Z (t - a(s))(nfvfl)A”x(s), t € Nyyyoy, (2)

where n = [v] + 1.
Theorem 1 ([13]) For the delta fractional difference equation

CAX(@E) =f(t+v—1,x(t +v-1)),

; 3)
Ax(a) = xx, m=[v]+1, k=0,1,2,...,m—1,
the equivalent discrete integral equation can be obtained as
1 t—v
x(0) = %0(0) + 1o XV;(t —o@)  xfs+v-Lals+v=1)), teNgn @
where the initial iteration reads
m—1
(t-a)®
xo(t) = o Afx(a). ()
k=0 ’
Particularly, if for the initial point 2 =0, and 0 < v < 1, Eq. (4) is rewritten by
1 t—v
x(t) =x(0 F_ t o(s f(s+v—1,x(s+v—1)), teN,,. (6)
s=1 -V
Using (t — o (s))"V = F(f(s e and s + v=j, Eq. (6) is further simplified to
1 It —j+v)
t) =x(0 1, 1 teN,. 7
x(t) "”*m}zr(m D XS U=LxG=1), teN, ™)

3 The fractional Burgers map and its solution
The fractional version of Burgers map is obtained by using the Caputo-like delta operator
in this section.

Consider the falling Burgers map

x(t+1) = (1 - a)x(t) - y(2)?,

(8)
y(E+1) = (1 +b)y(t) + y(t)x(2).
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Figure 1 Chaotic attractor. The chaotic attractor when (@) b = 0.83, (b) b = 0.88, respectively

By taking a = 1 and b = 0.83, system (8) exhibits a chaotic behavior, which is shown in
Fig. 1(a). When b is further increased to 0.88, a more complex chaotic attractor is plotted
in Fig. 1(b).

Based on the first-order difference operator A, system (8) can be rewritten as

{ Ax(t+1) = (1 - a)x(e) - y(2)? - x(0), o)
Ay(t+1) = (1 +b)y(t) + y()x(t) — y(2).

The Caputo-like delta operator “AY is applied to system (9), a novel fractional Burgers
map is obtained as
CAYx(t) = (1 —a)x(t+v—1) -yt +v-1)2 —x(t +v-1), (10)
CAYY) = (1 +b)yt+v—1)+y(t +v—Dx(t +v—1) =yt +v - 1).

According to Theorem 1 in Sect. 2, taking the initial point as 0, the numerical solution

of system (10) is given as

(11)

ix(t):x(0)+ T o T x (L= )= 1) = y( = 12 = 2 = 1)),
() =5(0) + 7y Yoy Ty % (L4 b)y(i = 1) + 3 = D = 1) =y - 1)).

4 The chaotic dynamics of fractional Burgers map
The chaos of fractional Burgers map is identified by using the recently proposed 0-1 test.

4.1 The notion of 0-1 test
Let us briefly describe the 0—1 test as follows (see [22] for more details). We consider a set
of data {¢x, k = 1,2,3,...}, which is obtained from a dynamical system. According to [22],

we define a new coordinates (py, sy). Here p and si are the falling functions defined as

Pr= Y51 drcos(6y),

12
5= Y5, dusin(@y), 12
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where
s
Op=hc+ ) ¢ A=12...k (13)
i=1
and c € [%, 4?”] is a random number. Further, the mean square displacement is defined by
LN
. 2
Mc(k) = lim N ;[(anrk =p3) = Sk —52)] s (14)

where k < N, we calculate M_(k) for k < k¢y = round(N/10), as recommended in the [24].
For a given c, the modified D.(k) can be defined as

DK = M) - (6P, (15)
where (¢) is the mean value of {¢,k =1,2,3,...}, which can be calculated by
1N
() = lim ;m. (16)

According to Eq. (15), we can define the asymptotic growth rate K, by means of the cor-
relation and regression methods, respectively. If the correlation method is used, the K, is
defined as

cov(e, X)

K= (var(s)) var(X)’

(17)
where e =1,2,3,... and X = (D.(1), D.(2), D.(3),...), D.(kcyt). If the regression method is
employed, K_ is calculated by
log D.(k
K = 1im 08Pk (18)
k—>oo logk
Finally, according to the K, , we can get the median value K = median(K_). The idea of
the 01 test can be described as (a) the dynamical behavior is regular when K is equal
to 0; (b) the dynamical behavior is chaotic when K is equal to 1. In addition, we can also
observe (p, s) trajectories, the regular dynamics correspond to bounded motions whereas
Brownian-like motions correspond to chaotic dynamics.

4.2 Testing for chaos
In this section, identification of chaos of the fractional Burgers map is researched by using
the bifurcation diagrams, phase trajectories and 0-1 test.

Leta=1,v=0.9 and b is fixed. The step size of the b is set at 0.01, in this paper, we can
obtain the bifurcation diagram of system (10) versus b € [0, 1] as shown in Fig. 2(a). The
K median value of the time series x(#) of system (10) versus b € [0, 1] is drawn in Fig. 2(b).
Let b =0.9,v = 0.9, and the a is fixed. The step size of the a is set at 0.01, we can obtain the
bifurcation diagram of system (10) versus a € [0, 1] as shown in Fig. 3(a). The K median
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Figure 2 Bifurcation diagram and K median value. The bifurcation diagram (a) and K median value (b) of
system (10) with a =1, v=0.9 versus parameter b
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Figure 3 Bifurcation diagram and K median value. The bifurcation diagram (a) and K median value (b) of
system (10) with b=0.9, v=0.9 versus parameter a

value of the time series x(#) of system (10) versus « € [0, 1] is drawn in Fig. 3(b). Then, let
a =1, b =1, and the fractional over v is fixed. The step size of the v is set at 0.01, we can
obtain the bifurcation diagram of system (10) versus v € (0,1) as shown in Fig. 4(a). The
K median value of the time series x(x) of system (10) versus v € (0, 1) is drawn in Fig. 4(b).
From Figs. 2, 3 and 4, we can find that system (10) shows a different chaotic dynamics when
we change the parameters b and a, and the fractional order v. From Fig. 2, system (10)
implies chaotic behaviors ((K = 1)) when b € [0.82,1]. From Fig. 3, system (10) implies
chaotic behaviors ((K = 1)) when a € [0.46,1]. From Fig. 4, system (10) implies chaotic
behaviors ((K = 1)) when v € [0.79, 1).

In addition, the (p,s) dynamics is used to further verify the chaotic dynamics of system
(10). The test results are shown in Fig. 5 which shows Brownian-like trajectories. The
phase trajectories and chaotic solutions corresponding to Fig. 5 are shown in Fig. 6.

Based on the analyses above, we can find that the dynamics demonstrated in the 0-1

test results are consistent with the bifurcation diagrams and phase trajectories.

Page 5 of 9
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Figure 4 Bifurcation diagram and K median value. The bifurcation diagram (a) and K median value (b) of
system (10) with a=1, b =1 versus fractional order v
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Figure 5 The 0-1 test:(p, s) dynamics. The 0-1 test: (p, s) dynamics of system (10), (@) a=1, b =0.85 and
v=09,(b)a=07b=09andv=09,(c)a=1,b=1andv=0.85, respectively

Besides, system (10) exhibits many NSP (numerically stable periodic) trajectories. As an
example, we take 2 = 1, b = 1 and v = 0.5, a NSP orbit of period-4 is obtained as shown in
Fig. 7(a). Figure 7(b) is the K median value of the time series x(#) of system (10). The (p,s)
dynamics is shown in Fig. 7(c).
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Figure 6 The phase portraits and chaotic solutions. The phase portraits of system (10) for (@) a= 1, b=0.85
andv=09,(b)a=0.7b=09andv=09,(c)a=1,b=1andv=0.85, respectively. The chaotic solutions of
system (10) for (d) a=1,b=085andv=09,(e)a=0.7,b=09andv=09,f)a=1,b=1and v=0.85,
respectively

5 Conclusions

Using the bifurcation diagrams, phase trajectories and 0—1 test, the identification of chaos
of the fractional Burgers map is investigated in this paper. Two remarkable results are ob-
tained as follows. Firstly, the extremely rich dynamical behaviors of the fractional Burgers
map are revealed. The fractional Burgers map presents regular motions, NSP (numerically
stable periodic) orbits and chaotic behaviors when we choose the different fractional or-

der v. Compared with the Burgers map, the fractional Burgers map enlarges the parameter
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Figure 7 The NSP trajectories. The chaotic solutions (@), K median value (b) and (p, s) dynamics (c) of system
(10)fora=1,b=1andv=05

space and extends the range of chaos. Secondly, this study identified chaos of the fractional
Burgers map by novelly using the 0—1 test, which is different from the Lyapunov exponent
method in [21]. These results show that the 0—1 test is a convenient tool to diagnose chaos
in fractional chaotic map.

In fact, the system is inevitably affected by uncertain factors, such as external noise and
a random parameter, therefore in further research we will focus on the identification of
chaos in the stochastic fractional chaotic map.
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