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Abstract
In this paper, we study a coupled system of generalized Sturm–Liouville problems
and Langevin fractional differential equations described by
Atangana–Baleanu–Caputo (ABC for short) derivatives whose formulations are based
on the notable Mittag-Leffler kernel. Prior to the main results, the equivalence of the
coupled system to a nonlinear system of integral equations is proved. Once that has
been done, we show in detail the existence–uniqueness and Ulam stability by the aid
of fixed point theorems. Further, the continuous dependence of the solutions is
extensively discussed. Some examples are given to illustrate the obtained results.
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1 Introduction
The subject of fractional calculus is a generalization of ordinary differentiation and inte-
gration to an arbitrary order, which might be noninteger. Very recently it was recognized
that fractional calculus arise naturally in various fields of science and engineering. Today
we witness an increasing number of proposals for operators, both in the form of deriva-
tives and integrals [1, 2] with the extension of fractional calculus. In consequence, there
are several contributions focusing on different definitions of fractional derivatives such as
the Riemann–Liouville (RL), Hadamard, Grünwald–Letnikov, Riesz, Caputo, Marchaud,
Weyl, and Hilfer derivatives; see [3–12] for some detailed information. All these deriva-
tives are known to contain singular kernels and some generalized fractional derivatives are
novel such as conformable fractional derivative [13], beta-derivative [14], or we have a new
definition [15, 16]. Generally, various definitions differ from one another in choosing spe-
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cial kernels and some form of differential operator. For example, for the kernel k(t, s) = t – s
and the differential operator d/dt, we obtain the Riemann–Liouville definition.

In the recent contribution, Caputo and Fabrizio [17] proposed a new formulation in-
volving a fractional derivative whose kernel is an exponential function. Motivated by [17],
Atangana and Baleanu in [18], introduced a new definition of the fractional derivative
to answer some outstanding questions that were posed by many researchers within the
field of fractional calculus based on fractional operators with Mittag-Leffler, nonsingu-
lar smooth kernel. Their derivative has a nonsingular and nonlocal kernel and accepts all
properties of fractional derivatives. This new derivative has gained widely attention and
attracted a large number of scientists in different scientific fields for the exploration of
diverse topics. Afterward, many articles on this subject have been published in order to
generalize the results of the fractional derivative without a singular kernel in many di-
rections. To the best of our knowledge, few contributions associated with ABC-fractional
derivatives have been published; see [19–22] and the references therein.

In addition, the Sturm–Liouville problem plays an important role in different areas of ap-
plied sciences and engineering; for example see [23]. A standard form of the linear Sturm–
Liouville differential equation of second order is defined by

–Dt
[
p(τ )Dτ [u]

]
= f

(
t, u(t)

)
, t ∈ (a, b), Dt ≡ d

dt
, (1.1)

with appropriate initial conditions, where the functions p(t) and u(t) are continuous on the
interval [a, b] such that p(t) > 0 and u(t) > 0. D is the usual derivative and f : [a, b] ×R →
R

+ is a continuous function. The fractional Sturm–Liouville problems were developed by
some researchers in theory and application; see [24].

On the other hand, in [25] Langevin introduced the classical Langevin equation as fol-
lows:

Dt
[
Dτ [u] + λu(τ )

]
= f

(
t, u(t)

)
, t ∈ (a, b),λ > 0. (1.2)

The classical Langevin equation with various boundary conditions has been studied
by many authors; see [26] and the references therein. Various generalizations of the
Langevin equation have been offered to describe dynamical processes in a fractal medium.
This gives rise to the study of the fractional Langevin equation; see [27]. The fractional
Langevin equation was introduced by Mainardi and collaborators in the earlier 1990s.
Several types of fractional Langevin equation were studied in [28–33].

Meanwhile, in the same year, research into fractional order systems has become a sub-
ject of focus because of many advantages of fractional derivatives. For more papers on
fractional order systems, see [34–48] and the references therein.

More recently, the study of fractional Langevin equation in frame of Caputo derivative
has comparably been of small scale; see [49, 50] in which the authors discussed Sturm–
Liouville and Langevin equations via Hadamard fractional derivatives and systems of frac-
tional Langevin equations of Riemann–Liouville and Caputo types, respctively However,
to the best of our knowledge, few of the relevant studies on coupled systems of fractional
differential equations have been briefly reviewed for further information on this topic.

To conclude this introductory section, we introduce the coupled system involving ABC
differential operators with nonsingular kernel, which are discussed throughout this paper,
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which take the form
⎧
⎨

⎩
Dαi

t [pi(τ )Dβi
τ [ui] + qi(τ )ui(τ )] = fi(t, u1(t), u2(t)), t ∈ (0, T), T > 0,

ui(0) = 0, pi(T)Dβi
T [ui] + qi(T)ui(T) = 0, i = 1, 2,

(1.3)

where D◦
t denotes the ABC-fractional derivative with (◦) ∈ {αi,βi} and 0 < αi, βi ≤ 1, J =

[0, T], pi ∈ C(J ,R\ {0}); qi ∈ C(J ,R) and fi ∈ (J ×R×R,R) are some continuous functions.
Note that system (1.3) is a generalization of Sturm–Liouville and Langevin fractional

differential systems. In the special case if qi(t) ≡ 0 then (1.3) is reduced to the Sturm–
Liouville fractional differential equations. For the case pi(t) ≡ 1 and qi(t) ≡ λi system (1.3)
is reduced to the Langevin fractional differential equations. However, the theorems we
present include and extend some previous results.

We arrange this paper as follows: In Sect. 2, we introduce some notations, proper-
ties, lemmas, definitions of fractional calculus. We present a slight generalization for the
Ulam–Hyers theorem which was used in studying the stability. Section 3 contains main
results and is divided into 6 subsections. In Sect. 3.1 we first solve the corresponding lin-
ear problem and show the equivalence between the nonlinear problem (1.3) and integral
equation. In Sect. 3.2, we adopt Banach’s contraction mapping principle In Sect. 3.3, we
use Krasnoselskii’s fixed point theorem to prove the existence and uniqueness of solutions
for problem (1.3). Section 3.4 is devoted to the stable solution of the fractional coupled
systems (1.3) which is provided by using the classical technique of nonlinear functional
analysis investigated by Ulam. In Sect. 3.5, we look at the question as to how the solution
u varies when we change the order of the ABC-differential operator or the initial values
and the dependence on parameters of nonlinear term f is also established. Illustrative ex-
amples are presented in the last subsection. Finally, the paper is concluded in Sect. 4.

2 Preliminaries
In this subsection, we introduce some notations, definitions, properties and lemmas of
fractional calculus, we present briefly the so-called operators with nonsingular kernel. and
present preliminary results needed in our proofs later.

Definition 2.1 Let s ∈ [1,∞) and (a, b) be an open subset ofR, the spaceHs(a, b) is defined
by

H
s(a, b) =

{
f (t) ∈ L2(a, b) : Dβ

t [f ] ∈ L2(a, b), for all |β| ≤ s
}

, b > a ≥ 0.

The left-sided RL-fractional derivative of order α ∈ (n – 1, n], of a continuous function
f : [0,∞) −→R is given by

D
α
t [f ] := D

α
t
[
f (τ )

]
=

1
Γ (n – α)

(
d
dt

)n ∫ t

a
(t – τ )n–α–1f (τ ) dτ , (2.1)

provided that the right side is pointwise defined on R
+.

The corresponding left-sided RL-integral operator of order 0 < α ≤ 1, of a continuous
function f : [0,∞) −→ R is given by

I
α
t [f ] := I

α
t
[
f (τ )

]
=

1
Γ (α)

∫ t

a
(t – τ )α–1f (τ ) dτ , (2.2)

provided that the right side is pointwise defined on R
+.
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Let us recall the well-known definition of the Caputo fractional derivative [3]. Given
b > a, f ∈H

1(a, b) and 0 < α < 1, the Caputo fractional derivative of f of order α is given by

c
D

α
t [f ] =

1
Γ (1 – α)

∫ t

a
(t – τ )–αDτ [f ] dτ . (2.3)

By changing the kernel (t – τ )–α by the function

Eα

[
–

α

1 – α
(t – τ )α

]

and 1/Γ (1 – α) by B(α)/(1 – α), one obtains the new ABC-fractional derivative of order
0 < α < 1,

Dα
t [f ] =

B(α)
(1 – α)

∫ t

a
Eα

[
–

α

1 – α
(t – τ )α

]
Dτ [f ] dτ , (2.4)

where f ∈H
1(0, 1), 0 < α < 1 and B(α) is the known normalized positive function satisfying

the properties B(0) = 1, B(1) = 1 and

B(α) = 1 – α +
α

Γ (α)
.

According to the ABC derivative, it is clear that, if f is a constant function, then Dα
t f (t) =

0 as in the usual Caputo derivative. The main difference between the usual Caputo deriva-
tive and ABC-derivative is that, contrary to the usual Caputo definition, the new kernel
has no singularity for t = τ . This ABC-fractional derivative Dα

t is less affected by the past,
compared with the cDα

t which shows a slow stabilization. The term Eα can be expressed
as a single- or two- parameter Mittag-Leffler function defined by power series expansions

Eα,β (t) =
∞∑

k=0

tk

Γ (αk + β)
, t ∈C, (2.5)

where α > 0 and β ∈C. When β = 1, we shortly write Eα,1(t) = Eα(t).
The fractional integral associated to the ABC-fractional derivative with no-singular and

non-local kernel is defined by

Iα
t [f ] =

(1 – α)
B(α)

f (t) +
α

B(α)
I

α
t [f ], 0 < α < 1, (2.6)

where Iα
t is the left RL-fractional integral given in (2.2).

We shall state some properties of the fractional integral and fractional differential oper-
ators.

Property 2.2 Let f (t) ∈H
1(a, b).

(i) The RL-fractional integral operators Iα
τ satisfy the semigroup property

I
α
t
[
I

β
τ [f ]

]
= I

α+β
t [f ], α ≥ 0,β ≥ 0.
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(ii) The ABC-fractional derivative and ABC-fractional integral of a function f fulfill the
semigroup property [51],

Iα
t
[
Dα

τ [f ]
]

= f (t) – f (a), 0 < α < 1.

(iii) The following statement holds:

Iα
t
[
Iβ
τ [f ]

]
=

1
B(α)B(β)

×[
(1 – α)(1 – β)f (t) + (1 – β)αIα

t [f ] + (1 – α)βIβ
t [f ] + αβI

α+β
t [f ]

]
.

Property 2.3 Let f (t) ∈ L1(a, b). The following statements hold:
(i) For any α ≥ 0 and β > 0,

I
α
t
[
(τ – a)β–1] =

Γ (β)
Γ (β + α)

(t – a)β+α–1.

For j = 1, 2, . . . , [β] + 1,

D
α
t
[
(τ – a)β–j] = 0.

(ii) The RL-fractional integral and ABC-fractional integral of a function f fulfill the
semigroup property

I
β
t
[
Iα
τ [1]

]
=

((1 – α) + αIα
t [1])

B(α)
I

β
t [1].

In this paper, we take X = C(J ,R) to be the Banach space of all continuous functions
defined on J and endowed with the usual supremum norm. Obviously, the product space
(X × X,‖(·, ·)‖) is also a Banach space with the norm

∥∥(u1, u2)
∥∥ = max

{‖u1‖,‖u2‖
}

.

Let Υ , Υ1, Υ2 : X × X → X × X be three operators such that

Υ (u1, u2)(t) =
(
Υ1(u1, u2)(t),Υ2(u1, u2)(t)

)
, ∀(u1, u2) ∈ X × X, (2.7)

with

∥∥Υ (u1, u2)
∥∥ = max

{∥∥Υ1(u1, u2)
∥∥,

∥∥Υ2(u1, u2)
∥∥}

. (2.8)

For completeness, we state the fixed point theorems and Ulam–Hyers stability theorem
that will be employed therein.

Theorem 2.4 ([52]) Let Br be the closed ball of radius r > 0, centred at zero, in a Banach
space X with Υ : Br → X a contraction and Υ (∂Br) ⊆ Br . Then Υ has a unique fixed point
in Br .
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Theorem 2.5 ([52]) Let M be a closed, convex, non-empty subset of a Banach space X ×X.
Suppose that E and F map M into X and that

(i) Eu + Fv ∈M for all u, v ∈M;
(ii) E is compact and continuous;

(iii) F is a contraction mapping.
Then there exists w ∈M such that Ew + Fw = w, where w = (u, v) ∈ X × X.

Definition 2.6 ([53]) Let X be a Banach space and Υ1, Υ2 : X × X → X × X be two oper-
ators. Then the operational equations system provided by

⎧
⎨

⎩
v1(t) = Υ1(v1, v2)(t),

v2(t) = Υ2(v1, v2)(t),
(2.9)

is called Ulam–Hyers stable if we can find σj > 0, j = 1, . . . , 4, such that, for each ε1, ε2 > 0,
and each solution-pair (v∗

1, v∗
2) ∈ X × X of the inequalities

⎧
⎨

⎩
‖v∗

1 – Υ1(v∗
1, v∗

2)‖ ≤ ε1,

‖v∗
2 – Υ2(v∗

1, v∗
2)‖ ≤ ε2,

(2.10)

there exists a solution (u∗
1, u∗

2) ∈ X × X of system (2.9) such that

⎧
⎨

⎩
‖v∗

1 – u∗
1‖ ≤ σ1ε1 + σ2ε2,

‖v∗
2 – u∗

2‖ ≤ σ3ε1 + σ4ε2.
(2.11)

Theorem 2.7 ([53]) Let X be a Banach space, Υ1, Υ2 : X × X → X × X be two operators
such that

⎧
⎨

⎩
‖Υ1(v1, v2) – Υ1(v∗

1, v∗
2)‖ ≤ σ1‖v1 – v∗

1‖ + σ2‖v2 – v∗
2‖,

‖Υ2(v1, v2) – Υ2(v∗
1, v∗

2)‖ ≤ σ3‖v1 – v∗
1‖ + σ4‖v2 – v∗

2‖,
(2.12)

for all (v1, v2), (v∗
1, v∗

2) ∈ X × X and if the matrix

Hσ =

(
σ1 σ2

σ3 σ4

)

(2.13)

converges to zero. Then the operational equations system (2.12) is Ulam–Hyers stable.

3 Main results
This section contains our main results.

3.1 Fractional coupled system (1.3)
In order to study the nonlinear fractional coupled system (1.3), we first consider the asso-
ciated linear problem and obtain its solution.
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3.1.1 Linear fractional coupled system
In this subsection, we consider now the linear coupled system

⎧
⎨

⎩
Dαi

t [pi(τ )Dβi
τ [ui] + qi(τ )ui(τ )] = xi(t), t ∈ J ,

ui(0) = 0, pi(T)Dβi
T [ui] + qi(T)ui(T) = 0, i = 1, 2.

(3.1)

Lemma 3.1 Considering the first equation of system (3.1), we assume that xi ∈ C(J ,R) ∩
L1(J). Then, problem (3.1) is equivalent to the integral equation

ui(t) =
(1 – βi)

B(βi)pi(0)

(
Iαi

T [xi] –
1 – αi

B(αi)
xi(0)

)
+ Iβi

t

[
1
pi

Iαi
τ [xi]

]

– Iαi
T [xi] × Iβi

t

[
1
pi

]
– Iβi

t

[
qi

pi
ui

]
, t ∈ J , i = 1, 2. (3.2)

Proof Assume ui(t) satisfies (3.1). By applying the fractional integral operators Iαi and Iβi

successively to (3.1), we obtain

Dβi
t [ui] =

c1

pi(t)
+

1
pi(t)

Iαi
t [xi] –

qi(t)
pi(t)

ui(t), (3.3)

ui(t) = c2 + c1Iβi
t

[
1
pi

]
+ Iβi

t

[
1
pi

Iαi
τ [xi]

]
– Iβi

t

[
qi

pi
ui

]
, (3.4)

for some real constants c1 and c2. Using the first boundary condition ui(0) = 0 in (3.4), we
have

c2 +
(1 – βi)

B(βi)pi(0)

[
c1 +

1 – αi

B(βi)
xi(0)

]
= 0. (3.5)

Using the second boundary condition in (3.3), we have

c1 = –Iαi
T [xi]. (3.6)

Substituting the value of c1 in (3.5), we obtain

c2 =
(1 – βi)

B(βi)pi(0)

(
Iαi

T [xi] –
(1 – αi)
B(αi)

xi(0)
)

. (3.7)

Substituting the values of c1 and c2 from (3.6) and (3.7), respectively, in (3.4), we end up
with (3.2).

Conversely, it can be easily shown by direct computation that the integral equation (3.2)
satisfies the boundary value problem (3.1). The proof is complete.

By a solution of problem (3.1) we mean a pair of functions (u1, u2) ∈ X × X satisfying
(3.2) for all t ∈ J , i = 1, 2. �

Lemma 3.2 Let xi ∈ C(J ,R) ∩ L1(J), i = 1, 2. Then the integral solution for the linear system
of fractional differential equations (3.1) is given by the pair of functions (u1, u2) ∈ X × X,
with (3.2).
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3.1.2 Nonlinear fractional coupled system
In this subsection, we consider a nonlinear coupled system of the form (1.3).

From problem (3.1) we get the fractional integral system

ui(t) =
(1 – βi)

B(βi)pi(0)

(
Iαi

T [fi] –
1 – αi

B(αi)
fi(0, 0, 0)

)
+ Iβi

t

[
1
pi

Iαi
τ [fi]

]

– Iαi
T [fi] × Iβi

t

[
1
pi

]
– Iβi

t

[
qi

pi
ui

]
, t ∈ J , i = 1, 2, (3.8)

which is equivalent to the initial value problem (1.3).
By virtue of Lemma 3.2, we get the following.

Lemma 3.3 Suppose that f1, f2 : J ×R×R →R are continuous functions. Then (u1, u2) ∈
X × X is a solution of (1.3) if and only if (u1, u2) ∈ X × X is a solution of system (3.8).

Proof The proof is immediate from Lemma 3.1, so we omit it. �

Since problem (1.3) and Eq. (3.8) are equivalent, it is enough to prove that there exists
only one solution to (3.8).

In this paper, a closed ball with radius r centered on the zero function in X ×X is defined
by

Br =
{

(u1, u2) ∈ X × X :
∥∥(u1, u2)

∥∥ ≤ r
}

.

We define an operator Ψ : X × X → X × X by

(Ψ u)(t) = Ψ (u1, u2)(t) =
(
Ψ1(u1, u2)(t),Ψ2(u1, u2)(t)

)
, ∀(u1, u2) ∈ X × X, (3.9)

where

Ψi(u1, u2)(t) =
(1 – βi)

B(βi)pi(0)

(
Iαi

T [fi] –
1 – αi

B(αi)
fi(0)

)
+ Iβi

[
1
pi

Iαi
τ [fi]

]

– Iαi
T [fi] × Iβi

t

[
1
pi

]
– Iβi

t

[
qi

pi
ui

]
, t ∈ J , i = 1, 2. (3.10)

Observe that problem (3.8) has solutions if and only if the operator equation Ψ u = u has
fixed points.

We make use of the following notations: for i = 1, 2

p∗
i = inf

{∣∣pi(t)
∣
∣ : t ∈ J

}
, q∗

i = sup
{∣∣qi(t)

∣
∣ : t ∈ J

}

and

γ ∗
j,βi

= sup
{∣∣γ ∗

j,βi
(t)

∣
∣ : t ∈ J

}
= γ ∗

j,βi
(T), μ∗

i = sup
{∣∣μi(t)

∣
∣ : t ∈ J

}
= μi(T), (3.11)

where

γj,βi (t) := Iβi
t [1] =

1
B(βi)

(
(1 – βi) + jβiI

βi
t [1]

)
, i = 1, 2, j ∈ N, (3.12)
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and

μi(t) := �1,i(t) + �2,i(t) + �3,i(t) =
(

(1 – βi)
B(βi)

+ 2γβi (t)
)

γ1,αi (t), (3.13)

where

�1,i(t) :=
(1 – βi)
B(βi)

Iαi
t [1] =

(1 – βi)
B(βi)

γ1,αi (t),

�2,i(t) := Iβi
t [Iαi

τ [1]] = γ1,αi (t)γ ∗
1,β1 (t),

�3,i(t) := Iαi
t [1] × Iβi

t [1] = γ ∗
1,β1 (t)γ1,αi (t), and

�4,i(t) := Iβi
t [1] = γ ∗

1,β1 (t).

(3.14)

Throughout the remaining part of this paper, we assume the following conditions hold.
(A1) Assume that fi : J ×R×R−→ R are continuous functions and there exist constants

Mi > 0 such that, for all t ∈ J and ui, vi ∈R, i = 1, 2, we have

∣∣fi(t, u1, u2) – fi(t, v1, v2)
∣∣ ≤ Mi

(|u1 – v1| + |u2 – v2|
)
.

(A2) Assume that there exist real constants Ni > 0 such that

∣
∣fi(t, u1, u2)

∣
∣ ≤ Ni, i = 1, 2,

for all (t, u1, u2) ∈ J ×R×R. Also, let

ai = max
t∈J

∣∣fi(t, 0, 0)
∣∣ < ∞, i = 1, 2.

By our assumption, for (t, u1, u2) ∈ J ×R×R, we have

∣∣fi(t, u1, u2)
∣∣ ≤ ∣∣fi(t, u1, u2) – fi(t, 0, 0)

∣∣ +
∣∣fi(t, 0, 0)

∣∣ ≤ Mi
(‖u1‖ + ‖u2‖

)
+ ai. (3.15)

Let us introduce the notation

fi := (fi)(t) ≡ fi,u = fi(t, u) = fi
(
t, u1(t), u2(t)

)
, fi(t, 0) := fi(t, 0, 0) (3.16)

and

ηi = pi(0)
(1 – αi)(1 – βi)

B(αi)B(βi)
fi(0, 0, 0). (3.17)

3.2 Existence and uniqueness of the solution of (3.8)
In this subsection, we apply Banach’s fixed point theorem to establish existence and
uniqueness of solutions of (3.8).

Theorem 3.4 Assume (A1) and 0 < p∗
i (2Miμ

∗
i + q∗

i γ
∗
1,β1

) < 1, for i = 1, 2, hold. If we choose

r ≥ max

{
p∗

1μ
∗
1a1 + η∗

1
1 – p∗

1(2M1μ
∗
1 + q∗

1γ
∗
1,β1

)
,

p∗
2μ

∗
2a2 + η∗

2
1 – p∗

2(2M2μ
∗
2 + q∗

2γ
∗
1,β2

)

}
, (3.18)

then problem (1.3) has a unique solution u ∈ Br .
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Proof Step i. We show that Ψ (Br) ⊆ Br . To see this, for u = (u1, u2) ∈ Br , t ∈ J , i = 1, 2, we
have

∣∣Ψi(u1, u2)(t)
∣∣ ≤ (1 – βi)

B(βi)pi(0)

∣
∣∣
∣I

αi
T [fi] –

1 – αi

B(αi)
fi(0)

∣
∣∣
∣ +

∣
∣∣
∣I

βi
t

[
1
pi

Iαi
τ [fi]

]∣
∣∣
∣

+
∣∣
∣∣I

αi
T [fi] × Iβi

t

[
1
pi

]∣∣
∣∣ +

∣∣
∣∣I

βi
t

[
qi

pi
ui

]∣∣
∣∣. (3.19)

We used the fact that

∣∣Iαi
t [fi]

∣∣

=
1

B(αi)
∣
∣(1 – αi)fi

(
t, u1(t), u2(t)

)
+ αiI

αi
t [fi]

∣
∣

≤ (1 – αi)[|fi(t, u) – fi(t, 0)| + |fi(t, 0)|] + αi(Iαi
t [|fi(τ , u) – fi(τ , 0)|] + I

αi
t [|fi(τ , 0)|])

B(αi)

≤ (1 – αi)(Mi(‖u1‖ + ‖u2‖) + ai) + αi(Mi(‖u1‖ + ‖u2‖) + ai) × I
αi
t [1]

B(αi)
.

These imply that

∣
∣Iαi

T [fi]
∣
∣ ≤ γ1,αi (T)

(
Mi

(‖u1‖ + ‖u2‖
)

+ ai
)
. (3.20)

Thus, we have

∣
∣∣
∣

(1 – βi)
B(βi)|pi(0)| Iαi

T [fi] – ηi

∣
∣∣
∣ ≤ p∗

i �1,i(t)
(
Mi

(‖u1‖ + ‖u2‖
)

+ ai
)

+ ηi. (3.21)

From (3.15) and (3.20), we obtain

Iβi
t

[
1
pi

Iαi
τ [fi]

]
≤ p∗

i �2,i(t)
(
Mi

(‖u1‖ + ‖u2‖
)

+ ai
)
, (3.22)

again from (3.15) and (3.20), one has

∣∣
∣∣I

αi
T [fi] × Iβi

t

[
1
pi

]∣∣
∣∣ ≤ p∗

i �3,i(t)
(
Mi

(‖u1‖ + ‖u2‖
)

+ ai
)
. (3.23)

In view of (3.20), we have

∣
∣∣∣I

βi
t

[
qi

pi
ui

]∣
∣∣∣ ≤ (1 – βi)

B(βi)

∣
∣∣∣
qi(t)
pi(t)

ui(t)
∣
∣∣∣ +

βi

B(βi)
I

βi
t

[
qi

pi
ui

]
≤ q∗

i p∗
i �4,i(t)‖ui‖. (3.24)

Using the above estimate in inequality (3.19), we obtain

∣∣Ψi(u1, u2)(t)
∣∣ ≤ p∗

i
∣∣μi(t)

∣∣(Mi
(‖u1‖ + ‖u2‖

)
+ ai

)
+ q∗

i p∗
i
∣∣�4,i(t)

∣∣‖ui‖ + ηi, (3.25)

where μi(t) and �4,i(t) are given by (3.13) and (3.14), respectively.
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Taking the maximum on both sides of the inequality (3.25), the following can be ob-
tained:

∥∥Ψi(u1, u2)(t)
∥∥ ≤ p∗

i μ
∗
i
(
2Mi‖u‖ + ai

)
+ q∗

i p∗
i γ

∗
1,β1‖u‖ + ηi

≤ (
2Mip∗

i μ
∗
i + q∗

i p∗
i γ

∗
1,β1

)‖u‖ + p∗
i μ

∗
i ai + ηi

≤ p∗
i
(
2Miμ

∗
i + q∗

i γ
∗
1,β1

)
r + p∗

i μ
∗
i ai + ηi ≤ r. (3.26)

Choose a real constant r > 0 such that

r ≥ max

{
p∗

1μ
∗
1a1 + η∗

1
1 – p∗

1(2M1μ
∗
1 + q∗

1γ
∗
1,β1

)
,

p∗
2μ

∗
2a2 + η∗

2
1 – p∗

2(2M2μ
∗
2 + q∗

2γ
∗
1,β2

)

}
, (3.27)

with

0 < p∗
i
(
2Miμ

∗
i + q∗

i γ
∗
1,β1

)
< 1, for i = 1, 2, (3.28)

and taking into account that (3.28), we conclude that (3.27) holds.
Step ii. Next, we show that Ψ is a contraction mapping. To see this, let u = (u1, u2), v =

(v1, v2) ∈ Br and for any t ∈ J , we get

∣∣(Ψiv)(t) – (Ψiu)(t)
∣∣ =

(1 – βi)
B(βi)pi(0)

∣∣Iαi
T [fi](v) – Iαi

T [fi](u)
∣∣

+
∣
∣∣
∣I

βi
t

[
1
pi

Iαi
τ [fi]

]
(v) – Iβi

t

[
1
pi

Iαi
τ [fi]

]
(u)

∣
∣∣
∣

+
∣
∣Iαi

T [fi](v) – Iαi
T [fi](u)

∣
∣ ×

∣∣
∣∣I

βi
t

[
1
pi

]∣∣
∣∣

+
∣∣
∣∣I

βi
t

[
qi

pi
vi

]
– Iβi

t

[
qi

pi
ui

]∣∣
∣∣, t ∈ J , i = 1, 2. (3.29)

In view of (3.20), we have

∣∣Iαi
T [fi](v) – Iαi

T [fi](u)
∣∣ ≤ ∣∣�1,i(t)

∣∣Mi
(‖u1 – v1‖ + ‖u2 – v2‖

)
. (3.30)

Similarly to the above argument, we can also obtain

∣
∣∣
∣I

βi
t

[
1
pi

Iαi
t [fi]

]
(v) – Iβi

t

[
1
pi

Iαi
t [fi]

]
(u)

∣
∣∣
∣

≤ (1 – βi)
B(βi)

∣
∣∣
∣

1
pi

∣
∣∣
∣
∣∣Iαi

t [fi](v) – Iαi
t [fi](u)

∣∣ +
βi

B(βi)

∣
∣∣
∣I

βi
t

(
1
pi

Iαi
t [fi](v)

)
– I

βi
t

(
1
pi

Iαi
t [fi](u)

)∣
∣∣
∣

≤ (1 – βi)
B(βi)

∥∥
∥∥

1
pi

∥∥
∥∥

∣∣
∣∣I

αi
t [fi](v) – Iαi

t [fi](u)
∣∣
∣∣+

βi

B(βi)
I

βi
t

∥∥
∥∥

1
pi

∥∥
∥∥
∣
∣Iαi

t [fi](v) – Iαi
t [fi](u)

∣
∣, (3.31)

again from (3.31), we have

∣∣
∣∣I

βi
t

[
1
pi

Iαi
t [fi]

]
(v) – Iβi

t

[
1
pi

Iαi
t [fi]

]
(u)

∣∣
∣∣ ≤ p∗

i
∣
∣�2,i(t)

∣
∣Mi

(‖u1 – v1‖ + ‖u2 – v2‖
)
. (3.32)
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In the same way, we obtain

∣
∣Iαi

T [fi](v) – Iαi
T [fi](u)

∣
∣ ×

∣∣
∣∣I

βi
t

[
1
pi

]∣∣
∣∣ ≤ p∗

i
∣
∣�3,i(t)

∣
∣Mi

(‖u1 – v1‖ + ‖u2 – v2‖
)
, (3.33)

∣
∣∣
∣I

βi
t

[
qi

pi
vi

]
– Iβi

t

[
qi

pi
ui

]∣
∣∣
∣ ≤ q∗

i p∗
i
∣∣�4,i(t)

∣∣‖ui – vi‖. (3.34)

Using (3.29)–(3.34), we obtain

∣∣(Ψiu)(t) – (Ψiv)(t)
∣∣ ≤ p∗

i
∣∣μi(t)

∣∣(Mi‖u1 – v1‖+‖u2 – v2‖
)

+ q∗
i p∗

i
∣∣�4,i(t)

∣∣‖ui – vi‖, (3.35)

with �4,i(t) as in (3.14),

∥
∥(Ψiu)(t) – (Ψiv)(t)

∥
∥ ≤ 2p∗

i
∣
∣μi(t)

∣
∣Mi‖u – v‖ + q∗

i p∗
i
∣
∣γ ∗

1,β1 (t)
∣
∣‖u – v‖, (3.36)

where γ ∗
1,β1

(t) and μi(t) are given by (3.12) and (3.13) respectively.
Furthermore, for any t ∈ J , from inequality (3.36), we obtain

∥
∥Ψ (u1, u2) – Ψ (v1, v2)

∥
∥ ≤ L‖u – v‖, (3.37)

with

0 < p∗
i
(
2Miμ

∗
i + q∗

i γ
∗
1,β1

)
< 1, for i = 1, 2, (3.38)

implying that (3.37) holds, where

L = max
{

p∗
1
(
2M1μ

∗
1 + q∗

1γ
∗
1,β1

)
, p∗

2
(
2M2μ

∗
2 + q∗

2γ
∗
1,β2

)}
. (3.39)

Since L < 1, therefore, the operator Ψ is a contraction. Thus, by Theorem 2.4, problem
(1.3) has a unique solution u ∈ Br . This completes the proof. �

3.3 Existence of solutions of (3.8)
In this subsection, define the following operators: E,F : Br → X × X and T : Br → X × X
by E = (E1,E2), F = (F1,F2) and T = E + F, with

(Eu)(t) =
(
E1(u1, u2),E2(u1, u2)

)
(t) and (Fu)(t) =

(
F1(u1, u2),F2(u1, u2)

)
(t), (3.40)

where the operators Ei : X × X −→ X and Fi : X × X −→ X are defined, respectively, by

(E1u1)(t) = E1(u1, u2)(t) and (E2u2)(t) = E2(u1, u2)(t),

(F1u1)(t) = F1(u1, u2)(t) and (F2u2)(t) = F2(u1, u2)(t),

(Eiui)(t) =
βi

B(βi)
× I

βi
t

[
qi

pi
ui

]
, t ∈ J , i = 1, 2,

(3.41)
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and

(Fiui)(t) =
(1 – βi)

B(βi)pi(0)

(
Iαi

T [fi] –
1 – αi

B(αi)
fi(0)

)
+ Iβi

t

[
1
pi

Iαi
τ [fi]

]

– Iαi
T [fi] × Iβi

t

[
1
pi

]
–

(1 – βi)
B(βi)

(
qi(t)
pi(t)

ui(t)
)

–
2βi

B(βi)
× I

βi
t

[
qi

pi
ui

]
, (3.42)

with

‖Eu‖ = max
{‖E1u1‖,‖E2u2‖

}
and ‖Fu‖ = max

{‖F1u1‖,‖F2u2‖
}

and

T(u1, u2)(t) = E(u1, u2)(t) + F(u1, u2)(t). (3.43)

The operator T is well defined as f1 and f2 are continuous functions. Then the system of
integral equations (3.8) can be written as an operator equation of the form

(u1, u2)(t) = T(u1, u2)(t) (3.44)

and solutions of problem (3.44) mean solutions of the operator equation, that is, fixed
points of T.

We apply Krasnoselskii’s fixed point theorem to establish the existence of solutions of
system (1.3).

Theorem 3.5 Assume (A1), (A2) and 0 < q∗
i p∗

i γ
∗
3,βi

< 1, for i = 1, 2 hold. If we choose

r ≥ max

{
μ∗

1N1 + η1

1 – q∗
1p∗

1γ
∗
3,β1

,
μ∗

2N2 + η2

1 – q∗
2p∗

2γ
∗
3,β2

}
, (3.45)

then the boundary value problem (1.3) has at least one solution u ∈ Br .

Proof We will prove the theorem in several steps. Clearly, Br is a closed, convex, non-
empty subset of X × X.

Step 1: The first condition of Theorem 2.5 holds.
That is,

Eu + Fv ∈ Br , ∀u, v ∈ Br . (3.46)

For this purpose, take u = (u1, u2) and v = (v1, v2) in Br , t ∈ J , and consider

∣∣(Eiui)(t)
∣∣ ≤ q∗

i p∗
i βi × I

βi
T [1]

B(βi)
‖ui‖, i = 1, 2. (3.47)

Now taking the maximum on both sides of the inequality (3.47), we obtain

‖Eiui‖ ≤ q∗
i p∗

i βi × I
βi
T [1]

B(βi)
r, i = 1, 2. (3.48)
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Analogously, we obtain

(1 – βi)(Iαi
T [fi] – 1–αi

B(αi)
fi(0))

B(βi)pi(0)
≤ p∗

i
∣∣�1,i(t)

∣∣Ni + ηi,

Iβi
t

[
1
pi

Iαi
τ [fi]

]
– Iαi

T [fi] × Iβi
t

[
1
pi

]
≤ p∗

i
∣∣�2,i(t) + �3,i(t)

∣∣Ni, (3.49)

∣∣
∣∣
(1 – βi)
B(βi)

(
qi(t)
pi(t)

ui(t)
)

+
2βi

B(βi)
I

βi
t

[
qi

pi
ui

]∣∣
∣∣ ≤ q∗

i p∗
i ((1 – βi) + 2βiI

βi
t [1])

B(βi)
‖ui‖. (3.50)

Therefore, from (3.42), (3.49) and (3.50), we get

∣
∣(Fivi)(t)

∣
∣ ≤ p∗

i
∣
∣μi(t)

∣
∣Ni + q∗

i p∗
i
∣
∣γ2,βi (t)

∣
∣‖vi‖ + ηi, i = 1, 2. (3.51)

Similarly, taking the maximum on both sides of the inequality (3.51), the following can be
obtained:

‖Fivi‖ ≤ p∗
i μ

∗
i Ni + ηi + q∗

i p∗
i γ

∗
2,βi

r, i = 1, 2. (3.52)

where

γ2,βi (t) =
1

B(βi)
(
(1 – βi) + 2βiI

βi
t [1]

)
, i = 1, 2, (3.53)

Consequently,

‖Fiui + Eivi‖ ≤ p∗
i μ

∗
i Ni + ηi + q∗

i p∗
i γ

∗
3,βi

r, i = 1, 2. (3.54)

Hence, using (3.48) and (3.53), we can conclude that

‖Eu + Fv‖ ≤ ‖Eu‖ + ‖Fv‖ ≤ p∗
i
(
μ∗

i Ni + q∗
i γ

∗
3,βi

r
)

+ ηi ≤ r, (3.55)

where

γ ∗
j,βi

=
((1 – βi) + jβiI

βi
T [1])

B(βi)
, i = 1, 2, j ∈N. (3.56)

Choose a real constant r > 0 such that

r ≥ max

{
p∗

1μ
∗
1N1 + η1

1 – q∗
1p∗

1γ
∗
3,β1

,
p∗

2μ
∗
2N2 + η2

1 – q∗
2p∗

2γ
∗
3,β2

}
, (3.57)

with

0 < q∗
i p∗

i γ
∗
3,βi

< 1, for i = 1, 2. (3.58)

Thus, ‖Eu + Fv‖ ≤ r, this implying that (3.45) holds.
Step 2: F is a contraction mapping.
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To see this, let u = (u1, u2) and v = (v1, v2) ∈ Br . Following the proof of Theorem 2.4, we
have

∣∣(Fiu)(t) – (Fiv)(t)
∣∣ ≤ p∗

i
∣∣�1,i(T) + �2,i(T) + �3,i(T)

× ∣
∣Mi

(‖u1 – v1‖ + ‖u2 – v2‖
)

+ q∗
i p∗

i
∣
∣γ ∗

2,βi
(T)

∣
∣‖ui – vi‖. (3.59)

Taking the maximum on both sides of the inequality (3.59), we obtain

∣∣(Fiu)(t) – (Fiv)(t)
∣∣ ≤ 2p∗

i μ
∗
i Mi‖u – v‖ + q∗

i p∗
i γ

∗
2,βi

‖u – v‖ ≤ Li‖u – v‖, (3.60)

where μi(t) is defined in (3.13). So, from (3.60), we get

‖Fu – Fv‖ ≤ L‖u – v‖, (3.61)

where L = max{L1, L2}, with

L1 = p∗
1
(
2μ∗

1M1 + q∗
1γ

∗
2,β1

)
and L2 = p∗

2
(
2μ∗

2M2 + q∗
2γ

∗
3,β2

)
. (3.62)

When L < 1, the operator F is a contraction.
Step 3: E is continuous in X × X.
Let {(u1,n, u2,n)} be a sequence of a bounded set

Ur =
{

(u1, u2) ∈ X × X :
∥
∥(u1, u2)

∥
∥ ≤ r

}

such that (u1,n, u2,n) −→ (u1, u2) as n −→ ∞ in Ur ,

∣∣Eiui,n(t) – Eiui(t)
∣∣ =

βi

B(βi)
× I

βi
t

[
qi

pi
ui,n

]
–

βi

B(βi)
× I

βi
t

[
qi

pi
ui

]

≤ q∗
i p∗

i βi

B(βi)
× I

βi
t

[|ui,n – ui|
]
, for i = 1, 2. (3.63)

Now taking the maximum on both sides of the inequality (3.63), we obtain

‖Eiui,n – Eiui‖ ≤ q∗
i p∗

i βi × |�4,i(t)|
B(βi)

‖ui,n – ui‖, (3.64)

which implies that

E(u1,n, u2,n) −→ 0 as n −→ ∞.

Clearly, E is continuous in view of the continuity of u1 and u2.
Step 4: E is equicontinuous.
For this purpose, take (u1, u2) ∈ Br , t1, t2 ∈ J such that t1 < t2. Then we have

∣
∣(Eiu)(t2) – (Eiu)(t1)

∣
∣

≤ βi

B(βi)

(
Iβi

0,t1

[
qi

pi
ui

]
+ Iβi

t1,t2

[
qi

pi
ui

]
– Iβi

0,t1

[
qi

pi
ui

])
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≤ βi

B(βi)
1

Γ (βi)

∫ t1

0

[
(t2 – τ )βi–1 – (t1 – τ )βi–1]

∣
∣∣
∣
qi(τ )
pi(τ )

ui(τ )
∣
∣∣
∣dτ

+
βi

B(βi)
1

Γ (βi)

∫ t2

t1

(t2 – τ )βi–1
∣∣
∣∣
qi(τ )
pi(τ )

ui(τ )
∣∣
∣∣dτ

≤ βiq∗
i p∗

i
B(βi)

1
Γ (βi)

[∫ t1

0

[
(t2 – τ )βi–1 – (t1 – τ )βi–1]dτ +

∫ t2

t1

(t2 – τ )βi–1 dτ

]

≤ βiq∗
i p∗

i
B(βi)

1
Γ (βi + 1)

(
t2

βi – t1
βi + 2(t2 – t1)βi

)
, (3.65)

∣∣Ei(u1, u2)(t2) – Ei(u1, u2)(t1)
∣∣ ≤ 2βiq∗

i p∗
i

B(βi)
1

Γ (βi + 1)
(t2 – t1)βi < ε, (3.66)

provided

|t2 – t1| < δβi =
(

2βiq∗
i p∗

i
B(βi)

1
Γ (βi + 1)

)–1

× ε,

proving the claim. Observe that |Ei(u1, u2)(t2) – Ei(u1, u2)(t1)| → 0 as t1 → t2, implying
that E(u1, u2) is equicontinuous and thus the operator E(u1, u2) is completely continuous.

Step 5: E is uniformly bounded.
It follows from (3.51) that E is uniformly bounded. Therefore, by the Arzelà–Ascoli the-

orem, we conclude that E is a compact operator. Thus, all the conditions of Theorem 2.5
are fulfilled. Hence, system (1.3) has at least one solution u ∈ Br . The proof is complete. �

3.4 Ulam-type stability of solutions of (3.8)
In this subsection, we use Urs’s [53] approach to establishing the Ulam–Hyers stability of
solutions of (1.3). Thanks to Definition 2.6 and Theorem 2.7, the respective results are
obtained.

Theorem 3.6 Assume (A1) and 0 < p∗
i (2Miμ

∗
i + q∗

i γ
∗
1,βi

) < 1 for i = 1, 2, hold. Choose

r ≥ max

{
p∗

1μ
∗
1a1 + η1

1 – p∗
1(2M1μ

∗
1 + q∗

1γ
∗
1,β1

)
,

p∗
2μ

∗
2a2 + η2

1 – p∗
2(2M2μ

∗
2 + q∗

2γ
∗
1,β2

)

}
. (3.67)

Further, assume the spectral radius of matrix H̃σ is less than one. Then the solutions of (1.3)
are Ulam–Hyers stable.

Proof In view of Theorem 2.4, we have

⎧
⎨

⎩
‖Ψ1(u1, u2) – Ψ1(v1, v2)‖ ≤ σ̃1‖u1 – v1‖ + σ̃2‖u2 – v2‖,

‖Ψ2(u1, u2) – Ψ2(v1, v2)‖ ≤ σ̃3‖u1 – v1‖ + σ̃4‖u2 – v2‖,
(3.68)

which implies that

∥
∥Ψ (u1, u2) – Ψ (v1, v2)

∥
∥ ≤ H̃σ

(
‖u1 – v1‖
‖u2 – v2‖

)

, (3.69)
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where

H̃σ =

(
σ̃1 σ̃2

σ̃3 σ̃4

)

≡
(

p∗
1(μ∗

1M1 + q∗
1γ

∗
1,β1

) p∗
1μ

∗
1M1

p∗
2μ

∗
2M2 p∗

2(μ∗
2M2 + q∗

2γ
∗
1,β2

)

)

. (3.70)

Since the spectral radius of H̃σ is less than one, the solution of (1.3) is Ulam–Hyers sta-
ble. �

3.5 Dependence of solution on the parameters
For fi Lipschitz in the second variables, the solution’s dependence on the order of the dif-
ferential operator, the boundary values, and the nonlinear term fi are also discussed.

In the following, for any ui ∈ X, we let

f ε
i :=

(
f ε
i
)
(t) = fi

(
t, uε

1(t), uε
2(t)

)
, t ∈ (0, T). (3.71)

3.5.1 The dependence on parameters of the left-hand side of (3.8)
In this subsection, we show that the solutions of two equations with neighboring orders
will (under suitable conditions on their right-hand sides fi) lie close to one another.

Theorem 3.7 Suppose that the conditions of Theorem 2.5 hold. Let u(t) = (u1(t), u2(t)) and
uε(t) = (uε

1(t), uε
2(t)) be the solutions, respectively, of problems (1.3) and

Dαi–ε
(
pi(t)Dβi + qi(t)

)
ui(t) = fi

(
t, u1(t), u2(t)

)
, t ∈ (0, T), i = 1, 2, (3.72)

with the boundary conditions (1.3), where 0 < αi – ε < αi ≤ 1. Then ‖uε – u‖ = O(ε), for ε

sufficiently small.

Proof By the above theorems, we can obtain the following results. Let

uε
i (t) =

(1 – βi)
B(βi)pi(0)

Iαi–ε

T
[
f ε
i
]

– ηi + Iβi
t

[
1
pi

Iαi–ε
τ

[
f ε
i
]]

– Iαi–ε

T
[
f ε
i
] × Iβi

t

[
1
pi

]
– Iβi

t

[
qi

pi
uε

i

]
, t ∈ J , i = 1, 2. (3.73)

On the one hand, from (3.8) and (3.73)

∣∣uε
i (t) – ui(t)

∣∣ =
(1 – βi)

B(βi)pi(0)
∣∣Iαi–ε

T
[
f ε
i
]

– Iαi
T [fi]

∣∣

+
∣
∣∣
∣I

βi
t

[
1
pi

Iαi–ε
τ

[
f ε
i
]
]

– Iβi
t

[
1
pi

Iαi
τ [fi]

]∣
∣∣
∣

+
∣
∣∣
∣I

αi–ε

T
[
f ε
i
] × Iβi

t

[
1
pi

]
– Iαi

T [fi] × Iβi
t

[
1
pi

]∣
∣∣
∣

+
∣∣
∣∣I

βi
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

]∣∣
∣∣. (3.74)
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From (3.74)

∣∣Iαi–ε

T
[
f ε
i
]

– Iαi
T [fi]

∣∣ =
∣∣Iαi–ε

T
[
f ε
i
]

– Iαi–ε

T [fi]
∣∣ +

∣∣Iαi–ε

T [fi] – Iαi
T [fi]

∣∣

= Iαi–ε

T
[∣∣f ε

i – fi
∣
∣] +

∣
∣Iαi–ε

T [1] – Iαi
T [1]

∣
∣|fi|. (3.75)

Repeating arguments similar to that above we can arrive at

∣∣
∣∣I

βi
t

[
1
pi

Iαi–ε
τ f ε

i

]
– Iβi

t

[
1
pi

Iαi
τ fi

]∣∣
∣∣

= Iβi
t

[
1
pi

Iαi–ε
τ

]
[∣∣f ε

i – fi
∣∣] + Iβi

t

[
1
pi

∣∣Iαi–ε
τ [1] – Iαi

t [1]
∣∣
]
|fi|, (3.76)

∣
∣∣
∣I

αi–ε
t

[
f ε
i
] × Iβi

t

[
1
pi

]
– Iαi

t [fi] × Iβi
t

[
1
pi

]∣
∣∣
∣

= Iβi
t

[
1
pi

]
× Iαi–ε

t
[∣∣f ε

i – fi
∣∣] +

∣∣Iαi–ε
t [1] – Iαi

t [1]
∣∣|fi|, (3.77)

∣∣
∣∣I

βi
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

]∣∣
∣∣ = Iβi

t

[
qi

pi

]∣
∣uε

i – ui
∣
∣. (3.78)

From (3.74)–(3.78), we can get

∣∣uε
i (t) – ui(t)

∣∣ ≤ p∗
i m1,i(t)

∣∣f ε
i – fi

∣∣ + p∗
i n1,i(t)|fi|

+ q∗
i p∗

i l1,i(t)
∣
∣uε

i (t) – ui(t)
∣
∣, i = 1, 2, (3.79)

where

m1,i(t) =
(

(1 – βi)
B(βi)

(
Iαi–ε

T [1]
)

+ Iβi
t

[
Iαi–ε
τ

]
[1] + Iβi

t [1] × Iαi–ε
t [1]

)
, (3.80)

n1,i(t) =
(

(1 – βi)
B(βi)

(∣∣Iαi–ε

T [1] – Iαi
T [1]

∣
∣) + Iβi

t
[∣∣Iαi–ε

τ [1] – Iαi
t [1]

∣
∣] +

∣
∣Iαi–ε

t [1] – Iαi
t [1]

∣
∣
)

,

(3.81)

and

l1,i(t) = Iβi
t [1]. (3.82)

From (3.79) and (A1) we have

∣∣uε
i (t) – ui(t)

∣∣ ≤ p∗
i n1,i(t)|fi|

1 – p∗
i (2m1,i(t)Mi + q∗

i l1,i(t))
,

with 0 < p∗
i
(
2m1,i(t)Mi + q∗

i l1,i(t)
)

< 1, (3.83)

as a result, we obtain the following:

∥
∥uε

i – ui
∥
∥ ≤ p∗

i n∗
i ‖|fi‖|

1 – Li
, with 0 < Li = p∗

i
[
2m∗

i Mi + q∗
i l∗i

]
< 1, i = 1, 2, (3.84)
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where

‖|fi‖| = sup
{
max

∣
∣fi

(
t, u1(t), u2(t)

)∣∣ : t ∈ (0, T)
}

,

m∗
i = sup

{∣∣m1,i(t)
∣∣ : t ∈ J

}
, n∗

i = sup
{∣∣n1,i(t)

∣∣ : t ∈ J
}

,

l∗i = sup
{∣∣l1,i(t)

∣
∣ : t ∈ J

}
, i = 1, 2.

Consequently, from (3.84), we obtain

∥
∥uε – u

∥
∥ ≤ p∗n∗‖|f ∗‖|

1 – L with L = max{L1,L2}, (3.85)

where

p∗ = max
{

p∗
1, p∗

2
}

, f ∗ = max{f1, f2},

and

m∗ = max
{

m∗
1, m∗

2
}

, n∗ = max
{

n∗
1, n∗

2
}

, l∗ = max
{

l∗1, l∗2
}

,

Thus, in accordance with (3.85), we obtain ‖uε – u‖ = O(ε). �

Theorem 3.8 Suppose that the conditions of Theorem 2.5 hold. Let u(t), uε(t) be the solu-
tions, respectively, of problems (1.3) and

Dαi–ε
(
pi(t)Dβi–ε + qi(t)

)
ui(t) = fi

(
t, u1(t), u2(t)

)
, t ∈ J , i = 1, 2, (3.86)

with the boundary conditions

ui(0) = 0, pi(T)Dβi–εui(T) + qi(T)ui(T) = 0, (3.87)

where 0 < αi – ε < αi ≤ 1 and 0 < βi – ε < βi ≤ 1. Then ‖uε – u‖ = O(ε), for ε sufficiently
small.

Proof Let u(t) and uε(t) be the solutions of (1.3) and (3.86)–(3.87), respectively. Hence, by
the above theorems, we can obtain the following results. Let

uε
i (t) =

(1 – βi – ε)
B(βi – ε)pi(0)

(
Iαi–ε

T
[
f ε
i
]

– ηi
)

+ Iβi–ε
t

[
1
pi

Iαi–ε
τ

[
f ε
i
]]

– Iαi–ε

T
[
f ε
i
] × Iβi–ε

t

[
1
pi

]
– Iβi–ε

t

[
qi

pi
uε

i

]
, t ∈ J , i = 1, 2. (3.88)

be the solution of (3.86)–(3.87).
On the one hand, from (3.8) and (3.88)

∣∣uε
i (t) – ui(t)

∣∣ =
∣
∣∣
∣

(1 – βi – ε)
B(βi – ε)pi(0)

Iαi–ε

T
[
f ε
i
]

–
(1 – βi)

B(βi)pi(0)
Iαi

T [fi]
∣
∣∣
∣

+
∣∣
∣∣I

βi–ε
t

[
1
pi

Iαi–ε
τ

[
f ε
i
]]

– Iβi
t

[
1
pi

Iαi
τ [fi]

]∣∣
∣∣
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+
∣∣
∣∣I

αi–ε

T
[
f ε
i
] × Iβi–ε

t

[
1
pi

]
– Iαi

T [fi] × Iβi
t

[
1
pi

]∣∣
∣∣

+
∣∣
∣∣I

βi–ε
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

]∣∣
∣∣. (3.89)

Similar to the above, we can obtain

∣
∣∣
∣

(1 – βi – ε)
B(βi – ε)pi(0)

Iαi–ε

T
[
f ε
i
]

–
(1 – βi)

B(βi)pi(0)
Iαi

T [fi]
∣
∣∣
∣

=
(1 – βi – ε)

B(βi – ε)pi(0)
Iαi–ε

T
[∣∣f ε

i – fi
∣
∣]

+
(

(1 – βi – ε)
B(βi – ε)pi(0)

–
(1 – βi)

B(βi)pi(0)

)∣∣Iαi–ε

T [1] – Iαi
T [1]

∣∣|fi|. (3.90)

Analogously, we have

∣∣
∣∣I

βi–ε
t

[
1
pi

Iαi–ε
τ

[
f ε
i
]]

– Iβi
t

[
1
pi

Iαi
τ [fi]

]∣∣
∣∣

= Iβi–ε
t

[
1
pi

Iαi–ε
τ

[
f ε
i – fi

]]
+

∣∣
∣∣I

βi–ε
t

[
1
pi

Iαi–ε
τ [1]

]
– Iβi

t

[
1
pi

Iαi
τ [1]

]∣∣
∣∣|fi|, (3.91)

∣
∣∣∣I

αi–ε

T
[
f ε
i
] × Iβi–ε

t

[
1
pi

]
– Iαi

T [fi] × Iβi
t

[
1
pi

]∣
∣∣∣

= Iβi–ε
t

[
1
pi

]
× Iαi–ε

T [1]
∣∣f ε

i – fi
∣∣

+
∣∣∣
∣I

αi–ε

T [1] × Iβi–ε
t

[
1
pi

]
– Iαi

T [1] × Iβi
t

[
1
pi

]∣∣∣
∣|fi|, (3.92)

∣∣
∣∣I

βi–ε
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

]∣∣
∣∣ = Iβi–ε

t

[
qi

pi

∣
∣uε

i – ui
∣
∣
]

+
∣∣
∣∣I

βi–ε
t

[
qi

pi

]
– Iβi

t

[
qi

pi

]∣∣
∣∣|ui|. (3.93)

Taking similar procedures to (3.74) to (3.89), we obtain

∣∣uε
i (t) – ui(t)

∣∣ ≤ p∗
i m2,i(t)

∣∣f ε
i – fi

∣∣ + p∗
i n2,i(t)|fi|

+ p∗
i q∗

i l2,i(t)
∣
∣uε

i – ui
∣
∣ + p∗

i q∗
i e2,i(t)|ui|, i = 1, 2, (3.94)

where

m2,i(t) =
(

(1 – βi – ε)
B(βi – ε)

Iαi–ε

T [1] + Iβi–ε
t

[
Iαi–ε
τ [1]

]
+ Iβi–ε

t [1] × Iαi–ε

T [1]
)

, (3.95)

n2,i(t) =
(

(1 – βi – ε)
B(βi – ε)

–
(1 – βi)
B(βi)

)∣∣Iαi–ε

T [1] – Iαi
T [1]

∣∣

+
∣
∣Iβi–ε

t
[
Iαi–ε
τ [1]

]
– Iβi

t
[
Iαi
τ [1]

]∣∣ +
∣
∣Iαi–ε

T [1] × Iβi–ε
t [1] – Iαi

T [1] × Iβi
t [1]

∣
∣, (3.96)

and

l2,i(t) = Iβi–ε
t [1], e2,i(t) = Iβi–ε

t [1] – Iβi
t [1]. (3.97)
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From (3.94) with (3.15), we have

∣
∣uε

i (t) – ui(t)
∣
∣ ≤ p∗

i n2,i(t)|fi| + p∗
i q∗

i e2,i(t)
1 – p∗

i (2m2,i(t)Mi + q∗
i l2,i(t))

,

with 0 < p∗
i
(
2m2,i(t)Mi + q∗

i l2,i(t)
)

< 1. (3.98)

Similarly, it can be shown that

∥
∥uε

i – ui
∥
∥ ≤ p∗

i n∗
i ‖|fi‖| + p∗

i q∗
i e∗

i
1 – p∗

i (2m∗
i Mi + q∗

i l∗i )
, with 0 < p∗

i
(
2m∗

i Mi + q∗
i l∗i

)
< 1, (3.99)

where

m∗
i = sup

{∣∣m2,i(t)
∣
∣ : t ∈ J

}
, n∗

i = sup
{∣∣n2,i(t)

∣
∣ : t ∈ J

}
,

l∗i = sup
{∣∣l2,i(t)

∣∣ : t ∈ J
}

, i = 1, 2,

e∗
i = sup

{∣∣e2,i(t)
∣∣ : t ∈ J

}
.

Consequently, from (3.99), we obtain

∥
∥uε – u

∥
∥ ≤ p∗n∗|‖f ∗‖| + p∗q∗e∗

1 – L with L = max{L1,L2}, (3.100)

where

p∗ = max
{

p∗
1, p∗

2
}

, q∗ = max
{

q∗
1, q∗

2
}

, f ∗ = max{f1, f2}, e∗ = max
{

e∗
1, e∗

2
}

,

m∗ = max
{

m∗
1, m∗

2
}

, n∗ = max
{

n∗
1, n∗

2
}

, l∗ = max
{

l∗1, l∗2
}

.

Thus, in accordance with (3.100), we obtain ‖uε – u‖ = O(ε). �

Theorem 3.9 Suppose that the conditions of Theorem 2.5 hold. Let u(t), uε(t) be the solu-
tions, respectively, of problems (1.3) and

Dαi
t

[(
pi(τ )Dβi–ε

τ + qi(τ )
)
ui(τ )

]
= fi

(
t, u1(t), u2(t)

)
, t ∈ J , i = 1, 2, (3.101)

with the boundary conditions

ui(0) = 0, pi(T)Dβi–ε

T [ui] + qi(T)ui(T) = 0, (3.102)

where 0 < βi – ε < βi ≤ 1. Then ‖uε – u‖ = O(ε), for ε sufficiently small.

Proof By the above theorems, we can obtain the following results. Let

uε
i (t) =

(1 – βi – ε)
B(βi – ε)pi(0)

Iαi
T

[
f ε
i
]

+ Iβi–ε
t

[
1
pi

Iαi
t

[
f ε
i
]]

– Iαi
T

[
f ε
i
] × Iβi–ε

t

[
1
pi

]
– Iβi–ε

t

[
qi

pi
uε

i

]
, t ∈ J , i = 1, 2, (3.103)

be the solution of (3.101)–(3.102).



Baleanu et al. Advances in Difference Equations        (2020) 2020:239 Page 22 of 30

On the one hand, from (3.8) and (3.103)

∣∣uε
i (t) – ui(t)

∣∣ =
∣
∣∣∣

(1 – βi – ε)
B(βi – ε)pi(0)

Iαi
T

[
f ε
i
]

–
(1 – βi)

B(βi)pi(0)
Iαi

T [fi]
∣
∣∣∣

+
∣
∣∣
∣I

βi–ε
t

[
1
pi

Iαi
τ

[
f ε
i
]
]

– Iβi
t

[
1
pi

Iαi
τ [fi]

]∣
∣∣
∣

+
∣∣∣
∣I

αi
T

[
f ε
i
] × Iβi–ε

t

[
1
pi

]
– Iαi

T [fi] × Iβi
t

[
1
pi

]∣∣∣
∣

+
∣∣
∣∣I

βi–ε
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

]∣∣
∣∣, (3.104)

∣∣
∣∣

(1 – βi – ε)
B(βi – ε)pi(0)

Iαi
T

[
f ε
i
]

–
(1 – βi)

B(βi)pi(0)
Iαi

T [fi]
∣∣
∣∣

=
(1 – βi – ε)

B(βi – ε)pi(0)
Iαi

T
[∣∣f ε

i – fi
∣∣] +

(
(1 – βi – ε)

B(βi – ε)pi(0)
–

(1 – βi)
B(βi)pi(0)

)∣∣Iαi
T [1]

∣∣|fi|. (3.105)

In a similar manner, we can get

∣∣
∣∣I

βi–ε
t

[
1
pi

Iαi
t

[
f ε
i
]]

– Iβi
t

[
1
pi

Iαi
t [fi]

]∣∣
∣∣

= Iβi–ε
t

[
1
pi

Iαi
t

[
f ε
i – fi

]]
+

∣∣
∣∣I

βi–ε
t

[
1
pi

Iαi–ε
t [1]

]
– Iβi

t

[
1
pi

Iαi
t [1]

]∣∣
∣∣|fi|, (3.106)

∣
∣∣
∣I

αi
T

[
f ε
i
] × Iβi–ε

t

[
1
pi

]
– Iαi

T [fi] × Iβi
t

[
1
pi

]∣
∣∣
∣

= Iβi–ε
t

[
1
pi

]
× Iαi

T [1]
∣∣f ε

i – fi
∣∣ +

∣
∣∣
∣I

αi
T [1] ×

(
Iβi–ε

t

[
1
pi

]
– Iβi

t

[
1
pi

])∣
∣∣
∣|fi|, (3.107)

∣∣
∣∣I

βi–ε
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

]∣∣
∣∣

= Iβi–ε
t

[
qi

pi

∣
∣uε

i – ui
∣
∣
]

+
∣∣
∣∣I

βi–ε
t

[
qi

pi

]
– Iβi

t

[
qi

pi

]∣∣
∣∣ × |ui|. (3.108)

Moreover, we have by (3.104)–(3.108)

∣
∣uε

i (t) – ui(t)
∣
∣ ≤ p∗

i m3,i(t)
∣
∣f ε

i – fi
∣
∣ + p∗

i n3,i(t)|fi|
+ p∗

i q∗
i l3,i(t)

∣∣uε
i (t) – ui(t)

∣∣ + p∗
i q∗

i e3,i(t)
∣∣ui(t)

∣∣, i = 1, 2, (3.109)

where

m3,i(t) =
(

(1 – βi – ε)
B(βi – ε)

Iαi
T [1] + Iβi–ε

t
[
Iαi

t [1]
]

+ Iβi–ε
t [1] × Iαi

T [1]
)

, (3.110)

n3,i(t) =
(

(1 – βi – ε)
B(βi – ε)

–
(1 – βi)
B(βi)

)∣∣Iαi
T [1]

∣∣ +
∣∣Iβi–ε

t
[
Iαi–ε

t [1]
]

– Iβi
t

[
Iαi

t [1]
]∣∣

+
∣∣Iαi

T [1] × (
Iβi–ε

t [1] – Iβi
t [1]

)∣∣, (3.111)

l3,i(t) = Iβi–ε
t [1], e3,i(t) =

∣
∣Iβi–ε

t [1] – Iβi
t [1]

∣
∣. (3.112)
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Thus, from (3.109) with (3.15), we get

∣∣uε
i (t) – ui(t)

∣∣ ≤ p∗
i n3,i(t)|fi| + p∗

i q∗
i e3,i(t)

1 – (2p∗
i m3,i(t)Mi + p∗

i q∗
i l3,i(t))

, i = 1, 2. (3.113)

Consequently, we obtain

∥∥uε – u
∥∥ ≤ p∗n∗‖|f ∗‖| + p∗q∗e∗

1 – L
with 0 < Li = p∗

i
(
2m∗

i Mi + q∗
i l∗

)
< 1, L = max{L1,L2},

p∗ = max
{

p∗
1, p∗

2
}

, q∗ = max
{

q∗
1, q∗

2
}

, f ∗ = max{f1, f2},
e∗ = max

{
e∗

3,1, e∗
3,2

}
, n∗ = max

{
n∗

3,1, n∗
3,2

}
.

(3.114)

Thus, in accordance with (3.114) we obtain ‖uε – u‖ = O(ε). �

3.5.2 The dependence on parameters of the right-hand side of (3.8)

Dαi
(
pi(t)Dβi + qi(t)

)
ui(t)

= fi
(
t, u1(t), u2(t)

)
+ εgi

(
t, u1(t), u2(t)

)
, t ∈ J , i = 1, 2, (3.115)

ui(0) = 0, pi(T)Dβi
T [ui] + qi(T)ui(T) = 0, i = 1, 2. (3.116)

Theorem 3.10 Assume that the hypotheses in Theorem 2.5 hold. Let u(t), uε(t) be the so-
lutions, respectively, of problems (1.3) and

Dαi
(
pi(t)Dβi +qi(t)

)
ui(t) = fi

(
t, u1(t), u2(t)

)
+εgi

(
t, u1(t), u2(t)

)
, t ∈ J , i = 1, 2, (3.117)

with boundary conditions (1.3), where 1 < αi ≤ 2 and (gε
i )(t) := gi(t, uε

1(t), uε
2(t)), t ∈ (0, T).

Then ‖uε – u‖ = O(ε).

Proof In accordance with Lemma 3.2, we have

uε
i (t) =

(1 – βi)
B(βi)p(0)

Iαi
T

[
f ε
i + εgε

i
]

+ Iβi
t

(
1
pi

Iαi
τ

[
f ε
i + εgε

i
])

– Iαi
T

[
f ε
i + εgε

i
] × Iβi

t

[
1
pi

]
– Iβi

t

[
qi

pi
uε

i

]
, (3.118)

∣
∣uε

i (t) – ui(t)
∣
∣

=
(1 – βi)

B(βi)p(0)
(
Iαi

T
[
f ε
i + εgε

i
]

– Iαi
T [fi]

)
+

(
Iβi

t

[
1
pi

Iαi
τ

[
f ε
i + εgε

i
]
]

– Iβi
t

[
1
pi

Iαi
τ [fi]

])

–
(
Iαi

T
[
f ε
i + εgε

i
]

– Iαi
T [fi]

) × Iβi
t

[
1
pi

]

–
(

Iβi
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

])
, T ∈ J , (3.119)

∣
∣Iαi

T
[
f ε
i + εgε

i
]

– Iαi
T [fi]

∣
∣ = Iαi

T
[∣∣f ε

i – fi
∣
∣] + εIαi

T
[∣∣gε

i
∣
∣]. (3.120)
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Similarly, it can be shown that
∣
∣∣
∣I

βi
t

[
1
pi

Iαi
t

[
f ε
i + εgε

i
]
]

– Iβi
t

[
1
pi

Iαi
τ [fi]

]∣
∣∣
∣

=
∣∣
∣∣I

βi
t

[
1
pi

Iαi
τ

[
f ε
i – fi

]]
+ εIβi

t

[
1
pi

Iαi
τ

[∣∣gε
i
∣
∣]

]∣∣
∣∣, (3.121)

(
Iαi

T
[
f ε
i + εgε

i
]

– Iαi
T [fi]

) × Iβi
t

[
1
pi

]
=

(
Iαi

T
[
f ε
i – fi

]
+ εIαi

T
[
gε

i
]) × Iβi

t

[∣∣
∣∣

1
pi

∣∣
∣∣

]
, (3.122)

∣
∣∣∣I

βi
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

]∣
∣∣∣ =

∣
∣∣∣
qi

pi

∣
∣∣∣I

βi
t

[∣∣uε
i – ui

∣∣]. (3.123)

Rewriting (3.119) as

∣∣uε
i (t) – ui(t)

∣∣ ≤ p∗
i m4,i(t)

∣∣f ε
i – fi

∣∣ + p∗
i q∗

i l4,i(t)
∣∣uε

i – ui
∣∣ + p∗

i d4,i(t)
∣∣gε

i
∣∣, i = 1, 2, (3.124)

where

m4,i(t) =
(1 – βi)
B(βi)

Iαi
T [1] + Iβi

t
[
Iαi
τ [1]

]
+ Iαi

T [1] × Iβi
t [1], (3.125)

d4,i(t) = ε

(
1
p∗

i
Iαi

T [1] + Iβi
t

[
Iαi
τ [1]

]
+ Iαi

T [1] × Iβi
t [1]

)
, (3.126)

l4,i(t) = Iβi
t [1]. (3.127)

Hence, from (3.124) with (3.15), we have

∣
∣uε

i (t) – ui(t)
∣
∣ ≤ p∗

i d4,i(t)|gε
i |

1 – p∗
i (2m4,i(t)Mi + q∗

i l4,i(t))
, i = 1, 2, (3.128)

again from (3.128), one has

∥
∥uε – u

∥
∥ ≤ p∗d∗‖|g∗‖|

1 – L
with 0 < Li = p∗

i
(
2m∗

i Mi + q∗
i l∗

)
< 1, L = max{L1,L2},

p∗ = max
{

p∗
1, p∗

2
}

, d∗ = max
{

d∗
4,1, g∗

4,2
}

,

m∗ = max
{

md∗
4,1, m∗

4,2
}

, g∗ = max
{

g∗
1 , g∗

2
}

.

(3.129)

Then we have d∗ −→ 0 as ε −→ 0, implies ‖uε – u‖ = O(ε) as desired. �

3.5.3 The dependence on parameters of initial conditions of (1.3)
The following theorem investigates the continuous dependence of the solutions of system
(1.3) on the initial value and the functions fi. For this purpose, we introduce small changes
in the initial conditions of (1.3) and consider (1.3-a) with boundary conditions

ui(0) = 0, pi(T)Dβi ui(T + ε) + qi(T + ε)ui(T + ε) = 0. (3.130)

Theorem 3.11 Assume the conditions of Theorem 2.5 hold. Let u(t), uε(t) be respective
solutions of problems (1.3) and the boundary conditions (1.3-a)– (3.114). Then ‖uε – u‖ =
O(ε).



Baleanu et al. Advances in Difference Equations        (2020) 2020:239 Page 25 of 30

Proof Let u(t) = (u1(t), u2(t)) and uε(t) = (uε
1(t), uε

2(t)) be the solutions of (1.3) and (1.3-a)–
(3.114), respectively. Hence

uε
i (t) =

(1 – βi)
B(βi)p(0)

(
Iαi

T+ε

[
f ε
i
]

–
1 – αi

B(αi)
f ε
i (0)

)
+ Iβi

t

(
1
pi

Iαi
τ

[
f ε
i
])

– Iαi
T+ε

[
f ε
i
] × Iβi

t

[
1
pi

]
– Iβi

t

[
qi

pi
uε

i

]
. (3.131)

Now we derive from (3.8) and (3.131) that

∣
∣uε

i (t) – ui(t)
∣
∣ =

(1 – βi)
B(βi)p(0)

(∣
∣Iαi

T+ε

[
f ε
i
]

– Iαi
T [fi]

∣
∣ –

1 – αi

B(αi)
∣
∣f ε

i (0) – fi(0)
∣
∣
)

+
∣∣
∣∣I

βi
t

[
1
pi

Iαi
τ

[
f ε
i
]]

– Iβi
t

[
1
pi

Iαi
τ [fi]

]∣∣
∣∣

–
∣
∣∣∣I

αi
T+ε

[
f ε
i
] × Iβi

t

[
1
pi

]
– Iαi

T [fi] × Iβi
t

[
1
pi

]∣
∣∣∣

–
∣
∣∣
∣I

βi
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

]∣
∣∣
∣, (3.132)

∣∣Iαi
T+ε

[
f ε
i
]

– Iαi
T [fi]

∣∣ =
∣∣Iαi

T+ε

[
f ε
i – fi

]∣∣ +
∣∣Iαi

T+ε[1] – Iαi
T [1]

∣∣|fi|. (3.133)

Similarly to the above argument, we can also obtain

∣∣∣
∣I

βi
t

[
1
pi

Iαi
τ

[
f ε
i
]]

– Iβi
t

[
1
pi

Iαi
τ [fi]

]∣∣∣
∣ =

∣∣∣
∣

1
pi

∣∣∣
∣
∣∣Iαi

τ

[
f ε
i – fi

]∣∣Iβi
t [1], (3.134)

∣∣
∣∣I

αi
T+ε

[
f ε
i
] × Iβi

t

[
1
pi

]
– Iαi

T [fi] × Iβi
t

[
1
pi

]∣∣
∣∣

=
∣∣
∣∣

1
pi

∣∣
∣∣
(∣∣Iαi

T+ε

[
f ε
i – fi

]∣∣ +
∣
∣Iαi

T+ε[1] – Iαi
T [1]

∣
∣|fi|

) × Iβi
t [1], (3.135)

∣
∣∣
∣I

βi
t

[
qi

pi
uε

i

]
– Iβi

t

[
qi

pi
ui

]∣
∣∣
∣ =

∣
∣∣
∣
qi

pi

∣
∣∣
∣
∣∣Iβi

t [1]
∣∣∣∣uε

i – ui
∣∣. (3.136)

From (3.132)–(3.136), we derive that

∣∣uε
i (t) – ui(t)

∣∣ ≤ p∗
i m5,i(t)

[∣∣f ε
i – fi

∣∣] + p∗
i n5,i(t)|fi| + p∗

i q∗
i l5,i(t)

∣∣uε
i – ui

∣∣

+ p∗
i e5,i(t), i = 1, 2, (3.137)

where

m5,i(t) =
(1 – βi)

B(βi)p(0)
(∣∣Iαi

T+ε[1]
∣∣ +

∣∣Iαi
τ [1]

∣∣Iβi
t [1] +

(∣∣Iαi
T+ε[1]

∣∣) × Iβi
t [1]

)
,

n5,i(t) =
(1 – βi)
B(βi)

(
1 + Iβi

t [1]
)(∣∣Iαi

T+ε[1] – Iαi
T [1]

∣
∣),

l5,i(t) =
∣∣Iβi

t [1]
∣∣,

e5,i(t) =
(1 – βi)
B(βi)

(
–

1 – αi

B(αi)
∣∣f ε

i (0) – fi(0)
∣∣
)

.
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Combining (3.15) with (3.137), we have

∣
∣uε

i (t) – ui(t)
∣
∣ = p∗

i
(
2m5,i(t)Mi + q∗

i l5,i(t)
)∣∣uε

i (t) – ui(t)
∣
∣ + p∗

i n5,i(t)|fi|
+ p∗

i e5,i(t), i = 1, 2, (3.138)

∣
∣uε

i (t) – ui(t)
∣
∣ =

p∗
i n5,i(t)|fi| + p∗

i e5,i(t)
1 – p∗

i (2m5,i(t)Mi + q∗
i l5,i(t))

, i = 1, 2. (3.139)

Taking the maximum on both sides of the inequality (3.139), the following can be obtained:

∥
∥uε

i – ui
∥
∥ ≤ p∗

i (n∗
i ‖|fi‖| + e∗

i )
1 – Li

, i = 1, 2, (3.140)

Li = p∗
i
(
2m∗

i Mi + q∗
i l∗i

)
. (3.141)

From the inequality (3.140) we have

∥
∥uε – u

∥
∥ ≤ p∗(n∗‖|f ‖| + e∗)

1 – L , (3.142)

where

L = max{L1,L2}, m∗ = max
{

m∗
1, m∗

2
}

,

n∗ = max
{

n∗
1, n∗

2
}

, l∗ = max
{

l∗1, l∗2
}

.
(3.143)

Then we have n∗‖|f ‖| + e∗ −→ 0 as ε −→ 0, implies ‖uε – u‖ = O(ε) as desired. �

3.6 Examples
In this subsection, we will give examples to illustrate our main result.

Example 3.12 Let us first consider system (1.3) with

f1(t, u1, u2) =
1/6

1 + |u1(t)| + |u2(t)| and f2(t, u1, u2) =
5

16
(
sin u1(t) + cos u1(t)

)
+ u2(t).

It is easy to see that the function fi satisfies condition (H1).

From system (1.3) we take α1 = 3/5, β1 = 2/3 and α2 = 2/5, β2 = 3/4, p1 = t3/2 + 1/8,
q1 = t2/7 – 1, p2 = t5/3 + 1/9, q2 = t3/10 – 1. By using the Maple program, we can find that

0 < p∗
1
(
2M1μ

∗
1 + q∗

1γ
∗
1,β1

)
< 1 iff 0.0465 < T < 5.2691,

0 < p∗
2
(
2M2μ

∗
2 + q∗

2γ
∗
1,β2

)
< 1 iff 0 < T ≤ 2.2268.

We see that Tmin = 0.0465 < T ≤ Tmax = 2.2268, and all the conditions of Theorem 3.4
are satisfied. Thus, the coupled system (1.3) has at least one solution. For example, when
T ∈ {Tmin, 1, 2, 2.2260, Tmax}, we have
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T r1 r2

0.0465 0.023148 0.047611
1 0.105130 0.283450
2 0.234970 2.493400
2.2260 0.276200 644.8100
2.2268 0.276370 4850.400

Then r ≥ max{r1, r2} = 4850.400. In this way, we have actually shown that the coupled
system (1.3) has at least one solution and the solution lies in

Ω =
{

(u1, u2) ∈ X :
∥
∥(u1, u2)

∥
∥ < 4850.400

}
.

Example 3.13 Consider problem (1.3), with

f1(t, u1, u2) =
1/6

1 + |u1(t)| + |u2(t)| and f2(t, u1, u2) =
1

64
(
sin u1(t) + cos u1(t)

)
+ u2(t).

From system (1.3) we take α1 = 3/5, β1 = 2/3 and α2 = 2/5, β2 = 3/4, p1 = t3/2 + 1/8, q1 = 0,
p2 = 1, q2 = 1

7 ,

It is easy to see that the function fi satisfies condition (H1). Set T = 2, we can find
that

M1 = 1/6, p∗
1 = 1/8, q∗

1 = 0,

μ∗
1 = 7.1531, a1 = 1/6, η∗

1 = 3.3522 × 10–2,

M2 = 1/32, p∗
2 = 1, q∗

2 =
1
7

,

μ∗
2 = 6.2079, a2 =

1
64

, η∗
2 = 0.13937,

the assumptions of Theorem 3.4 are satisfied with

r ≥ max{r1, r2} = max{0.26005, 0.68882} = 0.68882.

Further, we see that (3.8) holds.

Example 3.14 Consider problem (1.3), with

f1(t, u1, u2) =
t
3

+
t3

5
sin

∣
∣u1(t)

∣
∣ +

t5

7
cos

∣
∣u2(t)

∣
∣, N1 = 718/105,

f2(t, u1, u2) =
1
2

+
t2

4
sin

∣
∣u1(t)

∣
∣ +

t4

6
cos

∣
∣u2(t)

∣
∣, N2 = 25/6.

For system (1.3) we take α1 = 3/5, β1 = 2/3 and α2 = 2/5, β2 = 3/4, p1 = t3/2 + 1/8, q1 =
t2/7 – 1, p2 = t5/3 + 1/7, q2 = t3/10 – 1.

It is easy to see that the function fi satisfies condition (A2). Set T = 2, we can find that

p∗
1 = 8, q∗

1 = 0.21, μ∗
1 = 7.1531, η1 = 0, γ ∗

3,β1 = 2.826,
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p∗
2 = 7, q∗

2 = 0.23, μ∗
2 = 6.2079, η2 = 0.78047, γ ∗

3,β2 = 2.9001.

On the other hand, we have

r1 =
μ∗

1N1 + η1

1 – q∗
1p∗

1γ
∗
3,β1

= 52.833 and r2 =
μ∗

2N2 + η2

1 – q∗
2p∗

2γ
∗
3,β2

= 29.453;

the assumptions of Theorem 3.5 are satisfied with r ≥ 52.833.

Example 3.15 For system (1.3) we take α1 = 3/5, β1 = 2/3 and α2 = 2/5, β2 = 3/4, p1 =
t3/2 + 1/8, q1 = 0, p2 = 1, q2 = 1

7 , with

f1(t, u1, u2) =
1/6

1 + |u1(t)| + |u2(t)| , f2(t, u1, u2) =
1

64
(
sin u1(t) + cos u1(t)

)
+ u2(t),

p∗
1 = 1/8, q∗

1 = 0, M1 = 1/6, μ∗
1 = 7.1531,

p∗
2 = 1, q∗

2 =
1
7

, M2 = 1/32, μ∗
2 = 6.2079.

Then, by the use of Theorem 3.6, we have

H̃σ =

(
p∗

1(M1μ
∗
1 + q∗

1γ
∗
1,β1

) p∗
2μ

∗
2M2

p∗
1μ

∗
1M1 p∗

2(μ∗
2M2 + q∗

2γ
∗
1,β2

)

)

=

(
0.14902 0.19400
0.14902 0.46285

)

.

Here, te characteristic polynomial is λ2 – 0.61187λ + 4.0064 × 10–2, the spectral radius
ρ(H̃σ ) = 0.53731 < 1. Therefore, the matrix H̃σ converges to zero, and hence the solutions
of (1.3) are Hyers–Ulam stable by using Theorem 2.4.

4 Conclusions
The theory of fractional operators with nonsingular kernels is new and we need to study
the qualitative properties of differential equations involving such operators. This paper is
different from the ones presented in the previous literature and shows that it is possible
to extend the analysis of the coupled system with the Sturm–Liouville problems and the
nonlinear Langevin equation to the concepts of fractional differentiation, using the newly
introduced notion of the ABC-fractional derivative with nonlocal and nonsingular ker-
nel. ABC-fractional operators were therefore used in this work to present some results
dealing with the existence and uniqueness of solutions for the coupled system. As a first
step, the coupled system is transformed to a fixed point problem by applying the tools
of ABC-fractional calculus. Based on this, the existence results are established by means
of Krasnoselskii’s fixed point theorem and Banach’s contraction principle. The paper also
presented a discussion of the Ulam–Hyers stability of the solution of the proposed prob-
lem. We also analyzed the continuous dependence of solutions as regards the right-hand
side of the equations, initial value condition and the fractional order for the coupled sys-
tem. We conclude that such a method is very powerful, effectual and suitable for the so-
lution of coupled systems. The concerned theory has been enriched by providing suitable
examples.
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