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Abstract
In this paper, we study a kind of fuzzy differential equation with Hilfer–Katugampola
fractional derivative and nonlocal condition. By using successive approximation
method, we obtain some sufficient conditions to ensure the existence and
uniqueness of solution. An illustrative example is given to show the practical
usefulness of the analytical results.

Keywords: Fuzzy differential equation; Hilfer–Katugampola fractional derivative;
Existence and uniqueness

1 Introduction
In recent years, the definition of fractional calculus has been more suitable for describ-
ing historical dependence processes than the local limit definitions of integer ordinary
differential equations or partial differential equations, and has received more and more
attention in many fields. Fractional order differential equations are more accurate than
integral order differential equations in describing objective laws and the nature of things.
In 1695, Leibnitz discovered fractional derivatives, and after that, more and more scholars
have devoted themselves to the study of fractional calculus. Riemann–Liouville calculus
definition, Caputo differential definition, and Grunwald–Letnikov differential definition
are the most commonly used fractional calculus definitions in basic mathematical research
and engineering application research [15]. In 2011, a new fractional integration was pro-
posed by Katugampola, which generalized the Riemann–Liouville and Hadamard integral
into a single form. When a parameter was fixed at different values, it produced the above
integrals as special cases [13]. In 2014, Katugampola presented the representation of the
generalized derivative called Katugampola derivative [14]. In addition, Oliveira proposed
a new fractional derivative, i.e., the Hilfer–Katugampola fractional derivative [18].

Recently, fuzzy analysis and fuzzy differential equations have been put forward to solve
the uncertainty caused by incomplete information in some mathematical or computer
models that determine real-world phenomena [2, 4–8, 10, 17, 19–21]. In [3] and [1], the
concept of fuzzy type Riemann–Liouville differentiability based on Hukuhara differentia-
bility was came up with, and by using the Hausdorff measure of noncompactness the au-
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thors studied the existence of solution for some fuzzy integral equations. In [7], based on
Hukuhara differentiability or generalized Hukuhara differentiability, Bede and Stefanini
introduced and studied new generalized differentiability concepts for fuzzy-valued func-
tions.

In [11], Hoa, Lupulescu, and O’Regan considered the following fuzzy fractional differ-
ential equation with order α ∈ (0, 1):

⎧
⎨

⎩

(CDα
a+x)(t) = f (t, x(t)),

x(a) = x0 ∈ E,

where f : [a, b] × E → E is a fuzzy function and x0 ∈ E is a nontrivial fuzzy constant. The
paper presented some remarks on solutions of fractional fuzzy differential equation and
proved that a fractional fuzzy differential equation and a fractional fuzzy integral equation
are not equivalent generally. An appropriate condition was given so that this equivalence
is valid.

In [12], Hoa, Vu, and Duc considered the Caputo–Katugampola (CK) fractional differ-
ential equations fuzzy set with the initial condition:

⎧
⎨

⎩

(CDα,ρ
a+ x)(t) = f (t, x(t)),

x(a) = x0,

where 0 < a < t ≤ b, CDα,ρ
a+ is the fuzzy CK fractional generalized Hukuhara derivative, f :

[a, b]×E → E is a fuzzy function. An idea of successive approximations under generalized
Lipschitz condition was used to prove the existence and uniqueness of solution.

In [9], Hoa studied the existence results for extremal solutions of interval fractional func-
tional integro-differential equations by using the monotone iterative technique combined
with the method of upper and lower solutions.

Inspired by the above discussion, in this paper, we initiate the study of the existence and
uniqueness of solution for fuzzy fractional differential equation with Hilfer–Katugampola
fractional derivative and nonlocal condition as follows:

⎧
⎨

⎩

(ρDα,β
a+ x)(t) = f (t, x(t)), t ∈ [a, b],

(ρI1–γ
a+ x)(a) = x0 =

∑m
i=1 Cix(ti), γ = α + β(1 – α),

(1.1)

where x ∈ R, 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β(1 – α) and ρ > 0, f : [a, b] × E → E is a
fuzzy function. Moreover, ρI1–γ

a+ , ρDα,β
a+ are the Hilfer–Katugampola fractional integral and

derivative, which will be given in the next section. ti (i = 1, . . . , m) satisfies a < t1 ≤ t2 ≤
· · · ≤ tm < b and ci is a real number, x0 ∈ R. Here nonlocal conditions are more effective
than the initial conditions (ρI1–γ

a+ x)(0) = x0 in terms of physical problems. x is said to be a
solution of (1.1).

The rest of the paper is organized as follows. In Sect. 2, we give some preliminary facts
that we need in what follows. In Sect. 3, we present our main results on the existence and
uniqueness of solution by using successive approximation method. An illustrative example
is given to show the practical usefulness of the analytical results. Conclusion is given in
Sect. 4.
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2 Preliminaries
We denote by E the space of all fuzzy numbers on R.

For c ∈R, 1 ≤ p ≤ ∞, let Xp
c (a, b) denote the space of all complex-valued Lebesgue mea-

surable functions f on a finite interval [a,b] for which

‖f ‖Xp
c

< ∞,

with the norm

‖f ‖Xp
c

=
(∫ b

a

∣
∣tcf (t)

∣
∣p dt

t

)1/p

< ∞.

Definition 2.1 (see [12]) A fuzzy number is a fuzzy set x : R → [0, 1] which satisfies the
following conditions (i)–(iv):

(i) x is normal, that is, there exists t0 ∈R such that x(t0) = 1;
(ii) x is fuzzy convex in R, that is, for 0 ≤ λ ≤ 1,

x
(
λt1 + (1 – λ)t2

) ≥ min
{

x(t1), x(t2)
}

for any t1, t2 ∈R;

(iii) x is upper semicontinuous on R;
(iv) [x]0 = cl{z ∈R | x(z) > 0} is compact.

Denote by C([a, b], E) the set of all continuous fuzzy functions and by AC([a, b], E) the
set of all absolutely continuous fuzzy functions on the interval [a, b] with values in E. Let
γ ∈ (0, 1), by Cγ [a, b] we denote the space of continuous functions defined by Cγ [a, b] =
{f : (a, b] → E : ( tρ–aρ

ρ
)1–γ f (t) ∈ C[a, b]}. Let L([a, b], E) be the set of all fuzzy functions

x : [a, b] → E such that the functions t �→ D0[x(t), 0̂] belong to L1[a, b].
If x is a fuzzy number on R, we define [x]r = {z ∈ R | x(z) ≥ r} the r-level of x, with r ∈

(0, 1]. From conditions (i) to (iv), it follows that the r-level set of x ∈ E, [x]r , is a nonempty
compact interval for any r ∈ [0, 1]. We denote by [x(r), x(r)] the r-level of a fuzzy number x.
For x1, x2 ∈ E, and λ ∈R, the sum x1 + x2 and the product λ · x1 are defined by [x1 + x2]r =
[x1]r + [x2]r , [λ ·x1]r = λ[x1]r , ∀r ∈ [0, 1], where [x1]r + [x2]r means the usual addition of two
intervals of R and λ[x1]r means the usual scalar product between λ and an real interval.
For x ∈ E, we define the diameter of the r-level set of x as diam[u]r = u(r) – u(r).

Definition 2.2 (see [16]) Let x1, x2 ∈ E. If there exists x3 ∈ E such that x1 = x2 + x3, then
x3 is called the Hukuhara difference of x1 and x2 and it is denoted by x1 
 x2. We note that
x1 
 x2 �= x1 + (–)x2.

Definition 2.3 (see [16]) The distance D0[x1, x2] between two fuzzy numbers is defined
as

D0[x1, x2] = sup
r∈[0,1]

H
(
[x1]r , [x2]r), ∀x1, x2 ∈ E,

where H([x1]r , [x2]r) = max{|u1(r) – u1(r)|, |u1(r) – u1(r)|} is the Hausdorff distance be-
tween [x1]r and [x2]r .
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Triangular fuzzy numbers are defined as a fuzzy set in E that is specified by an ordered
triple x = (a, b, c) ∈R

3 with a ≤ b ≤ c such that [x]r = [x(r), x(r)] are the endpoints of r-level
sets for all r ∈ [0, 1], where x(r) = a + (b – a)r and x(r) = c – (c – b)r. In general, the para-
metric form of a fuzzy number x is a pair [x]r = [x(r), x(r)] of functions x(r), x(r), r ∈ [0, 1],
which satisfy the following conditions: u(r) is a monotonically increasing left-continuous
function, u(r) is a monotonically decreasing left-continuous function, and u(r) ≤ u(r),
r ∈ [0, 1].

Definition 2.4 (see [6]) The generalized Hukuhara difference of two fuzzy numbers x, y ∈
E (gH-difference for short) is defined as follows:

x 
gH y = ω ⇔ x = y + ω, or y = x + (–1)ω.

A function x : [a, b] → E is called d-increasing (d-decreasing) on [a, b] if for every r ∈
[0, 1] the function t �→ diam[x(t)]r is nondecreasing (nonincreasing) on [a, b]. If x is d-
increasing or d-decreasing on [a, b], then we say that x is d-monotone on [a, b].

Definition 2.5 (see [13]) The Katugampola left-sided fractional integral of order α > 0,
ρ > 0 of x ∈ Xp

c (a, b) for –∞ < a < t < ∞ is defined by

(
ρIα

a+x
)
(t) =

ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
x(τ ) dτ . (2.1)

Definition 2.6 (see [14]) The Katugampola fractional derivative associated with the gen-
eralized fractional integrals (2.1) are defined, for 0 ≤ a < t < ∞, n = [α] + 1, by

(
ρDα

a+x
)
(t) =

(

t1–ρ d
dt

)n(
ρIn–α

a+ x
)
(t)

=
ρα–n+1

Γ (n – α)

(

t1–ρ d
dt

)n ∫ t

a

τρ–1

(tρ – τρ)α–n+1 x(τ ) dτ . (2.2)

Let x ∈ L([a, b], E), then the Katugampola fractional integral of order α of the fuzzy func-
tion x is defined as follows:

xα,ρ(t) =
(
ρIα

a+x
)
(t) =

ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
x(τ ) dτ , t ≥ a.

Since [x(t)]r = [x(r, t), x(r, t)] and 0 < α < 1, we can consider the fuzzy Katugampola frac-
tional integral of the fuzzy function x based on lower and upper functions, that is,

[(
ρIα

a+x
)
(t)

]r =
[(

ρIα
a+x

)
(r, t),

(
ρIα

a+x
)
(r, t)

]
, t ≥ a,

where

(
ρIα

a+x
)
(r, t) =

ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
x(r, τ )(τ ) dτ

and

(
ρIα

a+x
)
(r, t) =

ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
x(r, τ )(τ ) dτ .
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In addition, it follows that the operator xα,ρ(t) is linear and bounded from C([a, b], E) to
C([a, b], E). Indeed, we have

c ≤ ‖x‖0
ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
dτ =

ρ–α‖x‖0

Γ (α + 1)
(
tρ – aρ

)α ,

where ‖z‖0 = supt∈[a,b] D0[z(t), 0̂].

Definition 2.7 (see [18]) Let order α and type β satisfy n – 1 < α ≤ n and 0 ≤ β ≤ 1,
with n ∈N. The fuzzy Hilfer–Katugampola generalized Hukuhara fractional derivative(or
Hilfer–Katugampola gH-fractional derivative) (left-sided/right-sided), with respect to t,
with ρ > 0 of a function t ∈ C1–γ ,ρ[a, b], is defined by

(
ρDα,β

a+ x
)
(t) =

(
ρIβ(1–α)

a+ τρ–1 d
dτ

ρI(1–β)(n–α)
a+ x

)

(t)

=
(
ρIβ(1–α)

a+ δρ
ρI(1–β)(1–α)

a+ x
)
(t)

if the gH-derivative x′
(1–α),ρ(t) exists for t ∈ [a, b], where

x(1–α),ρ(t) :=
(
ρI(1–α)

a+ x
)
(t) =

ρ–α

Γ (1 – α)

∫ t

a

τρ–1

(tρ – τρ)–α
x(τ ) dτ , t ≥ a.

Lemma 2.8 (see [18]) Let ρIα
a+ according to Eqs. (2.1). Then

ρIα
a+

(
tρ – aρ

ρ

)β–1

(t) =
Γ (β)

Γ (α + β)

(
tρ – aρ

ρ

)α+β–1

, α ≥ 0,β > 0.

Lemma 2.9 (see [18]) Let α > 0, 0 ≤ γ < 1. If x ∈ Cγ [a, b] and ρI1–α
a+ x ∈ C1

γ [a, b], then

(
ρIα

a+
ρDα

a+x
)
(t) = x(t) –

(ρI1–α
a+ x)(a)
Γ (α)

(
tρ – aρ

ρ

)α–1

.

Lemma 2.10 (see [18]) Let x ∈ L1(a, b). If ρDβ(1–α)
a+ x exists on L1(a, b), then

ρDα,β
a+

ρIα
a+x = ρIβ(1–α)

a+
ρDβ(1–α)

a+ x

for all t(a, b].

Lemma 2.11 If x ∈ AC([a, b], E) is a d-monotone fuzzy function, where [x(t)]r = [x(r, t),
x(r, t)] for 0 ≤ r ≤ 1, a ≤ t ≤ b, then for 0 < α < 1 and ρ > 0 we have that

(i) [(ρDα,β
a+ x)(t)]r = [ρDα,β

a+ x(r, t), ρDα,β
a+ x(r, t)] for a ≤ t ≤ b, if x is d-increasing;

(ii) [(ρDα,β
a+ x)(t)]r = [ρDα,β

a+ x(r, t), ρDα,β
a+ x(r, t)] for a ≤ t ≤ b, if x is d-decreasing.

Proof It is well known that if x is d-increasing, then [x′(t)]r = [ d
dt x(r, t), d

dt x(r, t)]. Therefore,
from Definition 2.7 we have

[(
ρDα,β

a+ x
)
(t)

]r =
[(

ρIβ(1–α)
a+ δ1

ρ
ρI(1–β)(1–α)

a+ x
)
(r, t),

(
ρIβ(1–α)

a+ δ1
ρ

ρI(1–β)(1–α)
a+ x

)
(r, t)

]

=
[
ρDα,β

a+ x(r, t), ρDα,β
a+ x(r, t)

]
.
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If x is d-decreasing, then [x′(t)]r = [ d
dt x(r, t), d

dt x(r, t)], and therefore we get

[(
ρDα,β

a+ x
)
(t)

]r =
[(

ρIβ(1–α)
a+ δ1

ρ
ρI(1–β)(1–α)

a+ x
)
(r, t),

(
ρIβ(1–α)

a+ δ1
ρ

ρI(1–β)(1–α)
a+ x

)
(r, t)

]

=
[
ρDα,β

a+ x(r, t), ρDα,β
a+ x(r, t)

]
.

The proof is complete. �

Lemma 2.12 If x ∈ AC([a, b], E) is a d-monotone fuzzy function, t ∈ (a, b], and α ∈ (0, 1),
we set z(t) := ρIα

a+ and z(1–α),ρ(t) is d-increasing on (a, b], then

(
ρIα

a+
ρDα,β

a+ x
)
(t) = x(t) 


∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

and

(
ρDα,β

a+
ρIα

a+x
)
(t) = x(t).

Proof If z(t) is d-increasing on [a, b] or z(t) is d-decreasing on [a, b] and z(1–α),ρ(t) is d-
increasing on (a, b].

By using the Definition 2.6, Definition 2.7, Lemma 2.9, and the initial condition
(ρI1–γ

a+ x)(a) = c, we have that

(
ρIα

a+
ρDα,β

a+ x
)
(t) =

(ρ

Iα
a+

ρIβ(1–α)
a+ tρ–1 d

dt
ρI(1–β)(n–α)

a+ x
)

(t)

=
(

ρIγ
a+tρ–1 d

dt
ρI1–γ

a+ x
)

(t)

=
(
ρIγ

a+
ρDγ

a+x
)
(t)

= x(t) 

∑m

i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

.

Now, by Lemma 2.8, Lemma 2.9, and Lemma 2.10, we get

(
ρDα,β

a+
ρIα

a+x
)
(t) =

(
ρIβ(1–α)

a+
ρDβ(1–α)

a+ x
)
(t)

= x(t) 
 (ρI1–β(1–α)
a+ x)(a)

Γ (β(1 – α))

(
tρ – aρ

ρ

)β(1–α)–1

= x(t).

On the other hand, since x ∈ AC([a, b], E), there exists a constant K such that K =
supt∈[a,b] D0[x(t), 0̂]. Then

D0
[
ρIα

a+x(t), 0̂
] ≤ K

ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
dτ =

ρ–αK
Γ (α + 1)

(
tρ – aρ

)α

and ρIα
a+x(t) = 0 at t = a. The proof is complete. �
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Lemma 2.13 Let ψ : [a, b] →R
+ be a continuous function on the interval [a, b] and satisfy

ρDα,β
a+ ψ(t) ≤ g(t,ψ(t)), t ≥ a, where g ∈ C([a, b] ×R

+,R+). Assume that m(t) = m(t, a, ξ0) is
the maximal solution of the initial value problem

ρDα,β
a+ ξ (t) = g(t, ξ ),

(
ρI1–γ

a+ ξ
)
(a) = ξ0 ≥ 0 (2.3)

on [a, b]. Then, if ψ(a) ≤ ξ0, we have ψ(t) ≤ m(t), t ∈ [a, b].

Proof We omit the proof of this theorem as it is similar to that of Theorem 2.2 in [12]. �

Lemma 2.14 Consider the initial value problem as follows:

ρDα,β
a+ ψ(t) = g

(
t,ψ(t)

)
,

(
ρI1–γ

a+ ψ
)
(a) = ψ0 = 0, t ∈ [a, b]. (2.4)

Let η > 0 be a given constant and B(ψ0,η) = {ψ ∈ R : |ψ – ψ0| ≤ η}. Assume that the real-
valued function g : [a, b] × [0,η] →R

+ satisfies the following conditions:
(i) g ∈ C([a, b] × [0,η],R+), g(t, 0) ≡ 0, 0 ≤ g(t,ψ) ≤ Mg for all (t,ψ) ∈ [a.b] × [0,η];

(ii) g(t,ψ) is nondecreasing in ψ for every t ∈ [a, b]. Then problem (2.4) has at least one
solution defined on [a, b] and ψ(t) ∈ B(ψ0,η).

Proof We omit the proof of this theorem as it is similar to that of Theorem 2.3 in [12]. �

3 Main results
In this section, the existence and uniqueness of solution to problem (1.1) are investigated
by using successive approximations method under generalized Lipschitz condition of the
right-hand side.

Lemma 3.1 Let γ = α +β(1–α), where 0 < α < 1, 0 ≤ β ≤ 1, and ρ > 0, let f : (a, b]×E → E
be a fuzzy function such that t �−→ f (t, x) belongs to Cγ ,ρ([a, b], E) for any x ∈ E. Then a d-
monotone fuzzy function x ∈ C([a, b], E) is a solution of initial value problem (1.1) if and
only if x satisfies the integral equation

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

=
ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
f
(
τ , x(τ )

)
dτ , t ∈ [a, b] (3.1)

and the fuzzy function t �→ ρI1–γ
a+ f (t, x) is d-increasing on (a, b].

Proof First, we prove the necessity condition. Let x ∈ C([a, b], E) be a d-monotone solution
of (1.1), and let z(t) := x(t) 
gH (ρI1–γ

a+ x)(a), t ∈ (a, b]. Because x is d-monotone on [a, b],
it follows that t �→ z(t) is d-increasing on [a, b] (see [11]). From (1.1) and Lemma 2.12 we
have that

(
ρIα

a+
ρDα,β

a+ x
)
(t) = x(t) 


∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

(3.2)
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for t ∈ [a, b]. Since f (t, x) ∈ Cγ ([a, b], E) for any x ∈ E, and from (1.1), it follows that

(
ρIα

a+
ρDα,β

a+ x
)
(t) =ρ Iα

a+f
(
t, x(t)

)
=

ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
f
(
τ , x(τ )

)
dτ (3.3)

for t ∈ [a, b]. In addition, since z(t) is d-increasing on (a, b], it follows that t �→ fα,ρ(t, x) is
also d-increasing on (a, b]. Consequently, combining (3.2) and (3.3) proves the necessity
condition.

Next, we prove the sufficiency. Let x ∈ C([a, b], E) be a d-monotone fuzzy function sat-
isfying (3.1) and such that t �→ fα,ρ(t, x) is d-increasing on (a, b]. Because of the continu-
ity of the fuzzy function f , the fuzzy function t �→ fα,ρ(t, x) is continuous on (a, b] and
fα,ρ(a, x(a)) = limt→a+ fα,ρ(t, x) = 0. Then

x(t) =
∑m

i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

+
(
ρIα

a+f
(
t, x(t)

))
(t),

ρI1–γ
a+ x(t) =

m∑

i=1

Cix(ti) +
(
ρI1–β(1–α)

a+ f
(
t, x(t)

))
(t),

and

ρI1–γ
a+ x(0) =

m∑

i=1

Cix(ti).

In addition, since t �→ fα,ρ(t, x) is d-increasing on (a, b], acting on the two sides of (3.1) by
the operator ρDα,β

a+ , we obtain

ρDα,β
a+

[

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1]

= f
(
t, x(t)

)
,

ρDα,β
a+ x(t) = f

(
t, x(t)

)
.

The proof is complete. �

Let h > 0 be a given constant, and let B(x0, h) = {x ∈ E : D0[x, x0] ≤ h}.

Theorem 3.2 Let f ∈ C([a, b]×B(x0, h), E) and assume that the following conditions hold:
(i) There exists a positive constant Mf such that D0[f (t, z), 0̂] ≤ Mf ,

∀(t, z) ∈ [a, b] ×B(x0, h);
(ii) For every t ∈ [a, b] and every z,ω ∈ B(x0, h),

D0
[
f (t, z), f (t,ω)

] ≤ g
(
t, D0[z,ω]

)
,

where g(t, ·) ∈ C([a, b] × [0,ρ],R+) satisfies the conditions in Lemma 2.14 provided
that problem (2.4) has only the solution ψ(t) ≡ 0 on [a, b]. Then, the following
successive approximations given by x0(t) = x0 and for n = 1, 2, . . . ,

xn(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

=
ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
f
(
τ , xn–1(τ )

)
dτ (3.4)
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converge uniformly to a unique solution of problem (1.1) on some intervals [a, T] for
some T ∈ (a, b] provided that the function t �→ ρIα

a+f (t, xn(t)) is d-increasing on
[a, T].

Proof Choose t∗ > a such that t∗ ≤ [( hΓ (1+α)
M ρα) 1

α + aρ]
1
ρ , where M = max{Mg , Mf }, and

put T := min{t∗, b}. Let S be a set of continuous fuzzy functions x such that ω(a) = x0

and ω(t) ∈ B(x0, h) for all t ∈ [a, T]. Next, we consider the sequence of continuous fuzzy
function {xn}∞n=0 given by: x0(t) = x0, ∀t ∈ [a, T], and for n = 1, 2, . . . ,

xn(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

=
ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
f
(
τ , xn–1(τ )

)
dτ , [a, T]. (3.5)

Step 1: First of all, we prove that xn(t) ∈ C([a, T], B(x0, h)). For n ≥ 1 and for any t1, t2 ∈
[a, T] with t1 < t2, we have

D0

[

xn(t1) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

, xn(t2) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1]

≤ ρ1–α

Γ (α)

∫ t1

a
τρ–1[(t1

ρ – τρ
)α–1 –

(
t2

ρ – τρ
)α–1]D0

[
f
(
τ , xn(τ )

)
, 0̂

]
dτ

+
ρ1–α

Γ (α)

∫ t2

t1

τρ–1

(t2ρ – τρ)1–α
D0

[
f
(
τ , xn(τ )

)
, 0̂

]
dτ .

The second integral on the right-hand side of the last inequality has the value ρ1–α

Γ (α+1) (tρ
2 –

tρ
1 )α . For the first integral, it has value ρ1–α

Γ (α+1) [(tρ
1 – aρ)α – (tρ

2 – aρ)α]. Hence, we get

D0
[
xn(t1), xn(t2)

] ≤ ρ–αMf

Γ (α + 1)
[(

tρ
2 – tρ

1
)α +

(
tρ
2 – tρ

1
)α –

(
tρ
2 – aρ

)α]

≤ 2ρ–αMf

Γ (α + 1)
(
tρ
2 – tρ

1
)α ,

and it follows that the last expression converges to 0 as t1 → t2, which proves that xn is a
continuous function on [a, T] for all n ≥ 1. In addition, it follows that xn(t) ∈ B(x0, h) for
all t ∈ [a, T] and for all n ≥ 0 if and only if xn(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ ) ( tρ–aρ

ρ
)γ –1 ∈ B(0, h) for all

t ∈ [a, T] and for all n ≥ 0. Indeed, if we suppose that xn–1(t) ∈ S for all t ∈ [a, T] and for a
given n ≥ 2, then from

D0

[

xn(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

, 0̂
]

≤ ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
D0

[
f
(
τ , xn–1(τ )

)
, 0̂

]
dτ

≤ Mf (tρ – aρ)α

ραΓ (α + 1)
≤ h,

it follows that xn(t) ∈ S for all t ∈ [a, T]. Hence, by mathematical induction, we have that
xn(t) ∈ S for all t ∈ [a, T] and for all n ≥ 1. Next, we prove that the sequence xn(t) con-
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verges uniformly to a continuous function x ∈ C([a, T],B(x0, h)). By assumption (ii) and
mathematical induction, we have for t ∈ [a, T]

D0

[

xn+1(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

, xn(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1]

≤ ψn(t), n = 0, 1, 2, . . . , (3.6)

where ψn(t) is defined as follows:

ψn(t) =
ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
g
(
τ ,ψn–1(τ )

)
dτ

and ψ0(t) = M(tρ–aρ )α
ραΓ (α+1) . Thus, we have, for t ∈ [a, T] and for n = 0, 1, 2, . . . ,

D0
[
ρDα,β

a+ xn+1(t), ρDα,β
a+ xn(t)

] ≤ D0
[
f
(
t, xn(t)

)
, f

(
t, xn–1(t)

)]

≤ g
(
t, D0

[
xn(t), xn–1(t)

])

≤ g
(
t,ψn–1(t)

)
.

Let m ≥ n and t ∈ [a, T], then we can obtain

ρDα,β
a+ D0

[
xn(t), xm(t)

] ≤ D0
[
ρDα,β

a+ xn(t), ρDα,β
a+ xm(t)

]

≤ D0
[
ρDα,β

a+ xn(t), ρDα,β
a+ xn+1(t)

]

+ D0
[
ρDα,β

a+ xn+1(t), ρDα,β
a+ xm+1(t)

]

+ D0
[
ρDα,β

a+ xm+1(t), ρDα,β
a+ xm(t)

]

≤ 2g
(
t,ψn–1(t)

)
+ g

(
t, D0

[
xn(t), xm(t)

])
.

From (ii), because we have that the solution ψ(t) = 0 is a unique solution of problem (2.4)
and g(·,ψn–1(·)) : [a, T] → [0, Mg] uniformly converges to 0, for every ε > 0, there exists a
natural number n0 such that

ρDα,β
a+ D0

[
xn(t), xm(t)

] ≤ g
(
t, D0

[
xn(t), xm(t)

])
+ ε for m ≥ n ≥ n0.

From the fact that D0[xn(a), xm(a)] = 0 < ε and by using Lemma 2.13, we have for t ∈ [a, T]

D0
[
xn(t), xm(t)

] ≤ λε(t), m ≥ n ≥ n0, (3.7)

where λε(t) is the maximal solution to the following IVP:

(
ρDα,β

a+ λε

)
(t) = g

(
t,λε(t)

)
+ ε,

(
ρI1–γ

a+ λε

)
(a) = ε.

Due to Lemma 2.13 one can infer that {ψε(·,ω)} converges uniformly to the maximal so-
lution ψ(t) ≡ 0 of (2.4) on [a, T] as ε → 0. Hence, by virtue of (3.7), we can find n0 ∈ N



Chen et al. Advances in Difference Equations        (2020) 2020:241 Page 11 of 16

large enough such that, for n, m > n0,

sup
t∈[a,T]

D0

[

xn(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

,

xm(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1]

≤ ε. (3.8)

Since (E, D0) is a complete metric space and (3.8) holds, it follows that {xn(t)} converges
uniformly to x ∈ C([a, b],B(x0, h)). Hence, we obtain

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

= lim
n→∞

(

xn(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1)

=
ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
f
(
τ , x(τ )

)
dτ , [a, T].

Due to Lemma 3.1 the function x(t) is the solution to (1.1) on [a, T].
Step 2: To show that x is the unique solution, assume that y : [a, T] → E is another so-

lution of problem (1.1) on [a, T]. Denote k(t) = D0[x(t), y(t)]. Then k(a) = 0 and for every
t ∈ [a, T] we have

ρDα,β
a+ k(t) ≤ D0

[
f
(
t, x(t)

)
, f

(
t, y(t)

)] ≤ g
(
t, k(t)

)
.

Again applying the comparison Lemma 2.13, we obtain k(t) ≤ m(t), where m is a maximal
solution of the IVP ρDα,β

a+ m(t) ≤ g(t, m(t)), (ρI1–γ
a+ m)(a) = 0. By assumption (ii), we have

m(t) = 0 and therefore x(t) = y(t), ∀t ∈ [a, T]. The proof is complete. �

Corollary 3.3 Let f ∈ C([a, b], E). Assume that there exist positive constants L, Mf such
that, for every z,ω ∈ E,

D0
[
f (t, z), f (t,ω)

] ≤ LD0[z,ω], D0
[
f (t, z), 0̂

] ≤ Mf .

Then the following successive approximations given by u0(t) = u0 and for n = 1, 2, . . .

xn(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

=
ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
f
(
τ , xn–1(τ )

)
dτ

converge uniformly to a unique solution of problem (1.1) on some intervals [a, T] for some
T ∈ (a, b] provided that the function t �→ ρIα

a+f (t, xn(t)) is d-increasing on [a, T].

Example 3.4 Let γ = α + β(1 – α), where 0 < α < 1, 0 ≤ β ≤ 1, ρ > 0, and λ ∈ R. We con-
sider the linear fuzzy fractional differential equation under Hilfer–Katugampola fractional
derivative and assume that the following conditions hold:

⎧
⎨

⎩

(ρDα,β
a+ x)(t) = λx(t) + p(t), t ∈ (a, b],

(ρI1–γ
a+ x)(a) = x0 =

∑m
i=1 Cix(ti), γ = α + β(1 – α).

(3.9)
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Applying Lemma 3.1, we see that

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

= λ
ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
x(τ ) dτ +

ρ1–α

Γ (α)

∫ t

a

τρ–1

(tρ – τρ)1–α
p(τ ) dτ , t ∈ [a, b]

= λ
(
ρIα

a+x
)
(t) +

(
ρIα

a+p
)
(t),

where p ∈ C((a, b], E), and we also assume that the diameter of the right-hand side of the
above equation is increasing. We observe that f (t, x) := λx + p satisfies the assumptions of
Corollary 3.3. To obtain an explicit solution of (3.9), we apply the method of successive
approximations. Set u0(t) = u0 and

xn(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

= λ
(
ρIα

a+xn–1)(t) +
(
ρIα

a+p
)
(t), n = 1, 2, . . . .

For n = 1 and λ > 0, if we assume that x is d-increasing, then it follows that

x1(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

=
m∑

i=1

Cix(ti)
λ(tρ – aρ)α

ραΓ (α + 1)
+

(
ρIα

a+p
)
(t).

On the other hand, if we assume that λ < 0 and x is d-decreasing, then it follows that

(–1)
(∑m

i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1


gH x1(t)
)

=
m∑

i=1

Cix(ti)
λ(tρ – aρ)α

ραΓ (α + 1)
+

(
ρIα

a+p
)
(t).

For n = 2, we also see that

x2(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

=
m∑

i=1

Cix(ti)
[

λ(tρ – aρ)α

ραΓ (α + 1)
+

λ2(tρ – aρ)2α

ρ2αΓ (2α + 1)

]

+
(
ρIα

a+p
)
(t) +

(
ρI2α

a+ p
)
(t),

if λ > 0 and x is d-increasing, and

(–1)
(∑m

i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1


gH x2(t)
)

=
m∑

i=1

Cix(ti)
[

λ(tρ – aρ)α

ραΓ (α + 1)
+

λ2(tρ – aρ)2α

ρ2αΓ (2α + 1)

]

+
(
ρIα

a+p
)
(t) +

(
ρI2α

a+ p
)
(t)
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if λ < 0 and x is d-decreasing. If we proceed inductively and let n → ∞, we obtain the
solution

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

=
m∑

i=1

Cix(ti)
∞∑

j=1

λj(tρ – aρ)jα

ρ jαΓ (jα + 1)
+

∫ t

a
τρ–1

∞∑

j=1

λj–1(tρ – τρ)jα–1

ρ jα–1Γ (jα)
p(τ ) dτ

=
m∑

i=1

Cix(ti)
∞∑

j=1

λj(tρ – aρ)jα

ρ jαΓ (jα + 1)
+

∫ t

a
τρ–1

∞∑

j=0

λj(tρ – τρ)jα+(α–1)

ρ jα+(α–1)Γ (jα + α)
p(τ ) dτ

=
m∑

i=1

Cix(ti)
∞∑

j=1

λj(tρ – aρ)jα

ρ jαΓ (jα + 1)
+

∫ t

a
τρ–1 (tρ – τρ)(α–1)

ρ(α–1)

∞∑

j=0

λj(tρ – τρ)jα

ρ jαΓ (jα + α)
p(τ ) dτ ,

for each case of λ > 0 and x is d-increasing, or λ < 0 and x is d-decreasing, respectively.
Then, by applying definition of Mittag-Leffler function Eα,β (x) =

∑∞
j=1

xk

Γ (jα+β) , α,β > 0, the
solution of problem (3.9) is expressed by

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

=
m∑

i=1

Cix(ti)Eα,1

(

λ

(
tρ – aρ

ρ

)α)

+
1

ρα–1

∫ t

a
τρ–1(tρ – τρ

)(α–1)Eα,α

(

λ

(
tρ – τρ

ρ

)α)

p(τ ) dτ

for the case of λ > 0 and x is d-increasing. On the other hand, if λ < 0 and x is d-decreasing,
then we obtain the solution of problem (3.9)

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (γ )

(
tρ – aρ

ρ

)γ –1

=
m∑

i=1

Cix(ti)Eα,1

(

λ

(
tρ – aρ

ρ

)α)


 (–1)
1

ρα–1

∫ t

a
τρ–1(tρ – τρ

)(α–1)

× Eα,α

(

λ

(
tρ – τρ

ρ

)α)

p(τ ) dτ .

Remark 3.5 In problem (3.9), suppose that λ > 0 and the solution of (3.9) is d-increasing.
We observe that the solutions of problem (3.9) admit particular cases as follows: if β = 0,
then we obtain the solution of problem (3.9) with the Caputo–Katugampola fractional
derivative as follows:

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (α)

(
tρ – aρ

ρ

)α–1

=
m∑

i=1

Cix(ti)Eα,1

(

λ

(
tρ – aρ

ρ

)α)

+
1

ρα–1

∫ t

a
τρ–1(tρ – τρ

)(α–1)Eα,α

(

λ

(
tρ – τρ

ρ

)α)

p(τ ) dτ .
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If the value of ρ tends to 1 and β = 0, then we obtain the solution of problem (3.9) with
the Caputo fractional derivative as follows:

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (α)

(t – a)α–1

=
m∑

i=1

Cix(ti)Eα,1
(
λ(t – a)α

)
+

∫ t

a
(t – τ )(α–1)Eα,α

(
λ(t – τ )α

)
p(τ ) dτ .

In addition, if the value of ρ tends to 0+ and β = 0, then we obtain the following solution
of problem (3.9) with the Caputo–Hadamard fractional derivative:

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (α)

(

log
t
a

)α–1

=
m∑

i=1

Cix(ti)Eα,1

(

λ

(

log
t
a

)α)

+
∫ t

a

(

log
t
τ

)(α–1)

Eα,α

(

λ

(

log
t
τ

)α)
p(τ )
τ

dτ .

Remark 3.6 In problem (3.9), suppose that λ < 0 and the solution of (3.9) is d-decreasing.
We observe that the solutions of problem (3.9) admit particular cases as follows: if β = 0,
then we obtain the solution of problem (3.9) with the Caputo–Katugampola fractional
derivative as follows:

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (α)

(
tρ – aρ

ρ

)α–1

=
m∑

i=1

Cix(ti)Eα,1

(

λ

(
tρ – aρ

ρ

)α)


 (–1)
1

ρα–1

∫ t

a
τρ–1(tρ – τρ

)(α–1)

× Eα,α

(

λ

(
tρ – τρ

ρ

)α)

p(τ ) dτ .

If the value of ρ tends to 1 and β = 0, then we obtain the solution of problem (3.9) with
the Caputo fractional derivative as follows:

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (α)

(t – a)α–1

=
m∑

i=1

Cix(ti)Eα,1
(
λ(t – a)α

) 
 (–1)
∫ t

a
(t – τ )(α–1)Eα,α

(
λ(t – τ )α

)
p(τ ) dτ .

In addition, if the value of ρ tends to 0+ and β = 0, then we obtain the following solution
of problem (3.9) with the Caputo–Hadamard fractional derivative:

x(t) 
gH

∑m
i=1 Cix(ti)
Γ (α)

(

log
t
a

)α–1

=
m∑

i=1

Cix(ti)Eα,1

(

λ

(

log
t
a

)α)


 (–1)
∫ t

a

(

log
t
τ

)(α–1)

Eα,α

(

λ

(

log
t
τ

)α)
p(τ )
τ

dτ .
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4 Conclusion
In this paper, the existence and uniqueness results of solution of a kind of fuzzy differen-
tial equation with Hilfer–Katugampola fractional derivative and nonlocal condition were
investigated. To obtain our main result, we established some necessary comparison theo-
rems. By using the method of successive approximations under generalized Lipschitz con-
dition, we obtained some sufficient conditions to ensure the existence and uniqueness of
solution. An illustrative example is given to show the practical usefulness of the analytical
results.
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