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Abstract
We develop a fast collocation method for a static bond-based peridynamic model.
Based on the analysis of the structure of the stiffness matrix, a fast matrix-vector
multiplication technique was found, which can be used in the Krylov subspace
iteration method. In this paper, we also present an effective preconditioner to
accelerate the convergence of the Krylov subspace iteration method. Using the
block-Toeplitz–Toeplitz-block (BTTB)-type structure of the stiffness matrix, we give a
block-circulant-circulant-block (BCCB)-type preconditioner. The numerical
experiments show the utility of the preconditioned fast collocation method.

Keywords: Nonlocal models; Peridynamic model; Preconditioner; Fast collocation
method

1 Introduction
In the last decades, the peridynamic model has been applied in many research fields, such
as failure and damage in composite laminates, crack propagation and branching, crack
nucleation, phase transformations in solids, impact damage, damage in concrete, and so
on [1–7]. In contrast to the classical theory of solid or fluid mechanics, which are usually
modeled by partial differential equations [8–10], the peridynamic model does not explic-
itly involve any spatial derivatives of the displacement. Thus it provides a more natural
description for problems with spontaneous formation of discontinuities or other singu-
larities.

To date, several numerical methods have been developed and analyzed for the nonlocal
diffusion model and peridynamic model as well as other related nonlocal models, such
as finite element discretizations, finite difference method, finite volume method, colloca-
tion method, and the meshfree method [1, 11–15]. However, mathematically speaking,
because of the nonlocality of these models, the stiffness matrices resulting from finite el-
ement method or collocation method are usually full or dense diagonal. The widely used
Krylov subspace iteration method requires O(N2) of memory to store the stiffness ma-
trix and O(N2) computational work in each iteration to solve the associated linear system
where N is the number of spatial nodes. Therefore, the simulation of peridynamic model is
usually time-consuming especially for large-scale problems (e.g.,multi-dimensional peri-
dynamic models).
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Several research works have been devoted to reducing the memory requirement and
computations of the corresponding numerical schemes for peridynamic model [15–18].
These works are based on the analysis of Toeplitz or Toeplitz-type structure of the stiffness
matrices and on the fast matrix-vector multiplication technique which can be used in the
Krylov subspace iteration method. In [18], a fast collocation method for a two-dimensional
bond-based linear peridynamic model was developed by carefully exploring the BTTB-
type structure of the stiffness matrix A2N . However, from the numerical experiments we
can find that the convergence is slow, especially when the singularity of the kernel function
is stronger.

In this paper, we follow the work started in [18] and develop a preconditioned fast col-
location method for a linear peridynamic model. We provide an effective preconditioner
to accelerate the convergence of the Krylov subspace iteration method. The rest of the pa-
per is organized as follows. In Sect. 2, we recall the bilinear collocation method developed
in [18]. However, the stiffness matrix is rewritten by reordering the unknowns differently
from the unknowns’ arrangement in [18]. In Sect. 3, we analyze that each block matrix of
the stiffness matrix is a BTTB matrix. Based on this analysis, the operations in each Krylov
subspace iteration and the storage of the stiffness matrix can be reduced. In Sect. 4, to ac-
celerate the convergence of the Krylov subspace iteration method, a BCCB-type precon-
ditioner is provided. In Sect. 5, we carry out several numerical experiments to investigate
the performance of this preconditioner. In Sect. 6, we draw concluding remarks.

2 The bilinear collocation method
We consider the following two-dimensional bond-based linear peridynamic model:

∫
Bδ (x)

C
(
x′, x

)(
u
(
x′) – u(x)

)
dx′ = f(x), x ∈ Ω ,

u(x) = g(x), x ∈ Ωc.
(1)

Here C is the micromodulus function

C
(
x′, x

)
= σ

(∣∣x′ – x
∣∣)

[
(x′ – x)
|x′ – x| ⊗ (x′ – x)

|x′ – x|
]

; (2)

Ω := (0, xR) × (0, yR) represents a rectangular domain; x := (x, y)T and x′ := (x′, y′)T are
positions of the particles in the reference configuration; u(x) := [v(x), w(x)]T and u(x′) :=
[v(x′), w(x′)]T represent the displacements of particles x and x′ with respect to the ref-
erence configuration, respectively. σ (·) is the kernel function; δ > 0 is the horizon of the
material; Bδ(x) is assumed to be an open disk that is centered at x with δ being the radius;
Ωc denotes a boundary zone surrounding Ω with width δ; f(x) := [f v(x), f w(x)]T represents
the external force density; g(x) := [gv(x), gw(x)]T is the prescribed nonlocal boundary data
imposed on the boundary zone Ωc. For clarity, we show the domains Ω , Ωc, and Bδ(x) in
Fig. 1.

Given two n-dimensional vectors

V =

⎛
⎜⎜⎜⎜⎝

v1

v2
...

vn

⎞
⎟⎟⎟⎟⎠ , W =

⎛
⎜⎜⎜⎜⎝

w1

w2
...

wn

⎞
⎟⎟⎟⎟⎠ ,



Zhang et al. Advances in Difference Equations        (2020) 2020:244 Page 3 of 15

Figure 1 The left figure (a) shows the relationship between the domain Ω and the boundary zone Ωc with
width δ ; The right figure (b) represents the integral domain Bδ (x) in (1), which is an open disk centered at x
with a radius δ

the tensor product ‘⊗’ in (2) is defined as

V ⊗ W =

⎛
⎜⎜⎜⎜⎜⎝

v1w1 v1w2 · · · v1wn

v2w1 v2w2
. . . v2wn

...
. . . . . .

...
vnw1 vnw2 · · · vnwn

⎞
⎟⎟⎟⎟⎟⎠

.

For the convenience of the following chapter, we also give the definition of tensor prod-
uct in the matrix case. Given two matrices A = (ai,j) ∈ R

p,q and B ∈R
r,s, the tensor product

of A and B is defined as follows:

A ⊗ B =

⎛
⎜⎜⎜⎜⎜⎝

a1,1B a1,2B · · · a1,qB

a2,1B a2,2B
. . . a2,qB

...
. . . . . .

...
ap,1B ap,1B · · · ap,qB

⎞
⎟⎟⎟⎟⎟⎠

.

Let Nx and Ny be positive integers. We define a spatial partition on Ω̄ by xi := ihx for i =
0, 1, . . . , Nx and yj := jhy for j = 0, 1, . . . , Ny, where hx := xR/Nx and hy := yR/Ny are the mesh
sizes in the x and y directions, respectively. To handle the discretization on the boundary
zone Ωc, we extend the partition to (xi, yj) for i = –K + 1, . . . , –1, 0, 1, . . . , Nx, Nx + 1, . . . , Nx +
K – 1 and j = –L + 1, . . . , –1, 0, 1, . . . , Ny, Ny + 1, . . . , Ny + L – 1. Here,

K := �δ/hx�, L := �δ/hy� (3)

are the ceilings of δ/hx and δ/hy, respectively.
Let ψ(ξ ) = 1– |ξ | for ξ ∈ [–1, 1] and zero otherwise. The two-dimensional pyramid func-

tions φi,j(x, y) centered at (xi, yj) can be expressed as

φij(x, y) = ψ

(
x – xi

hx

)
ψ

(
y – yj

hy

)
, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny. (4)
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Then the trial functions v and w in the displacement vector u can be written as

v(x, y) =
Nx+K–1∑
i′=–K+1

Ny+L–1∑
j′=–L+1

vi′ ,j′φi′ ,j′ (x, y),

w(x, y) =
Nx+K–1∑
i′=–K+1

Ny+L–1∑
j′=–L+1

wi′ ,j′φi′ ,j′ (x, y).

(5)

We choose (xi, yj) for i = 1, . . . , Nx – 1 and j = 1, . . . , Ny – 1 as our collocation points. By
substituting (5) into (1), we obtain the following collocation scheme:

∫
Bδ (xi ,yj)

σ (|(x′ – xi, y′ – yj)|)
(x′ – xi)2 + (y′ – yj)2

{(
x′ – xi

)2
[

vi,j –
Nx+K–1∑
i′=–K+1

Ny+L–1∑
j′=–L+1

vi′ ,j′φi′ ,j′
(
x′, y′)

]

+
(
x′ – xi

)(
y′ – yj

)[
wi,j –

Nx+K–1∑
i′=–K+1

Ny+L–1∑
j′=–L+1

wi′ ,j′φi′ ,j′
(
x′, y′)

]}
dx′ dy′ = f v(xi, yj),

∫
Bδ (xi ,yj)

σ (|(x′ – xi, y′ – yj)|)
(x′ – xi)2 + (y′ – yj)2

{(
y′ – yj

)2
[

wi,j –
Nx+K–1∑
i′=–K+1

Ny+L–1∑
j′=–L+1

wi′ ,j′φi′ ,j′
(
x′, y′)

]

+
(
x′ – xi

)(
y′ – yj

)[
vi,j –

Nx+K–1∑
i′=–K+1

Ny+L–1∑
j′=–L+1

vi′ ,j′φi′ ,j′
(
x′, y′)

]}
dx′ dy′ = f w(xi, yj),

1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1.

(6)

Let N = (Nx –1)(Ny –1) be the number of unknowns. If we define the vector of unknowns
u2N and the vector of right-hand side as follows:

u2N := [v1,1, v2,1, . . . , vNx–1,1, v1,2, . . . , vNx–1,2,

· · · , v1,Ny–1, . . . , vNx–1,Ny–1,

w1,1, w2,1, . . . , wNx–1,1, w1,2, . . . , wNx–1,2,

· · · , w1,Ny–1, . . . , wNx–1,Ny–1]T ,

f2N :=
[
f v
1,1, f v

2,1, . . . , f v
Nx–1,1, f v

1,2, . . . , f v
Nx–1,2,

· · · , f v
1,Ny–1, . . . , f v

Nx–1,Ny–1,

f w
1,1, f w

2,1, . . . , f w
Nx–1,1, f w

1,2, . . . , f w
Nx–1,2,

· · · , f w
1,Ny–1, . . . , f w

Nx–1,Ny–1
]T ,

(7)

then the collocation scheme can be written as the following matrix form:

A2N u2N = f2N , (8)
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where the 2N-by-2N stiffness matrix A2N can be expressed as the following form in which
each matrix block is of N order:

A2N =

(
Av,v

N Av,w
N

Aw,v
N Aw,w

N

)
. (9)

In (9), the entries in the submatrix Av,v
N are defined as

Av,v
m,n :=

∫
Bδ (xi ,yj)

σ (|(x′ – xi, y′ – yj)|)
(x′ – xi)2 + (y′ – yj)2

(
x′ – xi

)2(
δm,n – φi′ ,j′

(
x′, y′))dx′ dy′. (10)

Similarly, the entries in the submatrices Av,w
N and Aw,w

N are given by

Av,w
m,n :=

∫
Bδ (xi ,yj)

σ (|(x′ – xi, y′ – yj)|)
(x′ – xi)2 + (y′ – yj)2

(
x′ – xi

)(
y′ – yj

)(
δm,n – φi′ ,j′

(
x′, y′))dx′ dy′ (11)

and

Aw,w
m,n :=

∫
Bδ (xi ,yj)

σ (|(x′ – xi, y′ – yj)|)
(x′ – xi)2 + (y′ – yj)2

(
y′ – yj

)2(
δm,n – φi′ ,j′

(
x′, y′))dx′ dy′, (12)

respectively. Av,w
N = Aw,v

N . The function φi,j(x, y) denotes the two-dimensional bilinear basis
function at the grid point (xi, yj). The global indices m and n are related to the indices (i, j)
and (i′, j′) by

m = (j – 1) × (Nx – 1) + i, 1 ≤ i ≤ Nx – 1, 1 ≤ j ≤ Ny – 1,

n =
(
j′ – 1

) × (Nx – 1) + i′, 1 ≤ i′ ≤ Nx – 1, 1 ≤ j′ ≤ Ny – 1.
(13)

In (7) f v
i,j and f w

i,j are defined as follows:

f v
i,j = f v(xi, yj) +

∑
–K+1≤i′′≤0

Nx≤i′′≤Nx+K–1

∑
–L+1≤j′′≤0

Ny≤j′′≤Ny+L–1

∫
Bδ (xi ,yj)

σ (|(x′ – xi, y′ – yj)|)
((x′ – xi)2 + (y′ – yj)2)

× (
x′ – xi

)2gv(xi′′ , yj′′ )φi′′ ,j′′
(
x′, y′)dx′ dy′

+
∑

–K+1≤i′′≤0
Nx≤i′′≤Nx+K–1

∑
–L+1≤j′′≤0

Ny≤j′′≤Ny+L–1

∫
Bδ (xi ,yj)

σ (|(x′ – xi, y′ – yj)|)
((x′ – xi)2 + (y′ – yj)2)

× (
x′ – xi

)(
y′ – yj

)
gw(xi′′ , yj′′ )φi′′ ,j′′

(
x′, y′)dx′ dy′,

f w
i,j = f w(xi, yj) +

∑
–K+1≤i′′≤0

Nx≤i′′≤Nx+K–1

∑
–L+1≤j′′≤0

Ny≤j′′≤Ny+L–1

∫
Bδ (xi ,yj)

σ (|(x′ – xi, y′ – yj)|)
((x′ – xi)2 + (y′ – yj)2)

× (
x′ – xi

)(
y′ – yj

)
gv(xi′′ , yj′′ )φi′′ ,j′′

(
x′, y′)dx′ dy′

+
∑

–K+1≤i′′≤0
Nx≤i′′≤Nx+K–1

∑
–L+1≤j′′≤0

Ny≤j′′≤Ny+L–1

∫
Bδ (xi ,yj)

σ (|(x′ – xi, y′ – yj)|)
((x′ – xi)2 + (y′ – yj)2)

× (
y′ – yj

)2gw(xi′′ , yj′′ )φi′′ ,j′′
(
x′, y′)dx′ dy′.

(14)
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3 The structure of stiffness matrix
Theorem 1 Each of the submatrices Av,v

N , Av,w
N , and Aw,w

N has a BTTB structure. More pre-
cisely, each matrix can be expressed as a (Ny – 1)-by-(Ny – 1) block-banded Toeplitz matrix
with a block bandwidth 2L + 1,

AI
N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TI
0 · · · TI

L 0 · · · 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

TI
–L

. . . TI
0

. . . . . . 0
. . . . . . 0

0
. . . . . . TI

0
. . . . . . 0

. . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0
. . . 0

. . . . . . TI
0

. . . . . . 0

0
. . . . . . 0

. . . . . . TI
0

. . . TI
L

...
. . . . . . . . . . . . . . . . . . . . .

...
0 · · · 0 0 · · · 0 TI

–L · · · TI
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where the superscript I = (v, v), (v, w), or (w, w). Furthermore, each matrix block TI
j , with

–L ≤ j ≤ L, is an (Nx – 1)-by-(Nx – 1) banded Toeplitz matrix with a bandwidth 2K + 1

TI
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tI
0,j · · · tI

K ,j 0 · · · 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

tI
–K ,j

. . . tI
0,j

. . . . . . 0
. . . . . . 0

0
. . . . . . tI

0,j
. . . . . . 0

. . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0
. . . 0

. . . . . . tI
0,j

. . . . . . 0

0
. . . . . . 0

. . . . . . tI
0,j

. . . tI
K ,j

...
. . . . . . . . . . . . . . . . . . . . .

...
0 · · · 0 0 · · · 0 tI

–K ,j · · · tI
0,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

Proof We only investigate the structure of Av,v
N . The analysis of Av,w

N and Aw,w
N is similar.

By expanding the matrix Av,v
N , we can easily find that Av,v

N can be written as the following
form:

Av,v
N =

⎛
⎜⎜⎜⎜⎜⎝

B1,1 B1,1 · · · B1,Ny–1

B2,1 B2,2
. . . B2,Ny–1

...
. . . . . .

...
BNy–1,1 BNy–1,2 · · · BNy–1,Ny–1

⎞
⎟⎟⎟⎟⎟⎠

. (17)

Here, each block matrix Bj,j′ of order Nx – 1 denotes the interaction of row j and row j′ in
the discrete system for 1 ≤ j ≤ Ny – 1 and 1 ≤ j′ ≤ Ny – 1. From (11) and (13), we can find
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that the entry Av,v
m,n �= 0 if and only if

supp(φi′ ,j′ ) ∩ Bδ(xi, yj) �= ∅. (18)

Therefore all the matrix blocks Bj,j′ with |j – j′| > L in (17) vanish. Then Av,v
N is a 2L + 1

block-banded matrix and can be expressed as the following form:

Av,v
N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1,1 B1,2 · · · B1,L+1 0 · · · 0

B2,1 B2,2
. . . · · · . . . · · · 0

...
. . . . . . . . . . . . . . .

...

BL+1,1
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . BNy–L–1,Ny–1

...
. . . . . . . . . . . . . . .

...
0 0 · · · 0 BNy–1,Ny–L–1 · · · BNy–1,Ny–1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

Furthermore, in each matrix block Bj,j′ , we have Av,v
m,n = 0 for |i – i′| > K . That is, Bj,j′ is a

2K + 1 banded matrix expressed as

Bj,j′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,1
j,j′ b1,2

j,j′ · · · b1,K+1
j,j′ 0 · · · 0

b2,1
j,j′ b2,2

j,j′
. . . · · · . . . · · · 0

...
. . . . . . . . . . . . . . .

...

bK+1,1
j,j′

. . . . . . . . . . . . . . .
...

0
. . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . bNy–K–1,Ny–1

j,j′
...

. . . . . . . . . . . . . . .
...

0 0 · · · 0 bNy–1,Ny–K–1
j,j′ · · · bNy–1,Ny–1

j,j′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

By introducing the following translations:

ξ1 = x′ – xi, ξ2 = y′ – yj, (21)

the entries Av,v
m,n given in (11) can be reduced to

Av,v
m,n =

∫
Bδ (0,0)

ξ 2
1 σ (‖(ξ1, ξ2)‖)

ξ 2
1 + ξ 2

2

(
δm,n – ψ

(
ξ1 – xi′–i

hx

)
ψ

(
ξ2 – yj′–j

hy

))
dξ1 dξ2. (22)
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Let j′1 – j1 = j′2 – j2 = l, –L ≤ l ≤ L, and let

m1 = (j1 – 1)(Nx – 1) + i, 1 ≤ i ≤ Nx – 1, 1 ≤ j1 ≤ Ny – 1,

n1 =
(
j′1 – 1

)
(Nx – 1) + i′, 1 ≤ i′ ≤ Nx – 1, 1 ≤ j′1 ≤ Ny – 1,

m2 = (j2 – 1)(Nx – 1) + i, 1 ≤ i ≤ Nx – 1, 1 ≤ j2 ≤ Ny – 1,

n2 =
(
j′2 – 1

)
(Nx – 1) + i′, 1 ≤ i′ ≤ Nx – 1, 1 ≤ j′2 ≤ Ny – 1.

(23)

Then we observe that, for 1 ≤ i, i′ ≤ Nx – 1,

bi,i′
j1,j′1

= Av,v
m1,n1

=
∫

Bδ (0,0)

ξ 2
1 σ (‖(ξ1, ξ2)‖)

ξ 2
1 + ξ 2

2

(
δm1,n1 – ψ

(
ξ1 – xi′–i

hx

)
ψ

(
ξ2 – yj′1–j1

hy

))
dξ1 dξ2

=
∫

Bδ (0,0)

ξ 2
1 σ (‖(ξ1, ξ2)‖)

ξ 2
1 + ξ 2

2

(
δm2,n2 – ψ

(
ξ1 – xi′–i

hx

)
ψ

(
ξ2 – yj′2–j2

hy

))
dξ1 dξ2

= Av,v
m2,n2 = bi,i′

j2,j′2
. (24)

According to (24), we have proved Bj1,j′1 = Bj2,j′2 if the block matrices Bj1,j′1 and Bj2,j′2 are on
the same diagonal.

Let i′3 – i3 = i′4 – i4 = k, –K ≤ k ≤ K , and let

m3 = (j – 1)(Nx – 1) + i3, 1 ≤ i3 ≤ Nx – 1, 1 ≤ j ≤ Ny – 1,

n3 =
(
j′ – 1

)
(Nx – 1) + i′3, 1 ≤ i′3 ≤ Nx – 1, 1 ≤ j′ ≤ Ny – 1,

m4 = (j – 1)(Nx – 1) + i4, 1 ≤ i4 ≤ Nx – 1, 1 ≤ j ≤ Ny – 1,

n4 =
(
j′ – 1

)
(Nx – 1) + i′4, 1 ≤ i′4 ≤ Nx – 1, 1 ≤ j′ ≤ Ny – 1.

(25)

Then we observe that

bi3,i′3
j,j′ = Av,v

m3,n3

=
∫

Bδ (0,0)

ξ 2
1 σ (‖(ξ1, ξ2)‖)

ξ 2
1 + ξ 2

2

(
δm3,n3 – ψ

(
ξ1 – xi′3–i3

hx

)
ψ

(
ξ2 – yj′–j

hy

))
dξ1 dξ2

=
∫

Bδ (0,0)

ξ 2
1 σ (‖(ξ1, ξ2)‖)

ξ 2
1 + ξ 2

2

(
δm4,n4 – ψ

(
ξ1 – xi′4–i4

hx

)
ψ

(
ξ2 – yj′–j

hy

))
dξ1 dξ2

= Av,v
m4,n4 = bi4,i′4

j,j′ . (26)

According to (26), we conclude that each block matrix Bj,j′ is a banded Toeplitz matrix.
Combining (24) and (26), we complete the proof. �

Corollary 1 The stiffness matrix A2N can be stored in O(N) memories.

Proof From the structure of A2N , we only prove that the block matrix Av,v
N can be stored

in O(N) memories. From Theorem 1 we can find that the matrix Av,v
N can be stored only
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by storing the following (2K + 1)-by-(2L + 1) entries:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

tv,v
–K ,–L · · · tv,v

–K ,0 · · · tv,v
–K ,L

...
. . .

...
. . .

...
tv,v
0,–L · · · tv,v

0,0 · · · tv,v
0,L

...
. . .

...
. . .

...
tv,v
K ,–L · · · tv,v

K ,0 · · · tv,v
K ,j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Hence, A2N can be stored in O(4 ∗ (2K + 1) ∗ (2L + 1)) = O(N) memories. �

Corollary 2 For any vector u ∈R
2N , the matrix-vector multiplication A2N u can be carried

out in O(N log N) operations.

Proof We divide the vector u in half. That is,

u =

(
u1

u2

)
, (28)

in which u1, u1 ∈ R
N . Therefore

A2N u =

(
Av,v

N Av,w
N

Av,w
N Aw,w

N

)(
u1

u2

)
=

(
Av,v

N u1 + Av,w
N u2

Av,w
N u1 + Aw,w

N u2

)
. (29)

Because of the BTTB structure of the matrices Av,v
N , Av,w

N , and Aw,w
N , the matrix-vector

multiplications Av,v
N u1, Av,w

N u2, Av,w
N u1, and Aw,w

N u2 can be computed in O(N log N) oper-
ations [19]. Accordingly, the total matrix-vector multiplication A2N u can be evaluated in
O(4N log N) = O(N log N) operations. �

4 A preconditioned fast Krylov subspace method
In the Krylov subspace iteration method, each iteration consists of matrix-vector multi-
plications and the related vector operations. Thus a fast Krylov subspace iteration method
can be developed due to the fast matrix-vector multiplication proved in the previous sec-
tion. It can reduce the computational work from O(N2) to O(N log N) per Krylov subspace
iteration. Furthermore, from Corollary 2, the memory requirement can also be reduced
from O(N2) to O(N). However, the number of iterations may still be large due to the singu-
larity of kernel function σ . Accordingly, we need to introduce an effective preconditioner
to reduce the number of iterations and the overall computational cost.

For a BTTB-type matrix A2N, a straightforward preconditioner can be chosen as

CF ,1 =

(
Cv,v

F ,1 Cv,w
F ,1

Cw,v
F ,1 Cw,w

F ,1

)
∈ R

2N , (30)
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where Cv,w
F ,1 = Cw,v

F ,1 and each matrix CI
F ,1 ∈ R

N×N , with I = (v, v), (v, w) or (w, w), is written
as [19–21]

CI
F ,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CI
0 · · · CI

L 0 · · · 0 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

CI
–L

. . . CI
0

. . . . . . 0
. . . . . . 0

0
. . . . . . CI

0
. . . . . . 0

. . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0
. . . 0

. . . . . . CI
0

. . . . . . 0

0
. . . . . . 0

. . . . . . CI
0

. . . CI
L

...
. . . . . . . . . . . . . . . . . . . . .

...
0 · · · 0 0 · · · 0 CI

–L · · · CI
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

in which the matrix block CI
l , with –L ≤ l ≤ L, is the Chan’s circulant matrix of the Toeplitz

matrix TI
l :

CI
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cI
0,l cI

1,l · · · cI
Nx–3,l cI

Nx–2,l

cI
–1,l cI

0,l
. . . . . . cI

Nx–3,l
...

. . . . . . . . .
...

cI
3–Nx ,l

. . . . . . cI
0,l cI

1,l
cI

2–Nx ,l cI
3–Nx ,l · · · cI

–1,l cI
0,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (32)

In (32), the diagonals of CI
l are given by

cI
–k,l =

⎧⎨
⎩

(Nx–1–k)tI
–k,l+ktI

Nx–1–k,l
Nx–1 , 0 ≤ k ≤ Nx – 2,

cI
1–Nx–k,l, 2 – Nx ≤ k < 0.

(33)

However, this preconditioner is not easy to invert. So we consider the following precon-
ditioner called BCCB-type preconditioner in this paper:

CF ,2 =

(
Cv,v

F ,2 Cv,w
F ,2

Cw,v
F ,2 Cw,w

F ,2

)
, (34)

where for I = (v, v), (v, w),or (w, w), CI
F ,2 represents the BCCB matrix of AI

N , and it can be
generated by CI

F ,1 defined in (31). More precisely, CI
F ,2 can be expressed as

CI
F ,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C̃I
0 C̃I

1 · · · C̃I
Ny–3 C̃I

Ny–2

C̃I
–1 C̃I

0
. . . . . . C̃I

Ny–3
...

. . . . . . . . .
...

C̃I
3–Ny

. . . . . . C̃I
0 C̃I

1

C̃I
2–Ny C̃I

3–Ny · · · C̃I
–1 C̃I

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)
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where each circulant matrix block is defined by

C̃I
–k =

⎧⎨
⎩

(Ny–1–k)CI
–k,l+kCI

Ny–1–k,l
Ny–1 , 0 ≤ k ≤ Ny – 2,

CI
1–Ny–k,l, 2 – Ny ≤ k < 0.

(36)

Let Fn be the n-order discrete Fourier transform matrix and I2 be the 2-order identity
matrix

I2 =

(
1 0
0 1

)
.

Let F2 = FNy–1 ⊗ FNx–1 be the two-dimensional discrete Fourier transform matrix and
F∗

2 = (FNy–1 ⊗ FNx–1)∗ be the two-dimensional inverse Fourier transform matrix. Then the
matrix CF ,2 can be decomposed into the following form:

CF ,2 = (I2 ⊗ F2)Λ
(
I2 ⊗ F∗

2
)

= (I2 ⊗ F2)

(
Λv,v Λv,w

Λw,v Λw,w

)(
I2 ⊗ F∗

2
)
. (37)

Here ΛI is a diagonal matrix in which the entries on the main diagonal are the eigenvalues
of the matrix CI

F ,2 for I = (v, v), (v, w), or (w, w). That is, ΛI can be written as

ΛI =

⎛
⎜⎜⎜⎜⎝

λI
1,1 0 · · · 0
0 λI

2,2 · · · 0
...

. . . . . .
...

0 0 · · · λI
N ,N

⎞
⎟⎟⎟⎟⎠ . (38)

To invert the matrix CF ,2 fast, we consider the computational cost of solving the linear
equation

CF ,2y = d (39)

for some d ∈R
2N .

Theorem 2 For any vector d ∈R
2N , linear system (39) can be solved in O(N log N) opera-

tions.

Proof Recall that the eigenvalues of CI
F ,2 can be computed in O(N log N) operations by

two-dimensional fast Fourier transform (2DFFT). Thus, the computation of Λ requires
O(N log N) operations. From (37), to inverse CF ,2 efficiently, we need to compute the in-
verse of Λ efficiently.

We introduce a permutation matrix P such that

P∗ΛP =

⎛
⎜⎜⎜⎜⎝

Λ̃1,1 0 · · · 0
0 Λ̃2,2 · · · 0
...

. . . . . .
...

0 0 · · · Λ̃N ,N

⎞
⎟⎟⎟⎟⎠ , (40)
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where for 1 ≤ k ≤ N ,

Λ̃k,k =

(
λ

v,v
k,k λ

v,w
k,k

λ
w,v
k,k λ

w,w
k,k

)
. (41)

Therefore, each matrix block Λ̃k,k with 1 ≤ k ≤ N is a 2-by-2 matrix. It requires O(1) op-
erations to inverse Λ̃k,k . Accordingly, the overall computational work to inverse the matrix
Λ is O(N) operations. To inverse the matrix CF ,2, we also have to compute (I2 ⊗ F2)u and
(I2 ⊗ F∗

2)u for some u ∈ R
2N . It requires O(N log N) operations by using 2DFFT and two-

dimensional inverse fast Fourier transform (2DIFFM).
More precisely, we give the following procedures to solve the linear system (39):
• Evaluate the matrix Λ by 2DFFT. Note that it needs to be computed only once before

the startup of the Krylov subspace iterative method. It requires O(N log N) operations.
• Divide the vector d in half. That is, d = [d1, d2]T , where d1, d2 ∈ R

N . Carry out the
2DFFTs z1 = F2d1 and z2 = F2d2. It requires O(N log N) operations.

• For 1 ≤ i ≤ N , we solve the matrix equation

Λ̃k,k

(
w1(i)
w2(i)

)
=

(
z1(i)
z2(i)

)
, (42)

where w1(i) and w2(i) are the ith elements of the vectors w1 and w2, respectively. It
requires O(N) operations.

• Carry out the two-dimensional inverse fast Fourier transform(2DIFFM) y1 = F∗
2w1

and y2 = F∗
2w2. Then we obtain the solution

y := [y1, y2]T . (43)

It requires O(N log N) operations.

�

5 Numerical experiments
In this section, we carry out some numerical experiments to investigate the performance
of the preconditioned fast collocation method with the BCCB-type preconditioner dis-
cussed in Sect. 3. In the numerical experiments, we consider the peridynamic model (1)
with the kernel function [15]

σ
(∣∣(x, y)

∣∣) =
1

(x2 + y2)1+s . (44)

Let Ω = (0, 1) × (0, 1). The radius of the horizon δ = 1/8. The exact solution u(x, y) =
(v(x, y), w(x, y)) is chosen to be

v(x, y) = w(x, y) = x(1 – x)y(1 – y), (x, y) ∈ Ω .

We also use v and w to define gv and gw on the boundary zone Ωc. The right-hand
side external forcing term f(x, y) is computed by polar coordinates transformation as fol-
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lows:

f v(x, y) =
3πδ2–2s

8 – 8s
(
y – y2) +

πδ2–2s

8 – 8s
(
3x + 2y – 4xy – x2 – 1

)
–

πδ4–2s

32 – 16s
,

f w(x, y) =
3πδ2–2s

8 – 8s
(
x – x2) +

πδ2–2s

8 – 8s
(
2x + 3y – 4xy – y2 – 1

)
–

πδ4–2s

32 – 16s
.

(45)

For simplicity, we choose hx = hy = h.
We solve linear equation (8) by the conjugate gradient squared method (CGS), the fast

conjugate gradient squared method (FCGS) without any preconditioners, and the fast con-
jugate gradient squared method with BCCB-type preconditioner (BCCB-FCGS). The fol-
lowing numerical experiments are performed on a computer with 8-GB memory. The
accuracy requirement for iteration termination is 10–8.

Example 1 In this numerical example, we choose s = 3/8 in (44). We present the L2 errors
of the numerical solutions generated by the CGS solver, the FCGS solver, and the BCCB-
FCGS solver for the mesh size from 1/24 to 1/29 in Table 1. We also present the CPU time
consumed by these solvers and the number of iterations in the iterative methods in Table 1.
In addition to the advantages of fast methods (FCGS and BCCB-FCGS) over traditional
method (CGS) in memory requirement and CPU time, we observe from Table 1 that the
BCCB-type preconditioner can significantly reduce the number of iterations and CPU
time in contrast to FCGS without any preconditioners. For example, while h is equal to 29,
the FCGS solver takes 455 iterations and nearly 3 hours of CPU time, but the BCCB solver
needs only 58 iterations and nearly 8 minutes of CPU time without any loss of accuracy.
However, while we carried out the numerical test with h = 1/210, we found a small increase
in L2 error. This small increase may be caused by singular integral when we calculate the
main-diagonal entries of Av,v, Av,w, and Aw,w.

In this numerical experiment, we also use a linear regression to fit the convergence rate
α and the associated constant Cα in the error estimate

‖u – uh‖L2(Ω) ≤ Cαhα . (46)

We also present these results in Table 1. We see that the convergence rate α is sublinear.

Example 2 We choose s = 0 in (44). We present the corresponding numerical results in
Table 2 as in Example 1. We have the similar observations as in Example 1. However, in
comparison with the results showed in Table 1, an improved accuracy of the numerical
solutions and a reduced number of iterations in these three iteration methods are observed
in Table 2.

6 Conclusions
Firstly, a fast bilinear collocation method for a static bond-based peridynamic model was
developed by reordering the unknowns, which is different from [18], and by carefully an-
alyzing the structure of the stiffness matrix. This work significantly reduces the compu-
tational work to solve the resulting linear system from O(N2) to O(N log N) per Krylov
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Table 1 Performance of CGS, FCGS, and BCCB-FCGS in Example 1

h ‖uh – u‖L2 # of iter. CPUs

CGS 1/24 3.2905× 10–2 46 0.1 s
1/25 2.3835× 10–2 85 1.28 s
1/26 1.4337× 10–2 140 33.57 s
1/27 7.4180× 10–3 215 >10 h
1/28 out of memory
1/29 out of memory

Cα = 0.26, α = 0.60

FCGS 1/24 3.2905× 10–2 47 0.95 s
1/25 2.3835× 10–2 85 4.5 s
1/26 1.4337× 10–2 140 22.2 s
1/27 7.4180× 10–3 215 2 m 38 s
1/28 5.8471× 10–3 302 13 m 50 s
1/29 2.4611× 10–3 455 2 h 58 m 13 s

Cα = 0.28, α = 0.73

BCCB-FCGS 1/24 3.2899× 10–2 20 1.08 s
1/25 2.3816× 10–2 28 2.2 s
1/26 1.4306× 10–2 36 9.8 s
1/27 7.3757× 10–3 44 32.8 s
1/28 5.8005× 10–3 51 2 m 3 s
1/29 2.4611× 10–3 58 7 m 48 s
1/210 2.7433× 10–3 76 1 h 13 m 16 s

Cα = 0.21, α = 0.66

Table 2 Performance of CGS, FCGS, and BCCB-FCGS in Example 2

h ‖uh – u‖L2 # of iter . CPUs

CGS 1/24 1.6387× 10–2 35 0.04 s
1/25 6.8624× 10–3 48 0.93 s
1/26 2.3722× 10–3 59 18.05 s
1/27 9.4000× 10–4 78 >10 h
1/28 out of memory
1/29 out of memory

Cα = 0.81, α = 1.39

FCGS 1/24 1.6387× 10–2 35 0.8 s
1/25 6.8624× 10–3 49 3.4 s
1/26 2.3722× 10–3 59 15.9 s
1/27 9.4000× 10–4 78 1 m 10 s
1/28 7.2921× 10–4 99 4 m 11 s
1/29 2.2423× 10–4 113 38 m 58 s

Cα = 0.41, α = 1.20

BCCB-FCGS 1/24 1.6374× 10–2 19 1 s
1/25 6.8154× 10–3 23 2.4 s
1/26 2.3057× 10–3 26 8.8 s
1/27 8.6494× 10–4 29 22.9 s
1/28 6.9507× 10–4 34 1 m 18 s
1/29 1.8282× 10–4 31 8 m 24 s
1/210 8.6238× 10–4 36 1 h 2 m 57 s

Cα = 0.13, α = 0.89

subspace iteration. It also reduces storage of the stiffness matrix from O(N2) to O(N).
However, the number of iterations in the Krylov subspace iteration method seems to be
large especially for the peridynamic model in which the kernel function has stronger sin-
gularity. In this paper, using the structure of the stiffness matrix, we construct an efficient
BCCB-type preconditioner to improve the performance of the convergence behavior of
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the fast collocation method. The numerical experiments show the efficiency of this pre-
conditioner.
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