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Abstract
Işık et al. (Mathematics 7:862, 2019) presented an interesting generalization of the
Banach contraction principle. In this paper, motivated by Işık et al., we give a new
extension of the well-known Darbo inequality in a Banach space. Our results provide
several generalizations of the Darbo inequality. As an application, we study the
existence of solutions for a system of functional integral equations in C[0, T ]. Finally,
we expose a genuine example to support the effectiveness of our results.

1 Introduction and preliminaries
The notion of a measure of noncompactness (MNC) was introduced by Kuratowski [13] in
1930. This concept is a very useful tool in functional analysis, for example, in metric fixed
point theory and operator equation theory in Banach spaces. This notion is also applied in
the study of existence of solutions for ordinary and partial differential equations, integral,
and integro-differential equations. For more details, we refer the reader to [2–6, 8, 9].

The aim of this paper is to generalize the Darbo’s fixed point theorem in Banach space
and study the existence of solutions for the following system of integral equations:

⎧
⎨

⎩

μ1(ι) = � (ι,μ1(ρ(ι)),μ2(ρ(ι)),
∫ �(ι)

0 g(ι,κ ,μ1(ρ(κ)),μ2(ρ(κ))) dκ),

μ2(ι) = � (ι,μ2(ρ(ι)),μ1(ρ(ι)),
∫ �(ι)

0 g(ι,κ ,μ2(ρ(κ)),μ1(ρ(κ))) dκ),
(1)

where ι ∈ [0, T].
We collect some notations and definitions applied throughout this paper. Let R denote

the set of real numbers, and let R+ = [0, +∞). Let (Λ,‖ · ‖) be a real Banach space. More-
over, by B(ι, r) we denote the closed ball centered at ι with radius r, and by Br the ball B(0, r).
For a nonempty subset � of Λ, we denote by � and Conv(�) the closure and the closed
convex hull of �, respectively. Furthermore, we denote by M(Λ) the family of nonempty
bounded subsets of Λ and by N (Λ) its subfamily consisting of all relatively compact sub-
sets of Λ.
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Definition 1.1 ([7]) A mapping χ : M(Λ) −→R+ is said to be a measure of noncompact-
ness in Λ if it satisfies the following conditions:

1◦ The family kerχ = {� ∈M(Λ) : χ (�) = 0} is nonempty, and kerχ ⊂N (Λ);
2◦ � ⊂ Y �⇒ χ (�) ≤ χ (Y );
3◦ χ (�) = χ (�);
4◦ χ (Conv�) = χ (�);
5◦ χ (λ� + (1 – λ)Y ) ≤ λχ (�) + (1 – λ)χ (Y ) for λ ∈ [0, 1];
6◦ If {�n} is a sequence of closed sets from M(Λ) such that �n+1 ⊂ �n for n = 1, 2, . . . ,

and if limn→∞ χ (�n) = 0, then �∞ =
⋂∞

n=1 �n �= ∅.

Two important theorems having a key role in the fixed point theory are the Schauder
fixed point principle and the Darbo fixed point theorem.

Theorem 1.2 ([1]) Let Ω be a nonempty, bounded, closed, and convex subset of a Banach
space Λ. Then each continuous compact map Υ : Ω → Ω has at least one fixed point in
the set Ω .

The following theorem is a generalization of the Schauder fixed point principle and the
Darbo fixed point theorem.

Theorem 1.3 ([10]) Let Ω be a nonempty, bounded, closed, and convex subset of a Banach
space Λ, and let Υ : Ω → Ω be a continuous mapping. Assume that there exists a constant
K ∈ [0, 1) such that χ (Υ �) ≤ Kχ (�) for any nonempty subset � of Ω , where χ is an MNC
defined in Λ. Then Υ has at least one fixed point in Ω .

Işık et al. [12] introduced the following generalization of the Banach contraction prin-
ciple, where substituting different functions f , we obtain a variety number of contractive
inequalities.

Theorem 1.4 Let (�, d) be a complete metric space, and let T : � → � be a continuous
self-mapping. Suppose that there exists a function f : R+ → R+ such that limt→0+ f (t) = 0,
f (0) = 0, and

d(Tx, Ty) ≤ f
(
d(x, y)

)
– f

(
d(Tx, Ty)

)
(2)

for all x, y ∈ �. Then T has a unique fixed point.

Let χ : M(Λ) −→R+ be a mapping defined by χ (X) = diam X, where diam X = sup{‖x –
y‖ : x, y ∈ X} is the diameter of X. We easily see that χ is a measure of noncompactness in
a Banach space E (see [7]). According to this measure of noncompactness, we can easily
observe that the Darbo fixed point theorem is a generalization of the Banach fixed point
theorem. Using this idea, we want to generalize the result of Işık et al. to a Banach space E.

2 Main results
Now we state one of the main results in this paper, which extends and generalizes the
Darbo fixed point theorem. In fact, motivated by the current work of Işık et al. [12], we
give a new extension of the well-known Darbo fixed point theorem in a Banach space. Our
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results provide several inequalities, which all are generalizations of the Darbo fixed point
theorem via substituting appropriate mappings instead of the control function f .

Theorem 2.1 Let Ω be a nonempty, bounded, closed, and convex (NBCC) subset of a Ba-
nach space Λ, and let Υ : Ω → Ω be a continuous operator such that

χ (Υ �) ≤ �
(
χ (�)

)
– �

(
χ (Υ �)

)
(3)

for all � ⊆ Ω , where � : [0,∞) → [0,∞) is such that limt→0+ � (t) = 0, � (0) = 0, and χ is
an arbitrary MNC. Then Υ has at least one fixed point in Ω .

Proof 2.2 Let {Ωn} be a sequence such that Ω0 = Ω and Ωn+1 = Conv(Υ (Ωn)) for all
n ∈N .

If there exists an integer N ∈ N such that χ (ΩN ) = 0, then ΩN is relatively compact,
and Theorem 1.2 implies that Υ has a fixed point. So, we assume that χ (ΩN ) > 0 for each
n ∈N .

It is clear that {Ωn}n∈N is a sequence of NBCC sets such that

Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ωn ⊇ Ωn+1.

Thus the sequence {� (χ (Ωn))} is nonincreasing. Since � is bounded below, there exists
L ∈R+ such that limn→∞ � (χ (Ωn)) = L.

We know that {χ (Ωn)}n∈N is a positive decreasing and bounded below sequence of real
numbers. Thus {χ (Ωn)}n∈N is a convergent sequence. Let limn→∞ χ (Ωn) = r.

In view of condition (3), we have

0 ≤ χ (Ωn+1) = χ (Υ Ωn) ≤ �
(
χ (Ωn)

)
– �

(
χ (Υ Ωn)

)

= �
(
χ (Ωn)

)
– �

(
χ (Ωn+1)

)
. (4)

Taking the limsup in this inequality, we have

lim sup
n→∞

χ (Ωn+1) ≤ lim sup
n→∞

�
(
χ (Ωn)

)
– lim inf

n→∞ �
(
χ (Ωn+1)

)
.

Therefore limn→∞ χ (Ωn) = 0. According to axiom (6◦) of Definition 1.1, we have that the
set Ω∞ =

⋂∞
n=1 Ωn is an NBCC set and is invariant under the operator Υ and belongs to

kerχ . Then in view of the Schauder theorem, Υ has a fixed point.

Remark 2.3 Note that Theorem 2.1 is a generalization of the Darbo fixed point theorem.
Since Υ : � → � is a Darbo mapping, there exists k ∈ [0, 1) such that

χ (Υ �) ≤ kχ (�)

for all � ⊆ Ω . Therefore

χ (Υ �) ≤ kχ (�) ≤ k
1 + k –

√
k
χ (�)
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for all � ⊆ Ω . Consequently,

kχ (Υ �) + (1 –
√

k)χ (Υ �) ≤ kχ (�),

and so

(1 –
√

k)χ (Υ �) ≤ kχ (�) – kχ (Υ �).

Therefore

χ (Υ �) ≤ k
1 –

√
k
χ (�) –

k
1 –

√
k
χ (Υ �).

Taking � (t) = k
1–

√
k

t, we have χ (Υ �) ≤ � (χ (�)) – � (χ (Υ �)) for all � ⊆ Ω . Thus the
Darbo inequality is a particular case of the contractive inequality of Theorem 2.1.

In the following corollaries, we provide examples of the function � for equation (3) in
Theorem 2.1 (the contractive inequality from Theorem 2.1) that have no Darbo constant k.

Taking � (t) = tet , for all t ≥ 0, we deduce the following corollary.

Corollary 2.4 Let Ω be an NBCC subset of a Banach space Λ, and let Υ : Ω → Ω be a
continuous operator such that

χ (Υ �)(1 + eχ (Υ �))
χ (�)eχ (�) ≤ 1 (5)

for all � ⊆ Ω , where χ is an arbitrary MNC. Then Υ has at least one fixed point in Ω .

Taking � (t) = sinh t for t ≥ 0, we deduce the following corollary.

Corollary 2.5 Let Ω be an NBCC subset of a Banach space Λ, and let Υ : Ω → Ω be a
continuous operator such that

χ (Υ �) ≤ 2 cosh
χ (�) + χ (Υ �)

2
sinh

χ (�) – χ (Υ �)
2

(6)

for all � ⊆ Ω , where χ is an arbitrary MNC. Then Υ has at least one fixed point in Ω .

Taking � (t) = cosh t – 1 for t ≥ 0, we deduce the following corollary.

Corollary 2.6 Let Ω be an NBCC subset of a Banach space Λ, and let Υ : Ω → Ω be a
continuous operator such that

χ (Υ �) ≤ 2 sinh
χ (�) + χ (Υ �) – 2

2
sinh

χ (�) – χ (Υ �)
2

(7)

for all � ⊆ Ω , where χ is an arbitrary MNC. Then Υ has at least one fixed point in Ω .

Taking � (t) = ln(1 + t) for t ≥ 0, we deduce the following corollary.
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Corollary 2.7 Let Ω be an NBCC subset of a Banach space Λ, and let Υ : Ω → Ω be a
continuous operator such that

eχ (Υ �) ≤ χ (�) + 1
χ (Υ �) + 1

(8)

for all � ⊆ Ω , where χ is an arbitrary MNC. Then Υ has at least one fixed point in Ω .

3 Coupled fixed point
Bhaskar and Lakshmikantham [11] have introduced the notion of a coupled fixed point
and proved some coupled fixed point theorems for some mappings and discussed the ex-
istence and uniqueness of solutions for periodic boundary value problems.

Definition 3.1 ([11]) An element (ι,κ) ∈ Λ2 is called a coupled fixed point of a mapping
Υ : Λ × Λ → Λ if Υ (ι,κ) = ι and Υ (κ , ι) = κ .

Theorem 3.2 ([8]) Suppose that χ1,χ2, . . . ,χn are measures of noncompactness in Banach
spaces Λ1,Λ2, . . . ,Λn, respectively. Moreover, assume that a function Υ : [0,∞)n −→ [0,∞)
is convex and such that Υ (ι1, . . . , ιn) = 0 if and only if ιi = 0 for i = 1, 2, . . . , n. Then

χ̃ (�) = Υ
(
χ1(�1),χ2(�2), . . . ,χn(�n)

)

defines a measure of noncompactness in Λ1 ×Λ2 ×· · ·×Λn, where �i denotes the natural
projection of � into Λi for i = 1, 2, . . . , n.

Theorem 3.3 Let Ω be an NBCC subset of a Banach space Λ, and let Υ : Ω × Ω → Ω be
a continuous function such that

χ
(
Υ (�1 × �2)

) ≤ 1
2
[
�

(
χ (�1) + χ (�2)

)]
– � (χ

(
Υ (�1 × �2)

)
(9)

for any subset �1, �2 of Ω , where χ is an arbitrary MNC, and � is as in Theorem 2.1. In
addition, we assume that � is a subadditive mapping. Then Υ has at least one coupled
fixed point.

Proof 3.4 We define the mapping Υ̃ : Ω2 → Ω2 by

Υ̃ (ι,κ) =
(
Υ (ι,κ),Υ (κ , ι)

)
.

It is clear that Υ̃ is continuous. We show that Υ̃ satisfies all the conditions of Theorem 2.1.
Let � ⊂ Ω2 be a nonempty subset. We know that χ̃ (�) = χ (�1) + χ (�2) is an MNC [7],
where �1 and �2 denote the natural projections of � into Λ. From (9) we have

χ̃
(
Υ̃ (�)

) ≤ χ̃
(
Υ (�1 × �2) × Υ (�2 × �1)

)

= χ
(
Υ (�1 × �2)

)
+ χ

(
Υ (�2 × �1)

)

≤ 1
2
[
�

(
χ (�1) + χ (�2)

)]
– �

(
χ

(
Υ (�1 × �2)

))
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+
1
2
[
�

(
χ (�2) + χ (�1)

)]
– �

(
χ

(
Υ (�2 × �1)

))

≤ �
(
χ (�1) + χ (�2)

)
–

[
�

(
χ

(
Υ (�1 × �2)

)
+ χ

(
Υ (�2 × �1)

))]

= �
(
χ̃ (�)

)
– �

(
χ̃

(
Υ̃ (�)

))
.

Now, from Theorem 2.1 we deduce that Υ̃ has at least one fixed point, which implies that
Υ has at least one coupled fixed point.

4 Application
In this section, as an application of Theorem 3.3, we study the existence of solutions for
the system of functional integral equations (1).

Let C[0, T] be the space of all real bounded continuous functions on the interval J =
[0, T] equipped with the standard norm

‖ι‖ = sup
{∣
∣ι(t)

∣
∣ : t ∈ [0, T]

}
.

Recall that the modulus of continuity of a function ι ∈ C[0, T] is defined by

ω(ι, ε) = sup
{∣
∣ι(t) – ι(s)

∣
∣ : t, s ∈ [0, T], |t – s| ≤ ε

}
.

The Hausdorff measure of noncompactness for all bounded sets Ω of C[0, T] is defined
as

χ (Ω) = lim
ε→0

{
sup
ι∈�

ω(ι, ε)
}

.

(For more detail, see [8].)

Theorem 4.1 Suppose that the following assumptions are satisfied:
(i) ρ and � : [0, T] −→ [0, T] are continuous functions.

(ii) The function � : [0, T] ×R3 −→R is continuous, and

max
{∣
∣� (ι,μ1,μ2,κ) – � (ι,ν1,ν2, z)

∣
∣,Γ

(∣
∣� (ι,μ1,μ2,κ) – � (ι,ν1,ν2, z)

∣
∣
)}

≤ 1
4
Γ

(|μ1 – ν1| + |μ2 – ν2|
)

+ |κ – z|,

where Γ : [0,∞) → [0,∞) is a continuous strictly increasing subadditive mapping
such that limt→0+ Γ (t) = 0 and Γ (0) = 0.

(iii) N := sup{|� (ι, 0, 0, 0)| : ι ∈ [0, T]}.
(iv) g : [0, T] × [0, T] ×R2 −→R is continuous, and

G := sup

{∣
∣
∣
∣

∫ �(ι)

0
g
(
ι,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

∣
∣
∣
∣ :

ι,κ ∈ [0, T],μ1,μ2,∈ C
(
[0, T]

)
}

.
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(v) There exists a positive solution r0 to the inequality

(
Γ (2r)

4
+ G

)

+ N ≤ r.

Then the system of integral equations (1) has at least one solution in the space (C[0, T])2.

Proof 4.2 Let us consider the operator

Υ : C[0, T] × C[0, T] −→ C[0, T]

defined by

Υ (μ1,μ2)(ι) = �

(

ι,μ1
(
ρ(ι)

)
,μ2

(
ρ(ι)

)
,
∫ �(ι)

0
g
(
ι,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

.

We observe that for any ι ∈ [0, T], the function Υ (μ1,μ2)(ι) is continuous. For arbitrary
fixed ι ∈ [0, T], by assumptions (i)–(iii) we have

∣
∣Υ (μ1,μ2)(ι)

∣
∣

≤
∣
∣
∣
∣�

(

ι,μ1
(
ρ(ι)

)
,μ2

(
ρ(ι)

)
,
∫ �(ι)

0
g
(
ι,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– � (ι, 0, 0, 0)
∣
∣
∣
∣

+
∣
∣� (ι, 0, 0, 0)

∣
∣

≤ Γ (|μ1(ρ(ι))| + |μ2(ρ(ι))|)
4

+
∣
∣
∣
∣

∫ �(ι)

0
g
(
ι,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

∣
∣
∣
∣ +

∣
∣� (ι, 0, 0, 0)

∣
∣

≤ Γ (‖μ1‖ + ‖μ2‖)
4

+ G + N .

Therefore

∥
∥Υ (μ1,μ2)

∥
∥ ≤ Γ (‖μ1‖ + ‖μ2‖)

4
+ G + N . (10)

By inequality (10) and (iv), Υ is a function from (B̄r0 )2 into (B̄r0 ).
Now we prove that the operator Υ is a continuous operator on (B̄r0 )2. Let us fix arbitrary

ε > 0 and take (μ1,μ2), (ν1,ν2) ∈ (B̄r0 )2 such that max{‖μ1 – ν1‖,‖μ2 – ν2‖} < ε. Then for
all ι ∈ J , we have

∣
∣Υ (μ1,μ2)(ι) – Υ (ν1,ν2)(ι)

∣
∣

=
∣
∣
∣
∣�

(

ι,μ1
(
ρ(ι)

)
,μ2

(
ρ(ι)

)
,
∫ �(ι)

0
g
(
ι,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– f
(

ι,ν1
(
ρ(ι)

)
,ν2

(
ρ(ι)

)
,
∫ �(ι)

0
g
(
ι,κ ,ν1

(
ρ(κ)

)
,ν2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

≤ Γ (|μ1(ρ(ι)) – ν1(ρ(ι))| + |μ2(ρ(ι)) – ν2(ρ(ι))|)
4

+
∫ �(ι)

0

∣
∣g

(
ι,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
– g

(
ι,κ ,ν1

(
ρ(κ)

)
,ν2

(
ρ(κ)

))∣
∣dκ
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≤
(

Γ (2ε)
4

+ �(T)ωT (g, ε)
)

,

where

ωT (g, ε) = sup
{∣
∣g(ι,κ ,μ1,μ2) – g(ι,κ ,ν1,ν2)

∣
∣ : ι ∈ J ,κ ∈ [

0,�(T)
]
,

μ1,μ2,ν1,ν2 ∈ [–r0, r0], max
{‖μ1 – ν1‖,‖μ2 – ν2‖

}
< ε

}

and

�(T) = sup
{
�(ι) : ι ∈ J

}
.

Applying the continuity of g on J × [0,�(T)] × [–r0, r0]2, we have ωT (g, ε) → 0 as ε → 0,
which implies that Υ is a continuous function on (B̄r0 )2.

Now we prove that Υ satisfies the conditions of Theorem 3.3. To this end, let �1 and
�2 are nonempty and bounded subsets of B̄r0 and let ε > 0 be an arbitrary constant. Let
ι1, ι2 ∈ [0, T] with |ι2 – ι1| ≤ ε, and let (μ1,μ2) ∈ �1 × �2. Then we have

∣
∣Υ (μ1,μ2)(ι1) – Υ (μ1,μ2)(ι2)

∣
∣

≤
∣
∣
∣
∣�

(

ι1,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣, (11)

where
∣
∣
∣
∣�

(

ι1,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

≤
∣
∣
∣
∣�

(

ι1,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

+
∣
∣
∣
∣�

(

ι2,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

+
∣
∣
∣
∣�

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

+
∣
∣
∣
∣�

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣. (12)
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By condition (ii) we have

∣
∣Υ (μ1,μ2)(ι1) – Υ (ν1,ν2)(ι2)

∣
∣

≤ ωr0 (� , ε) +
Γ (|μ1(ρ(ι1)) – μ1(ρ(ι2))| + |μ2(ρ(ι1)) – μ2(ρ(ι2))|)

4

+
∣
∣
∣
∣

∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ –

∫ �(ι2)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ �(ι2)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ –

∫ �(ι2)

0
g
(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

∣
∣
∣
∣

≤ ωr0,G(� , ε) +
Γ (ω(μ1,ω(ρ, ε)) + ω(μ2,ω(ρ, ε)))

4

+
∣
∣
∣
∣

∫ �(ι2)

�(ι1)
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

∣
∣
∣
∣

+
∫ �(ι2)

0

∣
∣g

(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
– g

(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))∣
∣dκ

≤ ωr0,G(� , ε) +
Γ (ω(μ1,ω(ρ, ε)) + ω(μ2,ω(ρ, ε))

4
+ �(T)ωr0 (g, ε)

+ Ur0ω(�, ε). (13)

By condition (ii) we have

∣
∣Υ (μ1,μ2)(ι1) – Υ (ν1,ν2)(ι2)

∣
∣

≤ ωr0 (� , ε) +
Γ (|μ1(ρ(ι1)) – μ1(ρ(ι2))| + |μ2(ρ(ι1)) – μ2(ρ(ι2))|)

4

+
∣
∣
∣
∣

∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ –

∫ �(ι2)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ �(ι2)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ –

∫ �(ι2)

0
g
(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

∣
∣
∣
∣

≤ ωr0,G(� , ε) +
Γ (ω(μ1,ω(ρ, ε)) + ω(μ2,ω(ρ, ε)))

4

+
∣
∣
∣
∣

∫ �(ι2)

�(ι1)
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

∣
∣
∣
∣

+
∫ �(ι2)

0

∣
∣g

(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
– g

(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))∣
∣dκ

≤ ωr0,G(� , ε) +
Γ (ω(μ1,ω(ρ, ε)) + ω(μ2,ω(ρ, ε))

4
+ �(T)ωr0 (g, ε)

+ Ur0ω(�, ε), (14)

where

ω(ρ, ε) = sup
{∣
∣ρ(ι2) – ρ(ι1)

∣
∣ : ι1, ι2 ∈ J , |ι2 – ι1| ≤ ε

}
,

ω
(
μ1,ω(ρ, ε)

)
= sup

{∣
∣μ1(ι2) – μ1(ι1)

∣
∣ : ι1, ι2 ∈ J , |ι2 – ι1| ≤ ω(ρ, ε)

}
,

�(T) = sup
{
�(ι) : ι ∈ J

}
,
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Ur0 = sup
{∣
∣g(ι,κ ,μ1,μ2)

∣
∣ : ι ∈ J ,κ ∈ [

0,�(T)
]
,μ1,μ2 ∈ [–r0, r0]

}
,

G = �(T) sup
{∣
∣g(ι,κ ,μ1,μ2)

∣
∣ : ι ∈ J ,κ ∈ [

0,�(T)
]
,μ1,μ2 ∈ [–r0, r0]

}
,

ωr0,G(� , ε) = sup
{∣
∣f (ι2,μ1,μ2, z) – f (ι1,μ1,μ2, z)

∣
∣ : ι1, ι2 ∈ J ,

|ι2 – ι1| ≤ ε,μ1,μ2 ∈ [–r0, r0], z ∈ [–G, G]
}

,

ωr0 (g, ε) = sup
{∣
∣g(ι2,κ ,μ1,μ2) – g(ι1,κ ,μ1,μ2)

∣
∣ : ι1, ι2 ∈ J ,

|ι2 – ι1| ≤ ε,μ1,μ2 ∈ [–r0, r0],κ ∈ [
0,�(T)

]}
.

Since (μ1,μ2) was an arbitrary element of �1 × �2 in (11), we have

ω
(
Υ (�1 × �2), ε

)

≤ ωr0,G(� , ε) +
Γ (ω(μ1,ω(ρ, ε)) + ω(μ2,ω(ρ, ε))

4
+ �(T)ωr0 (g, ε) + Ur0ω(�, ε).

On the other hand,

Γ
(∣
∣Υ (μ1,μ2)(ι1) – Υ (μ1,μ2)(ι2)

∣
∣
)

≤ Γ

(∣
∣
∣
∣�

(

ι1,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

)

, (15)

where

Γ

(∣
∣
∣
∣�

(

ι1,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

)

≤ Γ

(∣
∣
∣
∣�

(

ι1,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

)

+ Γ

(∣
∣
∣
∣�

(

ι2,μ1
(
ρ(ι1)

)
,μ2

(
ρ(ι1)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

)

+ Γ

(∣
∣
∣
∣�

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι1)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

)

+ Γ

(∣
∣
∣
∣�

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)

– �

(

ι2,μ1
(
ρ(ι2)

)
,μ2

(
ρ(ι2)

)
,
∫ �(ι2)

0
g
(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

)∣
∣
∣
∣

)

. (16)
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By condition (ii) we have

Γ
(∣
∣Υ (μ1,μ2)(ι) – Υ (ν1,ν2)(ι)

∣
∣
)

≤ Γ
(
ωr0,G(� , ε)

)
+

Γ (ω(μ1,ω(ρ, ε)) + ω(μ2,ω(ρ, ε)))
4

+
∣
∣
∣
∣

∫ �(ι2)

�(ι1)
g
(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
dκ

∣
∣
∣
∣

+
∫ �(ι2)

0

∣
∣g

(
ι1,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))
– g

(
ι2,κ ,μ1

(
ρ(κ)

)
,μ2

(
ρ(κ)

))∣
∣dκ

≤ Γ
(
ωr0,G(� , ε)

)
+

Γ (ω(μ1,ω(ρ, ε)) + ω(μ2,ω(ρ, ε))
4

+ �(T)ωr0 (g, ε)

+ Ur0ω(�, ε). (17)

Therefore we find that

Γ
(
ω

(
Υ (�1 × �2), ε

))

≤ Γ
(
ωr0,G(� , ε)

)
+

Γ (ω(μ1,ω(ρ, ε)) + ω(μ2,ω(ρ, ε))
4

+ �(T)ωr0 (g, ε) + Ur0ω(�, ε).

According to the uniform continuity of f and g on the compact sets

[0, T] × [–r0, r0] × [–r0, r0] × [–G, G]

and

[0, T] × [
0,�(T)

] × [–r0, r0] × [–r0, r0],

respectively, we infer that ωr0,G(f , ε) −→ 0, ωr0 (g, ε) −→ 0 and ω(�, ε) −→ 0 as ε −→ 0.
From the above inequalities, according to the subadditivity of Γ , we obtain that

Γ
(
χ

[
Υ (�1 × �2)

])
+ χ

[
Υ (�1 × �2)

] ≤ Γ (χ (�1) + χ (�2))
2

.

Thus from Theorem 3.3 we obtain that the operator Υ has a coupled fixed point. Therefore
the system of functional integral equations (1) has at least one solution in (C[0, T])2.

5 Example
Example 5.1 Consider the following system of integral equations:

⎧
⎨

⎩

ι(t) = –2 + 1
2 e–t2 + arctan(ι(t)+κ(t))

8π+t8 + 1
8
∫ t

0 e–2t+s arctan(ι(s) + κ(s)) ds,

κ(t) = –2 + 1
2 e–t2 + arctan(ι(t)+κ(t))

8π+t8 + 1
8
∫ t

0 e–2t+s arctan(ι(s) + κ(s)) ds.
(18)

We observe that this system of integral equations (18) is a particular case of (1) with

ρ(t) = �(t) = t, t ∈ [0, 1],
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� (t, ι,κ , p) = –2 +
1
2

e–t2
+

arctan(ι(t) + κ(t))
8π + t8 +

p
8

,

g(t, s, ι,κ) = e–2t+s arctan
(
ι(s) + κ(s)

)
.

To solve this system, we need to verify conditions (i)–(v) of Theorem 4.1.
Condition (i) is clearly evident since

∣
∣� (t, ι,κ , m) – � (t, u, v, n)

∣
∣ ≤ | arctan(ι + κ) – arctan(u + v)|

8π + t8 +
|m – n|

8

≤ arctan |(ι + κ) – (u + v)|
8π + t8 ) + |m – n|

≤ arctan(|ι – u| + |κ – v|)
4

+ |m – n|

=
Γ (|ι – u| + |κ – v|)

4
+ |m – n| (19)

and

Γ
(∣
∣� (t, ι,κ , m) – � (t, u, v, n)

∣
∣
)

= arctan

( | arctan(ι + κ) – arctan(u + v)|
8π + t8 +

|m – n|
8

)

≤ arctan

(
arctan |(ι + κ) – (u + v)|

8π + t8

)

+ |m – n|

≤ arctan(|ι – u| + |κ – v|)
4

+ |m – n|

=
Γ (|ι – u| + |κ – v|)

4
+ |m – n|. (20)

So we can find that � satisfies condition (ii) of Theorem 4.1 with Γ (t) = arctan(t). Also,

N = sup
{∣
∣� (t, 0, 0, 0)

∣
∣ : t ∈ [0, 1]

}
= sup

{

–2 +
1
2

e–t2 : t ∈ [0, 1]
}

= –1.5.

Moreover, g is continuous on [0, T] × [0, T] ×R2, and

G = sup

{∣
∣
∣
∣

∫ t

0
e–2t+s arctan

(
ι(s) + κ(s)

)
ds

∣
∣
∣
∣ :

t, s ∈ [0, 1], ι,κ ∈ C[0, 1]
}

< sup 1.1 × 1 × (
et – 1

) � 1.8901100113.

Furthermore, it is easy to see that any r ≥ 0.6238 satisfies the inequality in condition (iv),
that is,

arctan(2r)
4

+ G + N =
arctan(2r)

4
+ 1.9 – 1.5 ≤ r.

Consequently, all the conditions of Theorem 4.1 are satisfied. Hence the system of integral
equations (18) has at least one solution that belongs to the space C[0, 1] × C[0, 1].
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