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1 Introduction
The studies of one-variable hypergeometric functions are more than 200 years old. These
functions appear in the works of Euler, Gauss, Riemann, and Kummer (see [2]). Their in-
tegral representations were studied by Barnes and Mellin, and their special properties by
Schwarz and Goursat. The famous Gauss hypergeometric equation is ubiquitous in math-
ematical physics, engineering, and mathematical sciences as many well-known partial dif-
ferential equations may be reduced to the Gauss equation via separation of variables (see,
e.g., [3–6]). Especially, in the last two decades, several generalizations of the well-known
special functions have been studied by many mathematicians. This fact has inspired many
mathematicians for investigations of several generalizations of hypergeometric functions.

Recently, many authors (see, e.g., [1, 7–14]) proposed extensions of the classical gener-
alized hypergeometric functions to the matrix framework. Particularly, the Wright hyper-
geometric matrix functions of one variable and incomplete Wright Gauss hypergeometric
matrix functions by using the Pochhammer matrix symbol are investigated in [1]. Moti-
vated mainly by this work, here we introduce the matrix functions R(w; A, B;ν;λ), w,ν,λ ∈
C, and R(w; A, B; –μ;λ), w,μ,λ ∈C, for parameter matrices A and B by applying fractional
operators to the Wright hypergeometric matrix function and some their properties.

The outline of the paper is as follows. Section 2 gives some elementary definitions and
notions of this work. In Sect. 3, we obtain the matrix functions R(w; A, B;ν;λ), w,ν,λ ∈C,
and R(w; A, B; –μ;λ), w,μ,λ ∈ C, for parameter matrices A and B by using fractional oper-
ators. We also discuss some properties of these functions. Matrix recurrence relations of
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the Wright hypergeometric matrix function 2R(τ )
1 (A, B; C; z), z ∈C, for parameter matrices

A, B, and C and some particular cases are given in Sect. 4. In Sect. 5, we establish some
(presumably) new integral representations of the Wright hypergeometric matrix function
2R(τ )

1 (A, B; C; z). Finally, some concluding remarks are presented in Sect. 6.

2 Notations and definitions
Let C

N×N denote the vector space containing all square matrices with N rows and N
columns with complex number entries, and let R(z) and I(z) denote the real and imag-
inary parts of a complex number z, respectively. For any matrix A in C

N×N , σ (A) is the
spectrum of A, the set of all eigenvalues of A, and

α(A) = max
{
R(z) : z ∈ σ (A)

}
, β(A) = min

{
R(z) : z ∈ σ (A)

}
, (1)

where α(A) is referred to as the spectral abscissa of A, and α(–A) = –β(A). The square
matrix A is said to be positive stable if β(A) > 0. By I and 0 we denote the identity matrix
and the null matrix in C

N×N , respectively. If f (z) and g(z) are holomorphic functions of
the complex variable z defined in an open subset Ω of the complex plane and A is a matrix
in C

N×N such that σ (A) ⊂ Ω , then from the properties of the matrix functional calculus
(see [9, 15–17]) it follows that

f (A)g(A) = g(A)f (A).

Furthermore, if B in C
N×N is a matrix for which σ (B) ⊂ Ω and if AB = BA, then

f (A)g(B) = g(B)f (A).

The reciprocal gamma function denoted by Γ –1(z) = 1
Γ (z) is an entire function of the

complex variable z. Then the image of Γ –1(z) acting on P, denoted by Γ –1(A), is a well-
defined matrix (see [18]).

The gamma matrix function Γ (A) and the beta matrix function B(A, B) have been de-
fined in [9] as follows:

Γ (A) =
∫ ∞

0
e–ttA–I dt, tA–I = exp

(
(A – I) ln t

)
, (2)

and

B(A, B) =
∫ 1

0
tA–I(1 – t)B–I dt. (3)

By application of the matrix functional calculus, for A inC
N×N (see [9]) the Pochhammer

symbol or shifted factorial is defined by

(A)n =

⎧
⎨

⎩
A(A + I) · · · (A + (n – 1)I) = Γ –1(A)Γ (A + nI), n ≥ 1,

I, n = 0,
(4)
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under the condition that

A + nI is invertible for all integers n ≥ 0. (5)

Let A and B be commuting matrices in C
N×N such that the matrices A + nI , B + nI , and

A + B + nI are invertible for every integer n ≥ 0. Then we have [9]

B(A, B) = Γ (A)Γ (B)
[
Γ (A + B)

]–1. (6)

Definition 2.1 (see [12]) Let p and q be finite positive integers. Then the generalized
hypergeometric matrix function is given by the matrix power series

F(Ai, Bj; z) =
∑

n≥0

p∏

i=1

(Ai)n

q∏

j=1

[
(Bj)n

]–1 zn

n!
(
p = q + 1, |z| < 1

)
(7)

for commutative matrices Ai, 1 ≤ i ≤ p, and Bj, 1 ≤ j ≤ q, in C
N×N such that

Bj + nI are invertible for all integers n ≥ 0.

If p = 2 and q = 1, then (7) reduces to the Gauss hypergeometric matrix function (see
[7])

2F1(A1, A2; B1; z) =
∞∑

n=0

(A1)n(A2)n
[
(B1)n

]–1 zn

n!
. (8)

Definition 2.2 ([1]) Let A, B, and C be positive stable matrices in C
N×N satisfying condi-

tion (5). Then the Wright hypergeometric matrix function is defined by

2R(τ )
1 (A, B; C; z) := Γ –1(B)Γ (C)

∞∑

n=0

(A)nΓ
–1(C + τnI)Γ (B + τnI)

zn

n!
, (9)

where τ ∈R+ = (0,∞).

Remark If τ = 1, then (9) reduces to the well-known hypergeometric matrix function 2F1

defined in (8).

Theorem 2.1 ([1]) Let A, B, and C be positive stable matrices in C
N×N such that

β(C) – α(A) – α(B) > 0. (10)

Then the series 2R(τ )
1 (A, B; C; z) defined in (9) converges absolutely for |z| = 1, where τ ∈

R+ = (0,∞).

The Riemann–Liouville fractional integral of order ν such that Re(ν) > 0 is defined as
[16, 19, 20]

(
Iν f

)
(w) =

1
Γ (ν)

∫ w

0
(w – u)ν–1f (u) du, (11)
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and the fractional differential operator of order μ such that Re(μ) > 0 is defined as

Dμf (w) = In–μDnf (w), D =
d

dw
, (12)

where n is the smallest integer such that n > Re(μ).

Lemma 2.1 ([1, 15, 16]) Let A be a positive stable matrix in C
N×N Then the Riemann–

Liouville fractional integral of order ν such that Re(ν) > 0 can be written as

Iν
(
wA–I) = Γ (A)Γ –1(A + νI)wA+(ν–1)I . (13)

The Laplace transform of the function f (ζ ) is defined as [21]

L
{

f (ζ )
}

=
∫ ∞

0
e–sζ f (ζ ) dζ , Re(s) > 0. (14)

3 Fractional operators and the Wright-type hypergeometric matrix function
Consider the matrix function

f (w) = Γ –1(B)
∞∑

k=0

Γ (B + kI)
(A)k(λw)k

(k!)2

= 2F1(A, B; I;λw), w,λ ∈C, |λw| < 1, (15)

where A and B are positive stable matrices in C
N×N such that

B + nI are invertible for all integers n ≥ 0.

Applying the fractional integral operator (11) of order ν to f (w), we get

Iν f (w) =
1

Γ (ν)

∫ w

0

(
(w – u)ν–1f (u)

)
du

=
1

Γ (ν)

∫ w

0

(

(w – u)ν–1Γ –1(B)
∞∑

k=0

Γ (B + kI)
(A)k(λu)k

(k!)2

)

du

=
wν

Γ (ν + 1)

{

Γ (ν + 1)Γ –1(B)
∞∑

k=0

Γ (B + kI)
(A)k(λw)k

Γ (ν + 1 + k)k!

}

,

which we can easily write in the following form:

wν

Γ (ν + 1) 2R(1)
1

(
A, B; (ν + 1)I;λw

)
(τ = 1)

=
wν

Γ (ν + 1) 2F1
(
A, B; (ν + 1)I;λw

)
. (16)

Here we denote (16) as R(w; A, B;ν;λ), that is,

R(w; A, B;ν;λ) =
wν

Γ (ν + 1) 2R(1)
1

(
A, B; (ν + 1)I;λw

)
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=
wν

Γ (ν + 1) 2F1
(
A, B; (ν + 1)I;λw

)
. (17)

Now, applying the fractional differential operator (12) of order μ to f (w) defined in (15),
we get

Dμf (w) =
(

d
dw

)n
(

In–μΓ –1(B)
∞∑

k=0

Γ (B + kI)
(A)k(λw)k

(k!)2

)

= Dn

[

wn–μΓ –1(B)

{ ∞∑

k=0

Γ (B + kI)
(A)k(λw)k

Γ (1 + n – μ + k)k!

}]

,

which yields

Dμf (w) =
w–μ

Γ (1 – μ) 2R(1)
1

(
A, B; (1 – μ)I;λw

)
(τ = 1)

=
w–μ

Γ (1 – μ) 2F1
(
A, B; (1 – μ)I;λw

)
. (18)

We denote (18) as

R(w; A, B; –μ;λ) =
w–μ

Γ (1 – μ) 2R(1)
1

(
A, B; (1 – μ)I;λw

)

=
w–μ

Γ (1 – μ) 2F1
(
A, B; (1 – μ)I;λw

)
. (19)

3.1 Some properties of R(w; A, B;ν;λ) and R(w; A, B; –μ;λ)
In this subsection, we study some of the main properties of the matrix functions
R(w; A, B;ν;λ) and R(w; A, B; –μ;λ) by the following theorems.

Theorem 3.1 Let A and B be positive stable matrices in C
N×N with B + nI invertible for

all integers n ≥ 0, and let λ,ν,μ ∈C be such that |λw| < 1 and Re(μ) < 1. Then

IγR(w; A, B;ν;λ) = R(w; A, B;ν + γ ;λ), (20)

DγR(w; A, B;ν;λ) = R(w; A, B;ν – γ ;λ), (21)

IγR(w; A, B; –μ;λ) = R(w; A, B;γ – μ;λ), (22)

DγRw(A, B;ν;λ) = R
(
w; A, B; –(γ + μ);λ

)
. (23)

Proof From (11) and the left-hand side of (20) we get

IγR(w; A, B;ν;λ) =
1

Γ (γ )

∫ w

0
(w – u)γ –1R(u; A, B;ν;λ) du

=
1

Γ (γ )

∫ w

0
(w – u)γ –1

(
uν

Γ (ν + 1) 2R(1)
1 (A, B;ν + 1;λu)

)
du

=
1

Γ (γ )

∫ w

0
(w – u)γ –1

(

uνΓ –1(B)
∞∑

k=0

(A)kΓ (B + Ik)(λu)k

Γ (ν + 1 + k)k!

)

du.



Abdalla Advances in Difference Equations        (2020) 2020:246 Page 6 of 14

Putting u = zw, it follows that

IγRw(A, B;ν;λ)

=
1

Γ (γ )

∫ 1

0
(1 – z)γ –1wγ –1

(

(zw)νΓ –1(B)
∞∑

k=0

(A)kΓ (B + Ik)(λzw)k

Γ (ν + 1 + k)k!

)

w dz

=
wγ +ν

Γ (γ + ν + 1) 2R(1)
1 (A, B;γ + ν + 1;λw) = R(w; A, B;γ + ν;λ).

This is the proof of (20).
From (12) and the left-hand side of (21) we obtain

DγR(w; A, B;ν;λ) = Dn(In–γR(w; A, B;ν;λ)
)

= Dn(R(w; A, B; n – γ + ν;λ)
)

= Dn
(

wn–γ +ν

Γ (n – γ + ν + 1) 2R(1)
1 (A, B; n – γ + ν + 1;λw)

)

=
wν–γ

Γ (ν – γ + 1) 2R(1)
1 (A, B;ν – γ + 1;λw)

= R(w; A, B;ν – γ ;λ), (24)

which is (21).
Also, from (11) and the left-hand side of (22) we get

IγR(w; A, B; –μ;λ) =
1

Γ (γ )

∫ w

0
(w – u)γ –1R(u; A, B; –μ;λ) du

=
1

Γ (γ )

∫ w

0
(w – u)γ –1

(

u–μΓ –1(B)
∞∑

k=0

(A)kΓ (B + Ik)(λu)k

Γ (1 – μ + k)k!

)

du,

which, upon substituting u = zw, yields

IγR(w; A, B; –μ;λ)

=
1

Γ (γ )

∫ 1

0
(1 – z)γ –1wγ –1

(

(zw)–μΓ –1(B)
∞∑

k=0

(A)kΓ (B + Ik)(λzw)k

Γ (1 – μ + k)k!

)

w dx

=
wγ –μ

Γ (γ – μ + 1) 2R(1)
1 (A, B;γ – μ + 1;λw) = R(w; A, B;γ – μ;λ).

This is the proof of (22). From (12) and the left-hand side of (23) we get

DγR(w; A, B; –μ;λ) = Dn(In–γR(w; A, B; –μ;λ)
)

= Dn(R(w; A, B; n – γ – μ;λ)
)

= Dn
(

wn–γ –μ

Γ (n – γ – μ + 1) 2R(1)
1 (A, B; n – γ – μ + 1;λw)

)

=
w–μ–γ

Γ (–μ – γ + 1) 2R(1)
1 (A, B; –μ – γ + 1;λw)
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= R(w; A, B; –μ – γ ;λ),

which leads to (24). �

Theorem 3.2 Let C be a positive stable matrix in C
N×N . Then the Laplace transforms of

R(w; –nI, C + (n – 1)I;ν;λ) and R(w; –nI, C + (n – 1)I; –μ;λ) are given as

L
{
R

(
w; –nI, C + (n – 1)I;ν;λ

)}
=

1
sν+1 Yn(C;λ, –s), (25)

L
{
R

(
w; –nI, C + (n – 1)I; –μ;λ

)}
=

1
sμ–1 Yn(C;λ, –s), (26)

where Yn(C;λ, –s) is the generalized Bessel matrix polynomial [9], and n ∈ N.

Proof For n ∈N, replacing A by nI and B by C + (n – 1)I in R(w; A, B;ν;λ) and then taking
the Laplace transform of (17) yield

L
{
R

(
w; –nI, C + (n – 1)I;ν;λ

)}

= L
{

wν

Γ (ν + 1) 2R(1)
1

(
–nI, C + (n – 1)I;ν + 1;λw

)}

=
∫ ∞

0
e–sw

{
wν

Γ (ν + 1) 2R(1)
1

(
–nI, C + (n – 1)I;ν + 1;λw

)}
dw

=
1

sν+1

n∑

k=0

(–nI)k(C + (n – 1)I)k

k!

(
λ

s

)k

=
1

sν+1 2F0

(
–nI, C + (n – 1)I; –; –

λ

(–s)

)
=

1
sν+1 Yn(C;λ, –s).

This proves (25). Further,

L
{
R

(
w; –nI, C + (n – 1)I; –μ;λ

)}

= L
{

w–μ

Γ (1 – μ) 2R(1)
1

(
–nI, C + (n – 1)I; 1 – μ;λw

)}

=
∫ ∞

0
e–sw

{
w–μ

Γ (1 – μ) 2R(1)
1

(
–nI, C + (n – 1)I; 1 – μ;λw

)}
dw

=
1

s1–μ

n∑

k=0

(–nI)k(C + (n – 1)I)k

k!

(
λ

s

)k

=
1

s1–μ 2F0

(
–nI, C + (n – 1)I; –; –

λ

(–s)

)
=

1
s1–μ

Yn(C;λ, –s).

This is the proof of (26). �

From Theorems 3.1 and 3.2 we can obtain the following particular cases:
1. Taking A = a ∈C

1×1 and B = b ∈C
1×1 in Theorem 3.1, we get the classical results for

the generalized hypergeometric function [22].
2. Choosing C = c ∈C

1×1 in Theorem 3.2, we get the classical results for the generalized
hypergeometric function [22].
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4 Recurrence relation of 2R(τ )
1 (A, B; C; z)

In this section, we give a matrix recurrence relation of Wright hypergeometric matrix
function in the following theorem.

Theorem 4.1 Let A and B be positive stable matrices in C
N×N with B + nI invertible for

all integers n ≥ 0 and |z| < 1. Then

(s + 1)2R(τ )
1

(
A, B; (s + 1)I; z

)
– 2R(τ )

1
(
A, B; (s + 2)I; z

)

=
{

τ 2

(s + 2)

}
z2 d2

dz2

(
2R(τ )

1
(
A, B; (s + 3)I; z

))
+ z

τ

(s + 2)
{
τ + 2(s + 1)

}

× d
dz

(
2R(τ )

1
(
A, B; (s + 3)I; z

))
+ s2R(τ )

1
(
A, B; (s + 3)I; z

)
, Re(s) > 0. (27)

Proof Applying the fundamental relation of the gamma matrix function in (2) to (9), we
can write

2R(τ )
1

(
A, B; (s + 1)I; z

)
= Γ

(
(s + 1)I

)
Γ –1(B)

×
∞∑

n=0

(A)nΓ (B + τn)Γ –1((s + τn)I
) zn

(s + τn)n!
(28)

and

2R(τ )
1

(
A, B; (s + 2)I; z

)

= Γ
(
(s + 2)I

)
Γ –1(B)

×
∞∑

n=0

(A)nΓ (B + τn)Γ –1((s + τn)I
) zn

(s + 1 + τn)(s + τn)n!
. (29)

We can write equation (29) as

2R(τ )
1

(
A, B; (s + 2)I; z

)

= Γ
(
(s + 2)I

)
Γ –1(B)

×
∞∑

n=0

{
1

(s + τn)
–

1
(s + 1 + τn)

}
(A)nΓ (B + τn)Γ –1((s + τn)I

)zn

n!

= (s + 1)2R(τ )
1

(
A, B; (s + 1)I; z

)
– Γ

(
(s + 2)I

)
Γ –1(B)

×
∞∑

n=0

(A)nΓ (B + τn)Γ –1((s + τn)I
) zn

(s + 1 + τn)n!
. (30)

For our convenience, we denote the last summation in (30) by S :

S = Γ
(
(s + 2)I

)
Γ –1(B)

×
∞∑

n=0

(A)nΓ (B + τn)Γ –1((s + τn)I
) zn

(s + 1 + τn)n!
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= (s + 1)2R(τ )
1

(
A, B; (s + 1)I; z

)
– 2R(τ )

1
(
A, B; (s + 2)I; z

)
. (31)

Applying the simple identity 1
η

= 1
η(η+1) + 1

η+1 (η = s + 1 + τn) to (31), we obtain

S = Γ
(
(s + 2)I

)
Γ –1(B)

×
∞∑

n=0

(
(s + τn)I

)
(A)nΓ (B + τn)Γ –1((s + 2 + τn)I

)zn

n!

+Γ
(
(s + 2)I

)
Γ –1(B)

×
∞∑

n=0

(
(s + 2 + τn)I

)
(A)nΓ (B + τn)Γ –1((s + 3 + τn)I

)zn

n!
(32)

and

S =
τ

(s + 2)

{

Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=1

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) zn

(n – 1)!

}

+
s

(s + 2)

{

Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=0

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
)zn

n!

}

+
τ 2

(s + 2)

{

Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=1

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) nzn

(n – 1)!

}

+
τ (2s + 1)

(s + 2)

{

Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=1

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) zn

(n – 1)!

}

+
s(s + 1)
(s + 2)

{

Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=1

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
)zn

n!

}

. (33)

We now express each summation in the right-hand side of (33) as follows:

d2

dz2

(
z2

2R(τ )
1

(
A, B; (s + 3)I; z

))

= 22R(τ )
1

(
A, B; (s + 3)I; z

)
+ 4z

d
dz 2R(τ )

1
(
A, B; (s + 3)I; z

)

+ z2 d2

dz2 2R(τ )
1

(
A, B; (s + 3)I; z

)
(34)

and

d2

dz2

(
z2

2R(τ )
1

(
A, B; (s + 3)I; z

))

= Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=0

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) (n + 2)(n + 1)zn

n!

= Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=0

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) nzn

(n – 1)!

+ 3Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=0

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) zn

(n – 1)!
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+ 22R(τ )
1

(
A, B; (s + 3)I; z

)
. (35)

From (34) and (35) we get

Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=1

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) nzn

(n – 1)!

= z2 d2

dz2 2R(τ )
1

(
A, B; (s + 3)I; z

)

+ 4z
d
dz 2R(τ )

1
(
A, B; (s + 3)I; z

)

– 3Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=1

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) zn

(n – 1)!
. (36)

Suppose that

d
dz

(
z2R(τ )

1
(
A, B; (s + 3)I; z

))

= 2R(τ )
1

(
A, B; (s + 3)I; z

)
+ z

d
dz 2R(τ )

1
(
A, B; (s + 3)I; z

)
(37)

and

d
dz

(
z2R(τ )

1
(
A, B; (s + 3)I; z

))

= Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=0

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) (n + 1)zn

n!

= Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=1

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) zn

(n – 1)!

+ 2R(τ )
1

(
A, B; (s + 3)I; z

)
. (38)

From (37) and (38) we get

Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=1

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) zn

(n – 1)!

= z
d
dz 2R(τ )

1
(
A, B; (s + 3)I; z

)
. (39)

Combining (36) and (39) yields

Γ
(
(s + 3)I

)
Γ –1(B)

∞∑

n=1

(A)nΓ (B + τn)Γ –1((s + 3 + τn)I
) nzn

(n – 1)!

= z2 d2

dz2 2R(τ )
1

(
A, B; (s + 3)I; z

)

+ z
d
dz 2R(τ )

1
(
A, B; (s + 3)I; z

)
. (40)
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Now applying (39) and (40) to (33), we get

S =
{

τ 2

(s + 2)

}
z2 d2

dz2 2R(τ )
1

(
A, B; (s + 3)I; z

)

+
{

τ 2 + τ + τ (2s + 1)
(s + 2)

}
z

d
dz 2R(τ )

1
(
A, B; (s + 3)I; z

)

+
s + s(s + 1)

s + 2 2R(τ )
1

(
A, B; (s + 3)I; z

)
. (41)

From (30), (31), and (41) we arrive at

(s + 1)2R(τ )
1

(
A, B; (s + 1)I; z

)
– 2R(τ )

1
(
A, B; (s + 2)I; z

)

=
{

τ 2

(s + 2)

}
z2 d2

dz2

(
2R(τ )

1
(
A, B; (s + 3)I; z

))
+ z

τ

(s + 2)
{
τ + 2(s + 1)

}

× d
dz

(
2R(τ )

1
(
A, B; (s + 3)I; z

))
+ s2R(τ )

1
(
A, B; (s + 3)I; z

)
, s > 0. (42)

This completes the proof of the theorem. �

Remark For τ = 1, result (27) reduces to the result for Gauss hypergeometric matrix func-
tion [9].

Remark Taking A = a ∈C1×1, B = b ∈C1×1, C = c ∈C1×1 in Theorem 4.1, we easily obtain
the known result derived by Rao et al. [22].

Remark Taking A = a ∈ C
1×1, B = b ∈ C

1×1, C = c ∈ C
1×1, and τ = 1 in Theorem 4.1, we

obtain the recurrence relation for the classical Gauss hypergeometric function [2].

5 Integral formulas of 2R(τ )
1 (A, B; C; z)

In this section, we give integral formulas of the Wright hypergeometric matrix function
by the following theorem.

Theorem 5.1 Let A, B, and C be positive stable matrices in C
N×N satisfying condition (5).

Then for τ > 0 and m > 0, we have the following integrals:

∫ ∞

0
exp

(
–um

zm

)
uC–(τ+1)I

[ ∞∑

n=0

(A)nΓ (B + τnI)Γ (C)

× Γ –1(B)Γ –1(C + τnI)Γ –1
(

C – (τ + n)I
m

)
un

]

du

=
zC–τ I

m 2R(τ )
1 (A, B; C; z), |z| < 1, (43)

∫ 1

0
zm

2R(τ )
1

(
A, B; mI; zτ

)
dz

= 2R(τ )
1 (A, B; (m + 1)I; 1)

m
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– 2R(τ )
1 (A, B; (m + 2)I; 1)

m(m + 1)
,

∣∣zτ
∣∣ < 1. (44)

Proof For convenience, denote the left-hand side of (43) by T . Substituting –um

zm = ζ , we
obtain

T =
∫ ∞

0
exp(–ζ )zC–(τ+1)Iζ

C–(τ+1)I
m

{ ∞∑

n=0

(A)n

n!
Γ (B + τnI)Γ (C)

× Γ –1(B)Γ –1(C + τnI)Γ –1
(

C – (τ – n)I
m

)
znζ

n
m

}
z
m

ζ
1–m

m dζ

=
zC–τ I

m

{ ∞∑

n=0

(A)n

n!
Γ (B + τnI)Γ (C)Γ –1

(
C – (τ – n)I

m

)

× Γ –1(B)Γ –1(C + τnI)Γ
(

C – (τ – n)I
m

)
zn

}

. (45)

Further simplification yields

T =
zC–τ I

m 2R(τ )
1 (A, B; C; z), (46)

which evidently leads us to the required result in (43).
Now putting z = 1 in (31) yields

Γ (mI)Γ –1(B)

{ ∞∑

n=0

(A)n

n!(m + 1 + τn)
Γ (B + τnI)Γ –1((m + τn)I

)

= 2R(τ )
1 (A, B; (m + 1)I; 1)

m

– 2R(τ )
1 (A, B; (m + 2)I; 1)

m(m + 1)

}

. (47)

Suppose that

∫ t

0
zm

2R(τ )
1

(
A, B; mI; zτ

)
dz

=
∫ t

0
zτΓ (mI)Γ –1(B)

{ ∞∑

n=0

(A)nzτn

n!
Γ (B + τnI)Γ –1((m + τn)I

)
}

dz

= Γ (mI)Γ –1(B)

{ ∞∑

n=0

(A)ntm+1+τn

n!(m + 1 + τn)
Γ (B + τnI)Γ –1((m + τn)I

)
}

. (48)

Now, comparing (47) and (48) after setting t = 1 in (48), we have

∫ 1

0
zm

2R(τ )
1

(
A, B; mI; zτ

)
dz

= 2R(τ )
1 (A, B; (m + 1)I; 1)

m
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– 2R(τ )
1 (A, B; (m + 2)I; 1)

m(m + 1)
.

This is proves (44) in Theorem 5.1. �

Remark For τ = 1, results (43) and (44) reduce to integral representations for the Gauss
hypergeometric matrix function (see [7, 9]).

6 Conclusions
The generalized (Wright) hypergeometric function was first studied by Virchenko et al.
[23] as follows:

2R(τ )
1 (a, b; c; z) =

Γ (c)
Γ (b)

∞∑

n=0

(a)nΓ (b + τn)
Γ (c + τn)

zn

n!
, τ > 0, |z| < 1. (49)

Later on, many authors (see. e.g., [24–26]) introduced several extensions of the gener-
alized (Wright) hypergeometric function. Very recently, the Wright hypergeometric ma-
trix functions and incomplete Wright Gauss hypergeometric matrix functions were in-
troduced by Bakhet et al. [1]. Here, with the help of the well-known fractional operators,
we have obtained the Wright-type hypergeometric matrix functions and its properties.
Also, we presented some properties of the Wright hypergeometric matrix function such
as matrix recurrence relations and integral representations. Further research on this topic
is now under investigation and will be reported in forthcoming papers.
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