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Abstract
In this manuscript, the fractional Atangana–Baleanu–Caputo model of prey and
predator is studied theoretically and numerically. The existence and Ulam–Hyers
stability results are obtained by applying fixed point theory and nonlinear analysis.
The approximation solutions for the considered model are discussed via the fractional
Adams Bashforth method. Moreover, the behavior of the solution to the given model
is explained by graphical representations through the numerical simulations. The
obtained results play an important role in developing the theory of fractional
analytical dynamic of many biological systems.
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1 Introduction
A predator–prey model is a two-component system, where one of them lives at the
expense of the other. A diversity of mathematical techniques is applied at modeling a
predator–prey system due to numerous factors that may affect its evolution. In this re-
gard there have been introduced some models in [1–7] in which the first model, which
regards in a specified way only substantial phenomena (gluttony and fertility), is of the
type

⎧
⎨

⎩

p′(t) = p(t)[a1 – a2q(t)],

q′(t) = q(t)[a3p(t) – a4],
(1)

where p(t) and q(t) are the number of prey, the number of predators, respectively, and
a1, a2 and a3 are the average of death of predators, the measurement of the tendency of
prey to predation, and the predatory capability, respectively. The model (1) has a unique
solution. However, the solutions of (1) are not structurally stable w.r.t. perturbation of
the initial conditions. Inside the restricted scope of quadratic differential equations, those
which cover competition and also predation, must be slightly more realistic. A second
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model with competition within preys is formulated as

⎧
⎨

⎩

p′(t) = p(t)[a1 – a2q(t) + a5p(t)],

q′(t) = q(t)[a3p(t) – a4],
(2)

where a1a3 > a4a5, a5 > 0 describes the competition of the prey. According to biologically
sensible hypotheses, there exists a unique positive solution of model (2) which is asymp-
totically stable.

Dai, and Zhao investigated the dynamic complexities of a predator–prey model with
state dependent on impulsive influences as

⎧
⎪⎪⎨

⎪⎪⎩

dN
dT = (1 – N

k )rN – a1PN
α+N ,

dP
dT = b1a1PN

α+N + c1P(1 – N
k ) – d1P,

�N = –e1N , �P = e2N + f .

(3)

The authors used the analogue of the Poincaré norm to obtain the existence and stability
of the model (3). For details, see [8].

The following dynamic model, which addresses the case of predatory prey with disease,
was analyzed by Das et al. [9]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx
dt = (1 – x

k )r1x + a1xy – α1x(z + w),
dy
dt = (1 – y+x

k )r2y + a2xy – α2x(z + w) – my,
dz
dt = s1α1xz – s2α2yz – a3zw – n1z,
dw
dt = a3wz – s3α1xw – s4α2yw – n2w,

where x(0), y(0), z(0), w(0) > 0. The authors showed that the model is globally stable on
every side of the internal equilibrium point according to certain standard conditions. So,
their analysis shows that the force of infection and predation average are the main param-
eters on the dynamics of the model.

Fractional calculus deals with differentiation and integration involving fractional order,
which is advantageous over the ordinary integer order in the explanation of real-world
problems, as also in the modeling of real phenomena due to characterization of memory
and hereditary properties [10, 11]. Further, the integer-order derivative does not describe
the dynamics between two various points. Various types of fractional-order or nonlocal
derivatives were proposed in the present literature to deal with the reduction of a tradi-
tional derivative. For instance, based on a power-law, Riemann–Liouville introduced the
idea of a fractional derivative. Afterwards Caputo–Fabrizio in [12] have proposed a new
fractional derivative utilizing the exponential kernel. This derivative has a few problems
related to the locality of the kernel. Newly, to overcome Caputo–Fabrizio’s problem, Atan-
gana and Baleanu (AB) in [13] have proposed a new modified version of a fractional deriva-
tive with the aid of a generalized Mittag-Leffler function (MLF) as a nonsingular kernel
and being nonlocal. Since the generalized MLF is used as the kernel it is guaranteed to
have no singularity. Furthermore, the AB fractional derivative supplies a description of
memory as discussed in [14–20].
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Most of the published work describes the mathematical system of predators and prey as
a problem of Cauchy type of a system of classical differential equations [21–25]. However,
recently, there has been great interest in studying the behavior of the solution for some
biological systems using fractional differential equations involving the Atangana–Baleanu
operator by several authors for the purpose of investigating several real-world systems and
modeling infectious diseases; see [26–36]. Some fractional-order models have been inves-
tigated via the new operators recently. For instance its use has been suggested for the dy-
namics of smoking in [32]. Along the same line, the transference model for the Ebola virus
together with AB operator was studied in [31]. A fractional-order model of leptospiro-
sis infection was considered in [26]. The dynamical behavior of coronavirus (COVID-19)
epidemic infection model through the ABC derivative has been studied in [33]. Also, the
existence results and analytic solutions of fractional-order dynamics of COVID-19 with
ABC derivative has been obtained in [34]. There is no literature available on prey–predator
fractional models with three species under the aforesaid derivative. Just some fractional
models have been found in the previous years; however, they have been confined to a
standard fractional derivative. Furthermore, in the presence of the mentioned derivatives,
recently some fruitful results have been published in [37–39].

Due to the success of this operator in modeling the biological systems and infectious dis-
eases, we have studied the dynamical behavior of the mathematical model which describes
three prey–predator species by a nonlocal Atangana–Baleanu–Caputo (ABC) derivative
operator with 0 < α ≤ 1 as

⎧
⎪⎪⎨

⎪⎪⎩

ABC
D

α
0+ P(t) = b1P(t)(1 – P(t)

k ) – bP(t)S(t)
a+P(t) – r1P(t)I(t),

ABC
D

α
0+ S(t) = cbP(t)S(t)

a+P(t) – dS(t)I(t) – mS2(t),
ABC

D
α
0+ I(t) = –nI(t) + dI(t) + ckI(t)P(t),

(4)

with the initial conditions

P(0) = P0, S(0) = S0, I(0) = I0, (5)

where ABC
D

α
0+ (·) is the ABC fractional derivative of order α, P0 is the initial population den-

sity of prey, S0 is the initial population density of susceptible predator, and I0 initial popula-
tion density infected predator. Here a denotes the saturation constant whereas susceptible
predators threaten the prey, b is a search rate of the prey across a susceptible predator, c is
the conversion rate of the susceptible predator due to prey, and d is the disease transmis-
sion coefficient. The symbol k represents the carrying capacity of the prey population, the
proportionality constant is denoted by b1, the growth rate of the prey population is rep-
resented as r1. In the proposed model, m and n define the death rate of sensitive predator
and death rate of the infected predator, respectively. Further, we ramark that the right hand
sides of our considered model (4) under ABC fractional derivtive are assumed to vanish
at zero, (for details, see Theorem 3.1 in [28]).

The main aim of the paper is to demonstrate the existence, uniqueness and Ulam sta-
bility of the solution for the model (4)–(5) by using the Picard and fixed point techniques.
Moreover, the numerical simulations via the fractional version of the Adams Bashforth
technique to approximate the ABC fractional operator are performed. Graphical presen-
tations are also given of the numerical results.
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This paper is organized as follows: Sect. 1 presents an introduction which contains a
survey of the literature. Section 2 consists of some foundational preliminaries related to
fractional calculus and nonlinear analysis. The existence and Ulam stability results on a
proposed model are obtained in Sects. 3, 4. The numerical solution and numerical simu-
lations of the model at hand are presented in Sect. 5.

2 Preliminaries
For the next analysis, let 0 ≤ t ≤ T < ∞, we define the Banach space Ω = E × E × E, where
E = C[0, T] under the norm

‖W‖ =
∥
∥(P, S, I)

∥
∥ = max

t∈[0,T]

{∣
∣P(t)

∣
∣ +

∣
∣S(t)

∣
∣ +

∣
∣I(t)

∣
∣
}

, P, S, I ∈ C[0, T].

Definition 1 ([13]) Let α ∈ (0, 1] and σ ∈ H1(0, T). Then the left-sided ABC fractional
derivative with the lower limit zero of order α for a function σ is defined by

ABC
D

α
0+σ (t) =

ABC[α]
1 – α

∫ t

0
Eα

(
–α

α – 1
(t – θ )α

)

σ ′(θ ) dθ , t > 0,

where ABC[α] is known as the normalization function which is defined as ABC[α] = α
2–α

,
0 < α ≤ 1 and satisfies the result ABC(0) = ABC(1) = 1, and Eα is called the Mittag-Leffler
function defined by the series

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, (6)

here Re(α) > 0 and Γ (·) is a gamma function.

Definition 2 ([13]) Let α ∈ (0, 1] and σ ∈ L1(0, T). Then the left-sided AB fractional inte-
gral with the lower limit zero of order α for a function σ is defined by

AB
I
α
0+σ (t) =

1 – α

ABC[α]
σ (t) +

α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1σ (θ ) dθ , t > 0.

Definition 3 ([13]) The Laplace transform of ABC fractional derivative of a function σ (t)
is given by

L
[ABC

D
α
0+σ (t)

]
=

ABC[α]
sα(1 – α) + α

[
sαL

[
σ (t)

]
– sα–1σ (0)

]
.

Lemma 1 (see Proposition 3 in [40]) The solution of the proposed problem for α ∈ (0, 1]

ABC
D

α
0+σ (t) = ω(t),

σ (0) = σ0,
(7)

is given by

σ (t) = σ0 +
1 – α

ABC[α]
ω(t) +

α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1ω(θ ) dθ .
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Definition 4 ([41]) Let ℵ be a Banach space. The operator Π : Ω → Ω is Lipschitzian if
there exists a constant κ > 0 such that

‖Π∅1 – Π∅2‖ ≤ κ‖∅1 – ∅2‖, ∀∅1,∅2 ∈ Ω ,

here κ is the Lipschitz constant for Π . If κ < 1 we say that Π is a contraction.

Theorem 1 ([41]) Let ℵ be a Banach space and Π : ℵ −→ ℵ be a contraction mapping.
Then there exists a unique fixed point of Π .

3 Existence of solutions for the proposed model (4)–(5)
Now, we address the existence and uniqueness results of the model (4)–(5) by utilizing the
fixed point technique. Let us reformulate model (4) in the appropriate form

⎧
⎪⎪⎨

⎪⎪⎩

ABC
D

α
0+ P(t) = W1(t, P),

ABC
D

α
0+ S(t) = W2(t, S),

ABC
D

α
0+ I(t) = W3(t, I),

(8)

where

⎧
⎪⎪⎨

⎪⎪⎩

W1(t, P) := b1P(t)(1 – P(t)
k ) – bP(t)S(t)

a+P(t) – r1P(t)I(t),

W2(t, S) := cbP(t)S(t)
a+P(t) – dS(t)I(t) – mS2(t),

W3(t, I) := –nI(t) + dI(t) + ckI(t)P(t).

(9)

Utilizing Lemma 1, the model (8) can be turned to the fractional integral equation in the
sense of AB fractional integral as follows:

⎧
⎪⎪⎨

⎪⎪⎩

P(t) – P(0) = 1–α
ABC[α] W1(t, P) + α

ABC[α]
1

Γ (α)
∫ t

0 (t – θ )α–1W1(θ , P) dθ ,

S(t) – S(0) = 1–α
ABC[α] W2(t, S) + α

ABC[α]
1

Γ (α)
∫ t

0 (t – θ )α–1W2(θ , S) dθ ,

I(t) – I(0) = 1–α
ABC[α] W3(t, I) + α

ABC[α]
1

Γ (α)
∫ t

0 (t – θ )α–1W3(θ , I) dθ .

(10)

Theorem 2 The kernels W� (� = 1, 2, 3) agree with the contraction and Lipchitz conditions
if there exists a constant L� such that 0 ≤ L� < 1, � = 1, 2, 3.

Proof 1 For W1, let P and P∗ be two functions, then we have

∥
∥W1(t, P) – W1

(
t, P∗)∥∥

=
∥
∥b1

(
P – P∗) –

(
P2 – P∗2) –

(
P – P∗)S – r1

(
P – P∗)I

∥
∥

≤
(

b1 +
b1

k
∥
∥P + P∗∥∥ + ab‖S‖ + r1‖I‖

)
∥
∥P – P∗∥∥

≤
(

b1 +
b1

k
(
A1 + A∗

1
)

+ abC1 + r1D1

)
∥
∥P – P∗∥∥

= L1
∥
∥P – P∗∥∥,
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where L1 := (b1 + b1
k (A1 + A∗

1) + abC1 + r1D1), and ‖P‖, ‖P∗‖, ‖S‖, ‖I‖are functions bounded
by the constants A1, A∗

1, C1, D1, respectively. Consequently

∥
∥W1(t, P) – W1

(
t, P∗)∥∥ ≤ L1

∥
∥P – P∗∥∥. (11)

Obviously, the Lipschitz condition is verified for W1. Besides, W1 leads to a contraction
due to 0 ≤ L1 < 1. Likewise, we can show that W2 and W3 admit the contraction and Lip-
schitz condition, i.e.,

∥
∥W2(t, S) – W2

(
t, S∗)∥∥ ≤ L2

∥
∥S – S∗∥∥, (12)

∥
∥W3(t, I) – W3

(
t, I∗)∥∥ ≤ L3

∥
∥I – I∗∥∥, (13)

where L2 := ( cb
a+A1

A1 + dD1 + m(C1 + C∗
1 )) and L3 := (n + d + ckA1).

Theorem 3 Assume that the conditions (11)–(13) hold. If

Λ� :=
[

1 – α

ABC[α]
+

Tα

ABC[α]Γ (α)

]

L� < 1, for � = 1, 2, 3.

Then the solution of the fractional model given in (4)–(5) exists and is unique.

Proof 2 The initial conditions and the recurrence form of the model (10) are, respectively,

P(0) = P0(t), S(0) = S0(t), I(0) = I0(t),

and

⎧
⎪⎪⎨

⎪⎪⎩

Pn(t) = 1–α
ABC[α] W1(t, Pn–1) + α

ABC[α]
1

Γ (α)
∫ t

0 (t – θ )α–1W1(θ , Pn–1) dθ ,

Sn(t) = 1–α
ABC[α] W2(t, Sn–1) + α

ABC[α]
1

Γ (α)
∫ t

0 (t – θ )α–1W2(θ , Sn–1) dθ ,

In(t) = 1–α
ABC[α] W3(t, In–1) + α

ABC[α]
1

Γ (α)
∫ t

0 (t – θ )α–1W3(θ , In–1) dθ .

(14)

The successive difference between the terms is defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1n(t) = Pn(t) – Pn–1(t) = 1–α
ABC[α] [W1(t, Pn–1) – W1(t, Pn–2)]

+ α
ABC[α]

1
Γ (α)

∫ t
0 (t – θ )α–1[W1(θ , Pn–1) – W1(θ , Pn–2)] dθ ,

Φ2n(t) = Sn(t) – Sn–1(t) = 1–α
ABC[α] [W1(t, Sn–1) – W1(t, Sn–2)]

+ α
ABC[α]

1
Γ (α)

∫ t
0 (t – θ )α–1[W1(θ , Sn–1) – W1(θ , Sn–2)] dθ ,

Φ3n(t) = In(t) – In–1(t) = 1–α
ABC[α] [W1(t, In–1) – W1(t, In–2)]

+ α
ABC[α]

1
Γ (α)

∫ t
0 (t – θ )α–1[W1(θ , In–1) – W1(θ , In–2)] dθ .

(15)

Clearly

⎧
⎪⎪⎨

⎪⎪⎩

Pn(t) =
∑n

�=1 Φ1�(t),

Sn(t) =
∑n

�=1 Φ2�(t),

In(t) =
∑n

�=1 Φ3�(t).

(16)
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Taking the norm of Eqs. (15), it follows from the conditions (11)–(13) that

⎧
⎪⎪⎨

⎪⎪⎩

‖Φ1n(t)‖ ≤ 1–α
ABC[α] L1‖Φ1(n–1)(t)‖ + α

ABC[α]
L1

Γ (α)
∫ t

0 (t – θ )α–1‖Φ1(n–1)(θ )‖dθ ,

‖Φ2n(t)‖ ≤ 1–α
ABC[α] L2‖Φ2(n–1)(t)‖ + α

ABC[α]
L2

Γ (α)
∫ t

0 (t – θ )α–1‖Φ2(n–1)(θ )‖dθ ,

‖Φ3n(t)‖ ≤ 1–α
ABC[α] L3‖Φ3(n–1)(t)‖ + α

ABC[α]
L3

Γ (α)
∫ t

0 (t – θ )α–1‖Φ3(n–1)(θ )‖dθ .

(17)

Let us consider P, S and I as bounded functions that comply with the Lipschitz condition.
It follows from Eqs. (16) and (17) that

⎧
⎪⎪⎨

⎪⎪⎩

‖Φ1�(t)‖ ≤ ‖Pn(0)‖[ 1–α
ABC[α] L1 + Tα

ABC[α]Γ (α) L1]n,

‖Φ2�(t)‖ ≤ ‖Sn(0)‖[ 1–α
ABC[α] L2 + Tα

ABC[α]Γ (α) L2]n,

‖Φ3�(t)‖ ≤ ‖In(0)‖[ 1–α
ABC[α] L3 + Tα

ABC[α]Γ (α) L3]n.

(18)

This shows the existence for the solutions. Moreover, to prove that Eqs. (18) are solutions
for the model (4)–(5), we consider

⎧
⎪⎪⎨

⎪⎪⎩

P(t) – P(0) = Pn(t) – M1n(t),

S(t) – S(0) = Sn(t) – M2n(t),

I(t) – I(0) = In(t) – M3n(t).

Now, we consider the conditions

∥
∥M1n(t)

∥
∥ ≤

∥
∥
∥
∥

1 – α

ABC[α]
[
W1(t, P) – W1(t, Pn–1)

]

+
α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1[W1(θ , P) – W1(θ , Pn–1)

]
dθ

∥
∥
∥
∥

≤ 1 – α

ABC[α]
L1‖P – Pn–1‖ +

Tα

ABC[α]Γ (α)
L1‖P – Pn–1‖.

On using recessive techniques, we get

∥
∥M1n(t)

∥
∥ ≤

(
1 – α

ABC[α]
+

tα
0

ABC[α]Γ (α)

)n+1

Ln+1
1 .

As n → ∞, ‖M1n(t)‖ → 0. In a similar way, we conclude that ‖M2n(t)‖ and ‖M3n(t)‖ tends
to 0.

Next, we address the uniqueness of the solution to the proposed mode (4)–(5). To this
end, let P∗(t), S∗(t) and I∗(t) be other solutions. Then

∥
∥P(t) – P∗(t)

∥
∥ ≤ 1 – α

ABC[α]
∥
∥W1(t, P) – W1

(
t, P∗)∥∥

+
α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1∥∥W1(θ , P) – W1

(
θ , P∗)∥∥dθ

≤
(

1 – α

ABC[α]
+

tα

ABC[α]Γ (α)

)

L1
∥
∥P(t) – P∗(t)

∥
∥.
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It means that

∥
∥P(t) – P∗(t)

∥
∥

(

1 –
1 – α

ABC[α]
–

tα

ABC[α]Γ (α)

)

L1 ≤ 0.

From our hypothesis

(

1 –
1 – α

ABC[α]
–

Tα

ABC[α]Γ (α)

)

L1 ≥ 0.

It follows that P(t)–P∗(t) = 0. Likewise, we conclude that S(t)–S∗(t) = 0 and I(t)– I∗(t) = 0.

4 Ulam–Hyers stability
For the notion of Ulam stability, see [42, 43]. The aforesaid stability has been scrutinized
for classical fractional derivatives in many of the research articles; we refer to some of them
like [44–47]. Additionally, since stability is a prerequisite in respect of approximate solu-
tion, we endeavor on Ulam type stability for the model (4) via using nonlinear functional
analysis.

Definition 5 System (4)–(5) is Ulam–Hyers stable if there exists λ = max(λ1,λ2,λ3) > 0
and ε = max(ε1, ε1, ε1) > 0, for each P̃, S̃,̃ I ∈ E × E × E, with the following inequalities:

⎧
⎪⎪⎨

⎪⎪⎩

|ABC
D

α
0+ P̃(t) – W1(t, P̃)| ≤ ε1,

|ABC
D

α
0+ S̃(t) – W2(t, S̃)| ≤ ε2,

|ABC
D

α
0+̃ I(t) – W3(t ,̃ I)| ≤ ε3,

(19)

then there exists (P, S, I) ∈ E × E × E satisfying the coupled system (4) with the following
initial conditions:

⎧
⎪⎪⎨

⎪⎪⎩

P(0) = P̃(0),

S(0) = S̃(0),

I(0) = Ĩ(0),

(20)

such that

∥
∥(̃P, S̃,̃ I) – (P, S, I)

∥
∥

Ω
≤ λε.

Remark 1 Consider a small perturbation g1 ∈ C[0, T] that depends only on the solution
such that g1(0) = 0 with the following properties:

1 |g1(t)| ≤ ε1, for t ∈ [0, T] and ε1 > 0.
2 Furthermore, one has

ABC
D

α
0+ P̃(t) = W1(t, P̃) + g1(t), t ∈ [0, T].

Note that we will only discuss the first equation from the proposed system and the
rest of the equations are similar in technique, i.e.

‖̃P – P‖E ≤ λ1ε1.
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Lemma 2 The solution of the perturbed problem

⎧
⎨

⎩

ABC
D

α
0+ P̃(t) = W1(t, P̃) + g1(t),

P̃(0) = P̃0,
(21)

satisfies the relation

∣
∣̃Pg1 (t) – P̃(t)

∣
∣ ≤ κε1,

where P̃g1 (t) is a solution of (21), P̃(t) satisfies (19-a) and κ := ( Γ (α)–Γ (α+1)+Tα

ABC[α]Γ (α) ).

Proof 3 Thanks to Remark 1, and Lemma 1, the solution of (21) is given by

P̃g1 (t) =

⎧
⎨

⎩

P̃0 + 1–α
ABC[α] W1(t, P̃) + α

ABC[α]
1

Γ (α)
∫ t

0 (t – θ )α–1W1(θ , P̃) dθ

+ 1–α
ABC[α] g1(t) + α

ABC[α]
1

Γ (α)
∫ t

0 (t – θ )α–1g1(θ ) dθ .

Also, we have

P̃(t) = P̃0 +
1 – α

ABC[α]
W1(t, P̃) +

α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1W1(θ , P̃) dθ .

It follows from Remark 1 that

∣
∣̃Pg1 (t) – P̃(t)

∣
∣ ≤ 1 – α

ABC[α]
∣
∣g1(t)

∣
∣ +

α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1∣∣g1(θ )

∣
∣dθ

≤
(

Γ (α) – Γ (α + 1) + Tα

ABC[α]Γ (α)

)

ε1

= κε1.

Theorem 4 Under the presumptions of Theorem 3 and condition (11), the system (4)–(5)
will be Ulam–Hyers stable in Ω .

Proof 4 Let P̃ ∈ E be the solution of the inequality (19-a) and the function P ∈ E be a
unique solution of Eq. (4-a) with the condition

P(0) = P̃(0). (22)

That is,

P(t) = P0 +
1 – α

ABC[α]
W1(t, P) +

α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1W1(θ , P) dθ . (23)

Due to (22), P0 = P̃0. Hence Eq. (23) becomes

P(t) = P̃0 +
1 – α

ABC[α]
W1(t, P) +

α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1W1(θ , P) dθ .
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Thus by condition (11) and Lemma 2, we obtain

∣
∣̃P(t) – P(t)

∣
∣ ≤ ∣

∣̃P(t) – P̃g1 (t)
∣
∣ +

∣
∣̃Pg1 (t) – P(t)

∣
∣

≤ κε1 +
1 – α

ABC[α]
∣
∣W1(t, P̃) – W1(t, P)

∣
∣

+
α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1∣∣W1(θ , P̃) – W1(θ , P)

∣
∣dθ + κε1

≤ 2κε1 +
(

1 – α

ABC[α]
+

Tα

ABC[α]Γ (α)

)

L1‖̃P – P‖,

which implies

‖̃P – P‖E ≤ 2κε1

1 – Λ1
,

where Λ1 = ( 1–α
ABC[α] + Tα

ABC[α]Γ (α) )L1 < 1. For λ1 = 2κ
1–Λ1

, we get ‖̃P – P‖E ≤ λ1ε1.
Similarly, we conclude that ‖̃S – S‖E ≤ λ2ε2, and ‖̃I – I‖E ≤ λ3ε3, where λ� = 2κ

1–Λ�
(� =

2, 3). For some ε,λ > 0,

∥
∥(̃P, S̃,̃ I) – (P, S, I)

∥
∥

Ω
≤ λε.

Hence the model (4)–(5) is Ulam–Hyers stable.

5 Numerical approach
In this part, we give approximation solutions of the ABC fractional model (4)–(5). Then
the numerical simulations are acquired via the suggested scheme. To this aim, we employ
the modified fractional version for AMB [48] to approximate the fractional integral in the
AB sense. To procure an iterative scheme, we go ahead with the first equation of the model
(10) as follows:

P(t) – P(0) =
1 – α

ABC[α]
W1(t, P) +

α

ABC[α]
1

Γ (α)

∫ t

0
(t – θ )α–1W1(θ , P) dθ .

Set t = tn+1, for n = 0, 1, 2, . . . , it follows that

P(tn+1) – P(0)

=
1 – α

ABC[α]
W1(tn, P) +

α

ABC[α]
1

Γ (α)

∫ tn+1

0
(tn+1 – θ )α–1W1(θ , P) dθ

=
1 – α

ABC[α]
W1(tn, P) +

α

ABC[α]
1

Γ (α)

n∑

�=0

∫ t�+1

t�
(tn+1 – θ )α–1W1(θ , P) dθ . (24)

Now, we approximate the function W1(θ , P) on the interval [t�, t�+1] through the interpo-
lation polynomial as follows:

W1
(
θ , P(t)

) ∼= W1(t�, P(t�))
�

(t – t�–1) +
W1(t�–1, P(t�–1))

�
(t – t�),
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which implies

P(tn+1) = P(0) +
1 – α

ABC[α]
W1

(
tn, P(tn)

)

+
α

ABC[α]
1

Γ (α)

n∑

�=0

(
W1(t�, P(t�))

�

∫ t�+1

t�
(t – t�–1)(tn+1 – t)α–1 dt

–
W1(t�–1, P(t�–1))

�

∫ t�+1

t�
(t – t�)(tn+1 – t)α–1 dt

)

= P(0) +
1 – α

ABC[α]
W1

(
tn, P(tn)

)

+
α

ABC[α]
1

Γ (α)

n∑

�=0

(
W1(t�, P(t�))

�
I�–1,α –

W1(t�–1, P(t�–1))
�

I�,α

)

. (25)

Now, we compute the integrals I�–1,α and I�,α as follows:

I�–1,α =
∫ t�+1

t�
(t – t�–1)(tn+1 – t)α–1 dt

= –
1
α

[
(t�+1 – t�–1)(tn+1 – t�+1)α – (t� – t�–1)(tn+1 – t�)α

]

–
1

α(α + 1)
[
(tn+1 – t�+1)α+1 – (tn+1 – t�)α+1]

and

I�,α =
∫ t�+1

t�
(t – t�)(tn+1 – t)α–1 dt

= –
1
α

[
(t�+1 – t�)(tn+1 – t�+1)α

]

–
1

α(α + 1)
[
(tn+1 – t�+1)α+1 – (tn+1 – t�)α+1].

Put t� = ��, we get

I�–1,α = –
�α+1

α

[(
� + 1 – (� – 1)

)(
n + 1 – (� + 1)

)α –
(
� – (� – 1)

)
(n + 1 – �)α

]

–
�α+1

α(α + 1)
[(

n + 1 – (� + 1)
)α+1 – (n + 1 – �)α+1]

=
�α+1

α(α + 1)
[
–2(α + 1)(n – �)α + (α + 1)(n + 1 – �)α – (n – �)α+1 + (n + 1 – �)α+1]

=
�α+1

α(α + 1)
[
(n – �)α

(
–2(α + 1) – (n – �)

)
+ (n + 1 – �)α(α + 1 + n + 1 – �)

]

=
�α+1

α(α + 1)
[
(n + 1 – �)α(n – � + 2 + α) – (n – �)α(n – � + 2 + 2α)

]
(26)

and

I�,α = –
�α+1

α

[
(� + 1 – �)

(
n + 1 – (� + 1)

)α]
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–
hα+1

α(α + 1)
[(

n + 1 – (� + 1)
)α+1 – (n + 1 – �)α+1]

=
�α+1

α(α + 1)
[
–(α + 1)(n – �)α – (n – �)α+1 + (n + 1 – �)α+1]

=
�α+1

α(α + 1)
[
(n – �)α

(
–(α + 1) – (n – �)

)
+ (n + 1 – �)α+1]

=
�α+1

α(α + 1)
[
(n + 1 – �)α+1 – (n – �)α(n – � + 1 + α)

]
. (27)

Substituting (26) and (27) into (25), we get

P(tn+1) = P(t0) +
1 – α

ABC[α]
W1

(
tn, P(tn)

)

+
α

ABC[α]

n∑

�=0

(
W1(t�, P(t�))

Γ (α + 2)
�α

[
(n + 1 – �)α(n – � + 2 + α)

– (n – �)α(n – � + 2 + 2α)
]

–
W1(t�–1, P(t�–1))

Γ (α + 2)
�α

[
(n + 1 – �)α+1 – (n – �)α(n – � + 1 + α)

]
)

. (28)

Similarly

S(tn+1) = S(t0) +
1 – α

ABC[α]
W2

(
tn, S(tn)

)

+
α

ABC[α]

n∑

�=0

(
W2(t�, S(t�))

Γ (α + 2)
�α

[
(n + 1 – �)α(n – � + 2 + α)

– (n – �)α(n – � + 2 + 2α)
]

–
W2(t�–1, S(t�–1))

Γ (α + 2)
�α

[
(n + 1 – �)α+1 – (n – �)α(n – � + 1 + α)

]
)

(29)

and

I(tn+1) = I(t0) +
1 – α

ABC[α]
W3

(
tn, I(tn)

)

+
α

ABC[α]

n∑

�=0

(
W3(t�, I(t�))
Γ (α + 2)

�α
[
(n + 1 – �)α(n – � + 2 + α)

– (n – �)α(n – � + 2 + 2α)
]

–
W3(t�–1, I(t�–1))

Γ (α + 2)
�α

[
(n + 1 – �)α+1 – (n – �)α(n – � + 1 + α)

]
)

. (30)

5.1 Numerical interpretation and discussion
Now, to present the numerical simulations of the ABC fractional model (4)–(5), we apply
the iterative solution contained in (28)–(30). Take the time range up to 100 units. The
numerical values of the parameters applied in the simulations are specified in Table 1.
The graphical representations of numerical solution for species P, S, I at various fractional
orders, α = 0.4, 0.6, 0.8, 1.0, of the considered model (4) are given in Figs. 1–3, respectively.
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Table 1 The physical interpretation of the parameters and numerical values

Parameters Physical description Numerical value

P0 initial population density of prey 0.5
S0 initial population density of susceptible predator 0.3
I0 initial population density infected predator 0.2
a saturation constant while susceptible predators attack the prey 0.00073
b search rate of the prey toward susceptible predator 0.0001
c conversion rate of susceptible predator due to prey 0.0003
d disease transmission coefficient 0.007
k carrying capacities of prey population 0.003
b1 proportionality constant 0.004
r1 growth rate of prey population 0.0003
m death rate of susceptible predator 0.004
n death rate of infected predator 0.003

Figure 1 Graphical representation of numerical solution for specie P at various fractional orders of the
considered model (4)

Figure 2 Graphical representation of numerical solution for specie S at various fractional orders of the
considered model (4)

From Figs. 1–3, we observe that species I depends on species P and S. Therefore the
papulation density of specie P and S gradually go on decreasing with different rate due
to the fractional order in the first 50 days. The lower the fractional order, the faster the
decay rate and hence the more rapidly the system becomes stable and vice versa. On the
other hand, the species I is going on increasing with different rate, the lower the order the
slower is the growth rate until it becomes stable and vice versa. The fractional order greatly
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Figure 3 Graphical representation of numerical solution for specie I at various fractional orders of the
considered model (4)

affects the stability of the system and also provides the global nature of the dynamics of
the considered model.

Here we claim that the established numerical technique is powerful and converges for
the ABC fractional derivative. Meanwhile the iterative techniques like perturbation and
decomposition methods do not show the perfect behavior for the said derivatives for ap-
proximate solutions in many cases.

6 Conclusion
In this paper, the population density model of prey and sensitive predatory and infected
predatory has been studied theoretically and numerically. Theoretically, the existence and
stability results in the sense of Ulam–Hyers have been obtained through the help of fixed
point theory and nonlinear analysis. Numerically, the approximation solution of the ABC
fractional model (4) has been discussed via the use of a fractional Adam Bashforth method.
Moreover, the behavior of the solutions of the model (4) has also been explained through
graphs using some numerical values for the parameter. The obtained results play an impor-
tant role in developing the theory of fractional analytical dynamics of various phenomena
of real-world problems.
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