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Abstract
The article investigates a Riesz–Feller space-fractional backward diffusion problem.
We develop a generalized Tikhonov regularization method to overcome the
ill-posedness of this problem, and then based on the result of conditional stability, we
derive the convergence estimates of logarithmic and double logarithmic types for the
regularized method by adopting a-posteriori choice rules of regularization parameter.
Finally, by using the finite difference method, we solve a direct problem to construct
the data, and some corresponding results of numerical simulations are presented to
verify the convergence and stability for this method.
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1 Introduction
The fractional diffusion equation is derived by replacing the classical time or space deriva-
tives with fractional derivative. This kind of equation has been widely applied in many sci-
entific fields. For instance, physical, chemical, biology, mechanical engineering, signal pro-
cessing and systems identification, electrical, control theory, finance, fractional dynamics,
etc.; please see the references [1–8].

If we replace the classical space derivative with a space fractional derivative, we can
obtain the space-fractional diffusion equation. This equation is generally used to de-
scribe some diffusion phenomena such as the super-diffusion, non-Gaussian diffusion,
sub-diffusion, and so on; also refer to [9, 10]. In the past years, the direct problems for the
space-fractional diffusion equation have been studied extensively, see [11–17]. In recent
years, more and more people have been focusing on the inverse problems for this equa-
tion, which usually include parameter identification problem, inverse initial value prob-
lem, Cauchy problem, inverse heat conduction problem, inverse source problem, inverse
boundary condition problem, and so on. At present, some works on the inverse problem
of space-fractional diffusion problem have been published, see [18–21], etc.
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In this paper, we consider the Riesz–Feller space-fractional backward diffusion problem

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = xDα
θ u(x, t), x ∈ R, 0 < t < T ,

u(x, t)|x→±∞ = 0, 0 < t ≤ T ,

u(x, T) = g(x), x ∈ R,

(1)

where T > 0 is a constant, the space-fractional derivative xDα
θ is the Riesz–Feller fractional

derivative of order α (0 < α ≤ 2) and skewness θ (|θ | ≤ min{α, 2 – α}, θ �= ±1), its Fourier
transform is defined in [22] as

F
{

xDα
θ f (x); ξ

}
= –ψθ

α (ξ )̂f (ξ ), (2)

with

ψθ
α (ξ ) = |ξ |αei(sign(ξ ))θπ/2 = |ξ |α

(

cos

(
θπ

2

)

+ i sign(ξ ) sin

(
θπ

2

))

. (3)

The Riesz–Feller fractional derivative is defined as [22]

xDα
θ f (x) =

Γ (1 + α)
π

sin
(α + θ )π

2

∫ ∞

0

f (x + ζ ) – f (x)
ζ 1+α

dζ

+
Γ (1 + α)

π
sin

(α – θ )π
2

∫ ∞

0

f (x – ζ ) – f (x)
ζ 1+α

dζ , 0 < α < 2, (4)

xD2
0f (x) =

d2f (x)
dx2 , α = 2. (5)

Meanwhile, for the convenience of numerical calculation, [23] also defined the Riesz–
Feller fractional derivative xDα

θ as

xDα
θ f (x) = –

1
Γ (1 – α) sin(απ )

sin
(α – θ )π

2
d

dx

∫ x

–∞
f (ζ )

(x – ζ )α
dζ

–
1

Γ (1 – α) sin(απ )
sin

(α + θ )π
2

d
dx

∫ ∞

x

f (ζ )
(ζ – x)α

dζ , 0 < α < 1, (6)

xD1
θ f (x) = –

1
π

cos
θπ

2
d

dx

∫ ∞

–∞
f (ζ )

(x – ζ )
dζ + sin

θπ

2
df (x)

dx
, α = 1, (7)

xDα
θ f (x) = –

1
Γ (2 – α) sin(απ )

sin
(α – θ )π

2
d2

dx2

∫ x

–∞
f (ζ )

(x – ζ )α–1 dζ

–
1

Γ (2 – α) sin(απ )
sin

(α + θ )π
2

d2

dx2

∫ ∞

x

f (ζ )
(ζ – x)α–1 dζ , 1 < α < 2, (8)

xD2
0f (x) =

d2f (x)
dx2 , α = 2. (9)

This fractional derivative has a wide range of applications in the theory of probability
distribution, thermoelasticity [24], ecology [25], plasma physics [26], continuum mechan-
ics [27], hydrology [28, 29], and finance, especially modeling for the high-frequency price
dynamics in financial markets [30–32] and [7].

Let δ > 0 be the measured error bound, given the final measured data gδ(x) with
‖gδ(x) – g(x)‖L2(R) ≤ δ, our purpose is to determine u(x, t) (0 ≤ t < T ) from (1). We know
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that, as α = 2, problem (1) is just the standard backward heat conduction problem (BHCP).
This problem is ill-posed in the sense that the solution does not depend continuously on
the given data, so the regularization method is required to overcome its ill-posedness and
recover the stability of the solution. Up to now, some regularization methods have been
presented and used to solve this problem. For example, Zheng et al. in [21] proposed the
convolution and spectral regularized methods to solve the backward problem. Shi et al.
[33] presented an a-posteriori parameter selection rule for the convolution regularized
method and deduced the error estimate of logarithmic type. Cheng et al. [34] used an
iteration method to deal with a similar inverse problem. Zhao et al. [35] applied a sim-
plified Tikhonov method to research an inverse problem for space-fractional backward
diffusion problem and derive the a-priori convergence estimate. For the case of θ = 0, [36–
38] respectively proposed the logarithmic, negative exponential, and fractional Tikhonov
regularization methods to overcome the ill-posedness of the considered problem, and
then based on the conditional stability and an a-posteriori regularized parameter choice
rule, the authors derived the convergence estimates of logarithmic and double logarith-
mic types. [39, 40] used the spectral truncation method to solve the space-fractional heat
conduction problem backward in time and obtained the optimal error estimation.

In ordinary Tikhonov regularization method, the penalty term commonly is added
as ‖u(x, t)‖2

L2(R). Instead of Tikhonov method, this paper adds the penalty term as
‖u(x, 0)‖2

Hs(R) (0 ≤ s < p, p > 0 is a constant) to construct a generalized Tikhonov regu-
larization method (see Sect. 2) and derives the convergence estimates of logarithmic and
double logarithmic types by adopting an a-posteriori selection rule of regularization pa-
rameter. Finally, we verify the computational effectiveness for our method by making the
corresponding numerical experiments. Note that, as s = 0, our method becomes the sim-
plified Tikhonov method in [35]. In [35], the authors mainly derived the optimal a-priori
convergence estimate of regularized solution, but did not consider the a-posteriori con-
vergence result. In this paper, we not only construct the generalized Tikhonov method
to overcome the ill-posedness of the considered problem, but also derive the a-posteriori
convergence estimate of our method. Meanwhile, by making the comparison we find that,
under the a-posteriori choice rule of regularization parameter, the numerical simulation
effect of our method is similar with the simplified Tikhonov method. Then the method
given in this paper can be seen as an extension and supplement on the one in [35].

The remainder of this paper is arranged as follows. In Sect. 2, based on the condi-
tional stability, we make a description for the construction procedure of our regularization
method. The a-posteriori result of convergence estimate is shown in Sect. 3. Section 4
is devoted to the numerical implementations and the corresponding simulation results.
Some conclusions are drawn in Sect. 5.

2 Conditional stability and regularization method
2.1 Conditional stability
Let f ∈ L2(R), the Fourier and inverse Fourier transforms are defined as

f̂ (ξ ) :=
1√
2π

∫ ∞

–∞
f (x)eiξx dx, ξ ∈ R, (10)

f (x) :=
1√
2π

∫ ∞

–∞
f̂ (ξ )e–iξx dξ , x ∈ R. (11)
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Take the Fourier transform of problem (1) with respect to x, then for ξ ∈ R, the solution
of problem (1) in the frequency domain can be expressed as follows:

û(ξ , t) = eψθ
α (ξ )(T–t)̂g(ξ ). (12)

Hence, the exact solution of problem (1) can be written by

u(x, t) =
1√
2π

∫ ∞

–∞
eψθ

α (ξ )(T–t)̂g(ξ )e–iξx dξ . (13)

From (13) we know that ψθ
α (ξ ) has a positive real part |ξ |α cos θπ

2 , as |ξ | → ∞, the func-
tion e|ξ |α (T–t) cos θπ

2 tends to infinity, hence problem (1) is ill-posed in the sense that the
solution does not depend continuously on the given data. However, under certain addi-
tional condition, the continuous dependence of solution can be established, this is called
the conditional stability [41].

Suppose that there exists a constant E > 0 such that the following a-priori bound holds:

∥
∥u(·, 0)

∥
∥

p ≤ E, p > 0. (14)

Here, ‖u(·, 0)‖p denotes the Sobolev space Hp-norm defined by

∥
∥u(·, 0)

∥
∥

p =
(∫ ∞

–∞

(
1 + ξ 2)p∣∣̂u(·, 0)

∣
∣2 dξ

)1/2

, (15)

we know that, as p = 0, this is the L2-norm. Throughout this paper, we denote by ‖ · ‖ the
L2-norm.

In [42], under the assumption of the a-priori bound condition (14), the authors estab-
lished the following condition stability by using the interpolation method:

∥
∥u(·, t)

∥
∥ ≤ √

2E1– t
T
∥
∥g(·)∥∥ t

T

(
1

T cos(θπ/2)
ln

1
‖g(·)‖

) –p(1– t
T )

α

. (16)

2.2 Regularization method
According to the expression of solution (13), in order to overcome the ill-posedness of the
considered problem, a natural way is to eliminate the high frequency part (|ξ | → +∞) of
function e|ξ |α (T–t) cos θπ

2 and construct a stable approximation solution for problem (1).
In what follows, based on the condition stability (16), we make a description for our

regularization method. According to (13), for the fixed 0 ≤ t < T , the problem of seeking
u(x, t) from (1) can be transformed into the operator equation

K(t)u(x, t) = g(x), (17)

and based on (12), K̂(t) : L2(R) → L2(R) is a linear bounded multiplication operator with
K̂(t) = e–ψθ

α (ξ )(T–t) = e–|ξ |α (T–t) cos( θπ
2 )–i|ξ |α (T–t) sign(ξ ) sin( θπ

2 ). By the basic calculation, we know
that the adjoint operator of it can be written as K̂∗(t) = e–|ξ |α (T–t) cos( θπ

2 )+i|ξ |α (T–t) sign(ξ ) sin( θπ
2 ).

Assume that the noisy data gδ satisfies

∥
∥gδ – g

∥
∥ ≤ δ. (18)
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In order to get a stable solution to problem (1) with noisy data gδ , we solve the variational
problem

min
u∈L2(R)

∥
∥K(t)u(x, t) – gδ(x)

∥
∥2 + μ

∥
∥u(x, 0)

∥
∥2

Hs(R), 0 ≤ s < p, (19)

where μ > 0 plays a role of the regularization parameter, δ > 0 denotes the measured error
bound. By the Parseval identity and (12), this variational problem becomes minimizing
the functional

min
û∈L2(R)

∥
∥e–ψθ

α (ξ )(T–t)̂u(ξ , t) – ĝδ(ξ )
∥
∥2 + μ

∥
∥
∥
∥

(
1 + |ξ |2)s/2 e–ψθ

α (ξ )(T–t)

e–ψθ
α (ξ )T

û(ξ , t)
∥
∥
∥
∥

2

. (20)

Denote ûδ
μ(ξ , t) to be the solution of problem (20), then it satisfies the Euler equation

(

e–2|ξ |α (T–t) cos( θπ
2 ) + μ

(
1 + |ξ |2)s e–2|ξ |α (T–t) cos( θπ

2 )

e–2|ξ |αT cos( θπ
2 )

)

ûδ
μ(ξ , t)

= e–|ξ |α (T–t) cos( θπ
2 )+i|ξ |α (T–t) sign(ξ ) sin( θπ

2 )ĝδ(ξ ). (21)

From (21), in the frequency domain the regularized solution ûδ
μ(ξ , t) can be expressed as

ûδ
μ(ξ , t) =

eψθ
α (ξ )(T–t)ĝδ(ξ )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

. (22)

Thus, the regularization solution of problem (1) can be written as

uδ
μ(x, t) =

1√
2π

∫ ∞

–∞
eψθ

α (ξ )(T–t)ĝδ(ξ )e–iξx

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

dξ . (23)

Remark 2.1 Note that in (19) we add the penalty item in the sense of Hs-norm to construct
the regularization solution (23). In fact, if we add the penalty item in the sense of L2-
norm, i.e., in the standard Tikhonov regularization method, the penalty item is added as
‖u(x, t)‖2

L2(R), then the Tikhonov regularization solution can be expressed as

uδ
Tikμ(x, t) =

1√
2π

∫ ∞

–∞
eψθ

α (ξ )(T–t)ĝδ(ξ )e–iξx

1 + μe2(T–t)|ξ |α cos( θπ
2 )

dξ . (24)

In 2014, [35] modified (24) to construct a simplified Tikhonov regularization solution

uδ
STikμ(x, t) =

1√
2π

∫ ∞

–∞
eψθ

α (ξ )(T–t)ĝδ(ξ )e–iξx

1 + μe2T |ξ |α cos( θπ
2 )

dξ . (25)

From (23), (24), and (25) we can find that, in order to overcome the ill-posedness of the
considered problem (i.e., eliminate the high frequency part of function e|ξ |α (T–t) cos θπ

2 ), the
function eψθ

α (ξ )(T–t)

1+μ(1+|ξ |2)se2T |ξ |α cos( θπ
2 )

is a better “kernel” than eψθ
α (ξ )(T–t)

1+μe2(T–t)|ξ |α cos( θπ
2 )

and eψθ
α (ξ )(T–t)

1+μe2T |ξ |α cos( θπ
2 )

.

Note that, as s = 0, our method becomes the simplified Tikhonov method, thus the method
given in this paper can be seen as an interesting extension on the one in [35], which is
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similar to the generalized Tikhonov method in [43]. In 2012, [44] used a similar method
to research a multidimensional inverse source problem for standard heat equation (α = 2).
We point out that this method also can be extended to solve the multidimensional space-
fractional backward diffusion problem. However, because the special process is similar to
one-dimensional case, here we only consider problem (1).

3 Convergence estimate under an a-posteriori rule of the regularization
parameter

This section adopts a kind of a-posteriori rule to select the regularization parameter μ.
This idea comes from [33] and then derives the convergence estimate for the regulariza-
tion method. On the general description for the a-posteriori selection rule of regularized
parameter, we can see the discrepancy principle in [45].

We seek the regularization parameter μ by the equation

∥
∥uδ

μ(x, T) – gδ(x)
∥
∥ = h(δ). (26)

Here, h(δ) > δ will be given later. The following two lemmas will be needed in the conver-
gence estimate of a-posteriori type.

Lemma 3.1 Let 
(μ) = ‖uδ
μ(x, T) – gδ(x)‖ and 0 < h(δ) < ‖gδ‖, then we have the following

conclusions:
(i) For μ ∈ (0, +∞), 
(μ) is a continuous function;

(ii) limμ→0 
(μ) = 0;
(iii) limμ→+∞ 
(μ) = ‖gδ‖;
(iv) For μ ∈ (0, +∞), 
(μ) is a strictly increasing function.

Proof We can easily prove the conclusions of this lemma by taking


(u) =
∥
∥
∥
∥
μ(1 + |ξ |2)se2T |ξ |α cos( θπ

2 )ĝδ(ξ )
1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ

2 )

∥
∥
∥
∥, (27)

here we omit the detailed procedure. Lemma 3.1 means that, as 0 < h(δ) < ‖gδ‖, equation
(26) has a unique solution. �

Lemma 3.2 Assume that a-priori bound condition (14) is valid, then the regularized solu-
tion (23) combined with a-posteriori selection rule (26) determines that the regularization
parameter μ = μ(δ, gδ) satisfies 1

μ
≤ D2

0E2

4(h(δ)–δ)2 , here D0 is a positive constant.

Proof From (26), there holds

h(δ) =
∥
∥
∥
∥
μ(1 + |ξ |2)se2T |ξ |α cos( θπ

2 )ĝδ(ξ )
1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ

2 )

∥
∥
∥
∥

≤
∥
∥
∥
∥

μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

(
ĝδ(ξ ) – ĝ(ξ )

)
∥
∥
∥
∥

+
∥
∥
∥
∥

μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

ĝ(ξ )
∥
∥
∥
∥
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≤ δ +
∥
∥
∥
∥
μ(1 + |ξ |2)seT |ξ |α cos( θπ

2 )(1 + |ξ |2)– p
2 (1 + |ξ |2)

p
2 eT |ξ |α cos( θπ

2 )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

ĝ(ξ )
∥
∥
∥
∥

≤ δ + E sup
ξ∈R

B(ξ ). (28)

By the basic simplification and using the mean value inequality, it can be gotten that

B(ξ ) =
μ(1 + |ξ |2)seT |ξ |α cos( θπ

2 )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

(
1 + |ξ |2)– p

2

=
√

μ(1 + |ξ |2)– p
2

1√
μ

· (1 + |ξ |2)–se–T |ξ |α cos( θπ
2 ) + √

μeT |ξ |α cos( θπ
2 )

≤
√

μ

2
· (1 + |ξ |2)– p–s

2 . (29)

Since 0 ≤ s < p and lim|ξ |→0+(1 + |ξ |2)– p–s
2 = 1, lim|ξ |→+∞(1 + |ξ |2)– p–s

2 = 0, then there ex-
ists D0 > 0 such that B(ξ ) ≤ D0

√
μ/2. Now combining (28), we can derive the result of

Lemma 3.2. �

Theorem 3.3 Suppose that u given by (13) is the exact solution of problem (1), uδ
μ defined

by (23) is the regularization solution. Let the exact data g and measured data gδ satisfy
(18), and the a-priori bound (14) is satisfied.

(i) If the regularization parameter is selected by a-posteriori rule (26) with
h(δ) = δ + δ

1–γ
2 (0 < γ < 1), then we have the following convergence estimate of

logarithmic type:

∥
∥uδ

μ(x, t) – u(x, t)
∥
∥ ≤ DD2

0E2δγ

4
+

√
2E1– t

T
(
2δ + δ

1–γ
2

) t
T

×
(

1
T cos(θπ/2)

ln
1

(2δ + δ
1–γ

2 )

) –p(1– t
T )

α

. (30)

(ii) If the regularization parameter is chosen by a-posteriori rule (26) with
h(δ) = δ +

√
δ ln 1

δ
, then we have the following convergence estimate of double

logarithmic type:

∥
∥uδ

μ(x, t) – u(x, t)
∥
∥ ≤ DD2

0E2

4(ln 1
δ
)2

+
√

2E1– t
T

(

2δ +
√

δ ln
1
δ

) t
T

×
(

1
T cos(θπ/2)

ln
1

(2δ +
√

δ ln 1
δ
)

) –p(1– t
T )

α

, (31)

where D > 0 is a constant, D0 is given in Lemma 3.2.

Proof Using the Parseval theorem, it is clear that

∥
∥uδ

μ(·, t) – u(·, t)
∥
∥ ≤ ∥

∥ûδ
μ(·, t) – ûμ(·, t)

∥
∥ +

∥
∥ûμ(·, t) – û(·, t)

∥
∥. (32)
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For μ ∈ (0, 1) and from (18), we get that

∥
∥ûδ

μ(·, t) – ûμ(·, t)
∥
∥ =

∥
∥
∥
∥

eψθ
α (ξ )(T–t)

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

(
ĝδ(ξ ) – ĝ(ξ )

)
∥
∥
∥
∥

≤ δ

μ(e–(T–t)|ξ |α cos( θπ
2 ) + (1 + |ξ |2)se(T+t)|ξ |α cos( θπ

2 ))
. (33)

By the simple calculation, we notice that lim|ξ |→0+ e–(T–t)|ξ |α cos( θπ
2 ) + (1 + |ξ |2)s ×

e(T+t)|ξ |α cos( θπ
2 ) = 2 and lim|ξ |→+∞ e–(T–t)|ξ |α cos( θπ

2 ) + (1 + |ξ |2)se(T+t)|ξ |α cos( θπ
2 ) = +∞, then

there exists a positive number D such that

∥
∥ûδ

μ(·, t) – ûμ(·, t)
∥
∥ ≤ Dδ/μ. (34)

By (34) and Lemma 3.2, we get

∥
∥uδ

μ(·, t) – uμ(·, t)
∥
∥ ≤ DD2

0E2δ

4(h(δ) – δ)2 . (35)

Now we give the estimate for the second term of (32). It is noticed that

∥
∥K(t)

(
uμ(x, t) – u(x, t)

)∥
∥ =

∥
∥
∥
∥

μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

ĝ(ξ )
∥
∥
∥
∥

≤
∥
∥
∥
∥

μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

(
ĝδ(ξ ) – ĝ(ξ )

)
∥
∥
∥
∥

+
∥
∥
∥
∥

μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

ĝδ(ξ )
∥
∥
∥
∥

≤ δ + h(δ). (36)

In addition, according to a-priori bound condition (14), we have

∥
∥uμ(x, t) – u(x, t)

∥
∥

Hp(R)

=
∥
∥
∥
∥

(
1 + |ξ |2)

p
2 μ(1 + |ξ |2)se2T |ξ |α cos( θπ

2 )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

eψθ
α (ξ )(T–t)̂g(ξ )

∥
∥
∥
∥

≤
∥
∥
∥
∥

(
1 + |ξ |2)

p
2 μ(1 + |ξ |2)se2T |ξ |α cos( θπ

2 )

1 + μ(1 + |ξ |2)se2T |ξ |α cos( θπ
2 )

û(ξ , 0)
∥
∥
∥
∥

≤ ∥
∥u(x, 0)

∥
∥

Hp(R) ≤ E. (37)

By the condition stability result (16), it can be gotten that

∥
∥uμ(x, t) – u(x, t)

∥
∥ ≤ √

2E1– t
T
(
δ + h(δ)

) t
T

(
1

T cos(θπ/2)
ln

1
(δ + h(δ))

) –p(1– t
T )

α

. (38)
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Combining (35) with (38), we can derive that

∥
∥uδ

μ(x, t) – u(x, t)
∥
∥ ≤ DD2

0E2δ

4(h(δ) – δ)2 +
√

2E1– t
T
(
δ + h(δ)

) t
T

×
(

1
T cos(θπ/2)

ln
1

(δ + h(δ))

) –p(1– t
T )

α

. (39)

Finally, for cases (i) and (ii), we can establish the corresponding convergence results (30)
and (31), respectively. �

Remark 3.4 In the normal discrepancy principle [45], the regularization parameter μ is
chosen by the equation ‖uδ

μ(x, T) – gδ(x)‖ = τδ, here τ > 1 is a constant. We find that,
if we adopt this rule to select the regularization parameter, the convergence estimate of
regularization solution can not be easily derived. In view of this, in order to establish the
convergence result of regularized method, here we adopt a-posteriori rule (26) to select the
regularization parameter, which is factually a modified version for the normal discrepancy
principle.

4 Numerical simulations
This section does some numerical experiments to verify the convergence and stability of
our method. Since the analytic solution of problem (1) is generally difficult to be expressed
explicitly, here we solve the following direct problem to construct the final data g(x) by the
finite difference method:

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = xDα
θ u(x, t), –a < x < a, 0 < t < T ,

u(–a, t) = u(a, t) = 0, 0 ≤ t ≤ T ,

u(x, 0) = h(x), –a < x < a,

(40)

where the Riesz–Feller fractional derivative xDα
θ is defined by (6)–(9).

We choose a = 5, T = 1, denote 
t = T
L and 
x = 2a

M to be the step sizes for time and
space variables, respectively. The grid points in the time interval are labeled tl = l
t, l =
0, 1, 2, . . . , L, the grid points in the space interval are xi = –a + i
x, i = 0, 1, 2, . . . , M, and
setting ul

i = u(xi, tl).
We approximate ut at (xi, tl) as follows:

ut(xi, tl) ≈ ul+1
i – ul

i

t

, i = 1, 2, . . . , M – 1, (41)

and xDα
θ u at (xi, tl) is approximated as in [21]. The special scheme has four cases:

(i) As 0 < α < 1 and |θ | ≤ α,

xDα
θ u(xi, tl) ≈ –

(c+
∑i

k=0(–1)k(α

k
)
ul

i–k + c–
∑M–i

k=0 (–1)k(α

k
)
ul

i+k)
(
x)α

,

i = 1, 2, . . . , M – 1. (42)
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(ii) As α = 1 and –1 < θ ≤ 0,

xDα
θ u(xi, tl) ≈ –

cos( θπ
2 )(

∑i
k=1

ul
i–k

k(k+1) +
∑M–i

k=1
ul

i+k
k(k+1) – 2ul

i)
π
x

+ sin

(
θπ

2

)
ul

i – ul
i–1


x
,

i = 1, 2, . . . , M – 1. (43)

(iii) As α = 1 and 0 ≤ θ < 1,

xDα
θ u(xi, tl) ≈ –

cos( θπ
2 )(

∑i
k=1

ul
i–k

k(k+1) +
∑M–i

k=1
ul

i+k
k(k+1) – 2ul

i)
π
x

+ sin

(
θπ

2

)
ul

i+1 – ul
i


x
,

i = 1, 2, . . . , M – 1. (44)

(iv) As 1 < α < 2 and |θ | ≤ 2 – α,

xDα
θ u(xi, tl) ≈ –

(c+
∑i+1

k=0(–1)k(α

k
)
ul

i+1–k + c–
∑M–i+1

k=0 (–1)k(α

k
)
ul

i–1+k)
(
x)α

,

i = 1, 2, . . . , M – 1, (45)

where c+ = sin((α–θ )π/2)
sin(απ ) , c– = sin((α+θ )π/2)

sin(απ ) . Each case above combines with the boundary con-
dition

ul
0 = ul

M = 0, l = 1, 2, . . . , L, (46)

and the initial condition

u0
i = h(xi), i = 0, 1, 2, . . . , M. (47)

Thus, the final data is given by the initial condition

g(xi) = u(xi, T) ≈ uL
i , i = 0, 1, 2, . . . , M. (48)

The measured data is chosen by the following random form:

gδ(x) = g(x) + εg(x)
(
2 rand

(
size

(
g(x)

))
– 1

)
, (49)

with δ = ε‖g‖, here ε is the noisy level.
For the fixed 0 ≤ t < T , in order to make the sensitivity analysis for numerical results,

we calculate the relative error defined by

ε(u) =
∥
∥u(x, t) – uδ

μ(x, t)
∥
∥/

∥
∥u(x, t)

∥
∥. (50)

In the computational procedure, we always take 
x = 1/100, 
t = 1/10,000, M = 100, L =
10,000, and ε = 0.01. The exact and regularized solutions are calculated by (13) and (23),
respectively; the regularized parameter is chosen by a-posteriori rule (26) with h(δ) = δ +
δ

1–γ
2 (0 < γ < 1). We shall make a comparison for the computational results of regularized

and exact solutions.
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Example In the direct problem (40), we take the initial distribution that satisfies h(x) ∈
L2(R) with

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2x + 4, –2 ≤ x ≤ 0,

–2x + 4, 0 ≤ x ≤ 2,

0, others.

(51)

Figure 1 At t = 0.6 and 0, α = 0.5, s = 2, γ = 0.1, ε = 0.01: Exact and regularized solutions for different θ . Point:
exact solution; Star line: regularized solution with θ = 0 and μ = 3.3433e–04; Loop: θ = 0.01 and
μ = 3.3485e–04; Plus: θ = 0.1 and μ = 3.2330e–04; Diamond: θ = –0.01 and μ = 3.3346e–04; Multiplication:
θ = –0.1 and μ = 3.0930e–04
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Figure 2 At t = 0.6 and 0, α = 1, s = 2, γ = 0.1, ε = 0.01: Exact and regularized solutions for different θ . Point:
exact solution; Star: regularized solution with θ = 0 and μ = 1.8960e–04; Loop: θ = 0.01 and μ = 1.9180e–04;
Plus: θ = 0.1 and μ = 2.0983e–04; Diamond: θ = –0.01 and μ = 1.9022e–04; Multiplication: θ = –0.1 and
μ = 1.9575e–04

Numerical results of exact and regularized solutions are shown in Figs. 1–3. For the fixed
α = 0.5, s = 2, γ = 0.1, ε = 0.01, Fig. 1 presents the numerical results for different θ at
t = 0.6 and 0. Point line: exact solution; Star line: regularized solution with θ = 0 and μ =
3.3433e–04; Loop line: regularized solution with θ = 0.01 and μ = 3.3485e–04; Plus line:
regularized solution with θ = 0.1 and μ = 3.2330e–04; Diamond line: regularized solution
with θ = –0.01 and μ = 3.3346e–04; Multiplication line: regularized solution with θ = –0.1
and μ = 3.0930e–04.
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Figure 3 At t = 0.6 and 0, α = 1.5, s = 2, γ = 0.1, ε = 0.01: Exact and regularized solutions for different θ . Point:
exact solution; Star: regularized solution with θ = 0 and μ = 2.8407e–04; Loop: θ = 0.01 and μ = 2.8439e–04;
Plus: θ = 0.1 and μ = 2.9321e–04; Diamond: θ = –0.01 and μ = 2.8389e–04; Multiplication: θ = –0.1 and
μ = 2.8831e–04

For the fixed α = 1, s = 2, γ = 0.1, ε = 0.01, Fig. 2 gives the numerical results for different θ

at t = 0.6 and 0. Point line: exact solution; Star line: regularized solution with θ = 0 and μ =
1.8960e–04; Loop line: regularized solution with θ = 0.01 and μ = 1.9180e–04; Plus line:
regularized solution with θ = 0.1 and μ = 2.0983e–04; Diamond line: regularized solution
with θ = –0.01 and μ = 1.9022e–04; Multiplication line: regularized solution with θ = –0.1
and μ = 1.9575e–04.

At t = 0.6 and 0, α = 1.5, s = 2, γ = 0.1, ε = 0.01, numerical results for different θ are
shown in Fig. 3. Point line: exact solution; Star line: regularized solution with θ = 0 and μ =
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Table 1 At t = 0: α = 1.5, θ = 0, s = 2, γ = 0.2, the relative errors for various ε

ε 0.0005 0.001 0.005 0.01 0.05
μ 4.3767e–05 8.8352e–05 2.7631e–04 4.3408e–04 7.1762e–04
ε(u) 0.0904 0.0948 0.1214 0.1391 0.1660

Table 2 At t = 0: θ = 0, s = 2, γ = 0.2, ε = 0.01, the relative errors for various α

α 1.1 1.2 1.3 1.4 1.5
μ 0.0010 6.6014e–04 5.3472e–04 4.7103e–04 4.3408e–04
ε(u) 0.2732 0.1840 0.1531 0.1415 0.1391

Table 3 At t = 0: α = 1.5, θ = 0, γ = 0.2, ε = 0.01, the relative errors for various s

s 0 0.5 0.75 1.0 2.0 3.0 4.0
μ 0.0041 0.0025 0.0019 0.0014 4.3408e–04 1.2211e–04 3.3329e–05
ε(u) 0.1230 0.1289 0.1313 0.1333 0.1391 0.1429 0.1456

Table 4 At t = 0: α = 1.5, θ = 0, s = 2, ε = 0.01, the relative errors for various γ

γ 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6
μ 1.8930e–04 2.2779e–04 2.8407e–04 4.3408e–04 6.5904e–04 0.0010 0.0015 0.0023
ε(u) 0.1105 0.1158 0.1229 0.1391 0.1580 0.1794 0.2034 0.2297

2.8407e–04; Loop line: regularized solution with θ = 0.01 and μ = 2.8439e–04; Plus line:
regularized solution with θ = 0.1 and μ = 2.9321e–04; Diamond line: regularized solution
with θ = –0.01 and μ = 2.8389e–04; Multiplication line: regularized solution with θ = –0.1
and μ = 2.8831e–04.

Figures 1–3 show that the simulation effect of this method is feasible and acceptable in
solving the considered problem. Meanwhile we can find that, for the fixed α, s, γ , ε, the
numerical result becomes well as θ tends to zero.

At t = 0, we also investigate the influences of ε, α, s, and γ on the numerical result.
For α = 1.5, θ = 0, s = 2, γ = 0.2, the relative errors for various ε are shown in Table 1.
Table 1 shows that the better numerical result is the smaller ε becomes, this means the
convergence of our method.

For θ = 0, s = 2, γ = 0.2, ε = 0.01, the relative errors for various α are presented in Table 2.
Table 2 indicates that the numerical procedure is stable to the fractional order α.

For α = 1.5, θ = 0, γ = 0.2, ε = 0.01, the errors for various s are given in Table 3. Table 3
shows that the smaller s is taken, the better numerical results are. Meanwhile, as s = 0, our
method becomes the simplified Tikhonov method, we find that, under the a-posteriori
choice rule of regularization parameter, the calculated effect of our method is similar with
the simplified Tikhonov method.

For α = 1.5, θ = 0, s = 2, ε = 0.01, the relative errors for various γ are shown in Table 4.
From Table 4 we can note that the result becomes well as γ becomes small. Then, for the
fixed α, θ , s, ε, in order to obtain the satisfied numerical result, γ should relatively be taken
as a smaller positive number that belongs to the interval (0, 1).

5 Conclusions
A Riesz–Feller space-fractional backward diffusion problem is investigated. We firstly con-
struct a generalized Tikhonov method to recover the continuous dependence of solution
on the given final data. And then the convergence estimates of logarithmic and double
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logarithmic types for the regularized method are derived by adopting a-posteriori choice
rules of regularization parameter. Finally, we verify the convergence and stability for the
proposed method by making some numerical experiments.
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