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Abstract
The fractional diffusion equations can be discretized by applying the implicit finite
difference scheme and the unconditionally stable shifted Grünwald formula. Hence,
the generating linear system has a real Toeplitz structure when the two diffusion
coefficients are non-negative constants. Through a similarity transformation, the
Toeplitz linear system can be converted to a generalized saddle point problem. We
use the generalization of a parameterized inexact Uzawa (GPIU) method to solve such
a kind of saddle point problem and give a new algorithm based on the GPIU method.
Numerical results show the effectiveness and accuracy for the new algorithm.
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1 Introduction
The fractional differential operator is suitable for describing the memory, genetic, me-
chanical and electrical properties of various materials. Compared with the classical in-
teger differential operator, it can more concisely and accurately describe the biological,
mechanical and physical processes with historical memory and spatial global correlation
characteristics, such as abnormal diffusion of particles, quantization problem of non-local
field theory, the fractional capacitance theory, universal voltage shunt, chaotic circuit anal-
ysis, physical semiconductors field, dispersion in porous media, physical and engineering
issues related to fractal dimensions, and non-Newtonian fluid mechanics.

The fractional diffusion equations can be abstracted from many practical problems, such
as a random walk model describing the competition between sub-diffusion and super-
diffusion Three different types of fractional diffusion equations can be derived according
to the difference in particle waiting time and jumping steps: when the mean of the waiting
time of each step is infinite and the squared mean of the jump steps is limited, the random
walk model describes the abnormal sub-diffusion phenomenon, and the time fractional
diffusion equation is derived accordingly; when the mean of the waiting time is limited
and the squared mean of the jump steps is infinite, the random walk model describes the
super-diffusion phenomenon, and the spatial fractional-order diffusion equation is de-
rived accordingly; when the mean of the waiting time and the squared mean of the jump
steps are both infinite, the random walk model describes the phenomenon of competition
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between sub-diffusion and super-diffusion, and the fractional diffusion equation in time
and space is derived accordingly; using the fractional convection-diffusion equations to
simulate Levy’s motion is very effective, it can more accurately simulate the solute motion
process with long tail behavior; when studying Eulerian estimation of solute transport in
porous media, the fractional-order Fick law can be used to replace the traditional Fick law
to obtain the fractional-order convection-diffusion equations; in the application of non-
Newtonian fluid mechanics, to solve the analytical solution of a material model problem
between the Hook solid model and Newtonian fluid model, a special function related to
fractional calculus needs to be applied; in the early days, the problem of dynamic response
to broadband crust induced by earthquakes that was hardly affected by velocity can be
described by a fractional linear rheological solid model. It is precisely because of the ad-
vantages of fractional derivatives and the wide application of fractional diffusion equations
(FDEs) (1) in groundwater contaminant transport [1, 2], turbulent flow [3], image process-
ing [4], finance [5], physics [6] and other fields, that people have drawn extensive attention
to its research.

Considerable numerical methods have been developed as the major ways for solving
FDEs [7–12]. However, some salient features of fractional differential operators lead to
the unconditional instability [13]. In addition, most numerical methods for finite differ-
ence equations (FDEs) can generate a full coefficient matrix, which requires the compu-
tational cost of O(N3) and the storage of O(N2), where N is the number of grid points
[14]. In contrast, the second-order diffusion equations which usually contribute to sparse
coefficient matrices can be solved efficiently by fast iteration methods with computational
complexity O(N).

To guarantee the stability, Meerschaert and Tadjeran [13] proposed a shifted Grünwald
discretization to approximate fractional diffusion equations and it has been proved that
it is actually unconditionally stable. Then, based on the Meerschaert–Tadjeran method, a
special structure of the full coefficient matrices was presented in [14]. The method main-
tained a Toeplitz-like structure and reduced the storage requirement from O(N2) to O(N).
Furthermore, the matrix-vector multiplication for the Toeplitz matrix can be calculated by
the fast Fourier transform (FFT) with O(N log N) operations [15]. As a result, fast numeri-
cal methods for solving fractional equations with the shifted Grünwald formula have been
developed, including the conjugate gradient normal residual (CGNR) methods [16, 17],
the preconditioned CGNR (PCGNR) methods which employ some circulant precondi-
tioners [17–19] and the multigrid method [20]. If the diffusion coefficients are constant,
the full coefficient matrix originating from the Meerschaert–Tadjeran method will be non-
Hermitian positive definite. Therefore, the Hermitian and skew-Hermitian splitting (HSS)
iteration and the corresponding preconditioned HSS (PHSS) iteration [21] have also been
developed to solve fractional equations.

Since the full coefficient matrix is also a real Toeplitz matrix, the FDE can be transformed
into a generalized saddle point problem based on some properties of the real Toeplitz ma-
trix [22]. Therefore, the generalized parameterized inexact Uzawa (GPIU) method [23, 24]
is suitable for solving this new saddle point problem. However, it shows some differences
from the traditional GPIU method. This method should store three N/2 order matrices.
Although these matrices have symmetric structures (which will require less storage space),
the complexity is less than O(N2). In the meantime, the complexity of calculation is also
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O(N2) since the method needs to compute the multiplication of several N/2 order matri-
ces.

The framework of this paper is as follows. In Sect. 2, we introduce the background of
the discretization for the FDEs. Then the real Toeplitz linear system is converted to a
generalized saddle point problem by similarity transformation in Sect. 3. In Sect. 4, the
GPIU method is considered to solve this kind of generalized saddle point problem and its
convergence is analyzed. Besides, a GPIU algorithm is presented. In Sect. 5, numerical ex-
amples are performed to illustrate the effectiveness and power of our new method. Finally,
conclusions are given in Sect. 6.

2 The depiction of FDEs and finite difference discretization
Firstly, an initial-boundary value problem of the FDEs is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d+(x, t) ∂αu(x,t)

∂+xα + d–(x, t) ∂αu(x,t)
∂–xα + f (x, t),

x ∈ (xL, xR), t ∈ (0, T],

u(xL, t) = u(xR, t) = 0, 0 ≤ t ≤ T ,

u(x, 0) = u0(x), x ∈ [xL, xR],

(1)

where α ∈ (1, 2) is the order of fractional derivatives, f (x, t) is the source term and diffusion
coefficient functions d± ≥ 0 with d+ + d– �= 0. The left-sided and the right-sided fractional
derivatives ∂αu(x,t)

∂+xα and ∂αu(x,t)
∂–xα of (1) have the same definition as the Grünwald form [25]

∂αu(x, t)
∂+xα

= lim
�x→0+

1
�xα

�(x–xL)/�x�∑

k=0

g(α)
k u(x – k�x, t),

∂αu(x, t)
∂–xα

= lim
�x→0–

1
�xα

�(xR–x)/�x�∑

k=0

g(α)
k u(x + k�x, t),

where �x� denotes the floor of x and the Grünwald weights g(α)
k are the alternating frac-

tional binomial coefficient given as

⎧
⎨

⎩

g(α)
0 = 1,

g(α)
k = (–1)k( α

k
)
, k ∈ N+,

(2)

which can be evaluated by the following recursive form:

g(α)
k+1 =

(

1 –
α + 1
k + 1

)

g(α)
k , k ∈ N+.

Besides, the coefficients g(α)
k satisfy the following properties [13, 14, 17, 21] when

1 < α < 2:

⎧
⎨

⎩

g(α)
0 = 1, g(α)

1 = –α < 0, 1 ≥ g(α)
2 ≥ g(α)

3 ≥ · · · ≥ 0,
∑∞

k=0 g(α)
k = 0,

∑m
k=0 g(α)

k < 0, (m ≥ 1).
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Let N and M be positive integers, then �x = xR–xL
N+1 and �t = T

M are the sizes of spatial
grids and time steps, respectively. Additionally, the spatial and temporal partition are de-
fined as xi = xL + i�x for i = 0, 1, . . . , N + 1 and tm = m�t for m = 0, 1, . . . , M. We also let
u(m)

i = u(xi, tm), d(m)
±,i = d±(xi, tm) and f (m)

i = f (xi, tm).
Consider the shifted Grünwald approximations [13, 17, 21]:

∂αu(xi, tm)
∂+xα

=
1

�xα

i+1∑

k=0

g(α)
k u(m)

i–k+1 + O(�x),

∂αu(xi, tm)
∂–xα

=
1

�xα

N–i+2∑

k=0

g(α)
k u(m)

i+k–1 + O(�x),

where g(α)
k is defined in (2) and the corresponding implicit finite difference scheme in (1)

can be modified as follows:

u(m)
i – u(m–1)

i
�t

=
d(m)

+,i

�xα

i+1∑

k=0

g(α)
k u(m)

i–k+1 +
d(m)

–,i

�xα

N–i+2∑

k=0

g(α)
k u(m)

i+k–1 + f (m)
i . (3)

Let u(m) = [u(m)
1 , u(m)

2 , . . . , u(m)
N ]T , f (m) = [f (m)

1 , f (m)
2 , . . . , f (m)

N ]T and I ∈ RN×N be an identity
matrix. Then the scheme (3) can construct the following equations:

(
�xα

�t
I + A(m)

)

u(m) =
�xα

�t
u(m–1) + �xαf (m) (4)

and

A(m) = D(m)
+ Gα + D(m)

– GT
α , (5)

where D(m)
± = diag(d(m)

±,1, . . . , d(m)
±,N ) and

Gα = –

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(α)
1 g(α)

0 0 · · · 0 0
g(α)

2 g(α)
1 g(α)

0 0 · · · 0
... g(α)

2 g(α)
1

. . . . . .
...

...
. . . . . . . . . . . . 0

g(α)
N–1

. . . . . . . . . . . . g(α)
0

g(α)
N g(α)

N–1 · · · · · · g(α)
2 g(α)

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

N×N

. (6)

It is obvious that Gα is a Toeplitz matrix [15] and the coefficient matrix A(m) is a full
Toeplitz-like matrix, which is non-symmetric when d+ �= d– and the matrix-vector multi-
plication for the A(m) can be obtained in O(N log N) operations by the fast Fourier trans-
form (FFT).

We can define vN ,M = �xα

�t = (xR – xL)αT–1 M
(N+1)α , related to the numbers of time steps

and grid points. The linear system (4) is represented as follows:

M(m)u(m) = b(m–1), (7)
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where

M(m) =
�xα

�t
I + A(m) = vN ,MI + D(m)

+ Gα + D(m)
– GT

α (8)

and

b(m–1) = vN ,M
(
u(m–1) + �tf (m)).

As the coefficient matrix M(m) in (8) is a strictly diagonally dominant M-matrix [14], we
know the matrix M(m)+M(m)T

2 is also a non-singular M-matrix where M(m)T is used to denote
the transposition of the matrix M(m). For the reason that every non-singular symmetric M-
matrix is positive definite, M(m)+M(m)T

2 is a symmetric positive definite matrix. Therefore,
M(m) is also positive definite (see [21, 26]).

3 The transformation for the Toeplitz matrix M(m)

As mentioned in Sect. 2, the coefficient matrix M(m) is a real positive definite Toeplitz-like
matrix. We assume that the diffusion coefficient functions are two non-negative constants,
i.e., d(m)

+,i = d+ ≥ 0, d(m)
–,i = d– ≥ 0, but d+ + d– �= 0. Then M(m) becomes a real non-symmetric

positive definite Toeplitz matrix. In addition, M is appropriately chosen according to N
and satisfies the limit of vN ,M away from 0.

Then we transform the Toeplitz linear system (7) into a generalized saddle point problem
by constructing an orthogonal matrix to deal with M(m). The first row and column of the
real N × N Toeplitz matrix M(m) can be indicated as

[
vN ,M + d+g(α)

1 + d–g(α)
1 , d+g(α)

0 + d–g(α)
2 , d–g(α)

3 , . . . , d–g(α)
N

]

and

[
vN ,M + d+g(α)

1 + d–g(α)
1 , d+g(α)

2 + d–g(α)
0 , d+g(α)

3 , . . . , d+g(α)
N

]T ,

respectively.
We use the Hermitian and skew-Hermitian splitting (HSS) method to split M(m) and get

M(m) = H (m) + S(m), (9)

where H (m) = M(m)+M(m)T

2 is symmetric positive definite and S(m) = M(m)–M(m)T

2 is skew-
symmetric. Interestingly, H (m) is a centrosymmetric Toeplitz matrix and S(m) is a skew-
centrosymmetric Toeplitz matrix. Denote JN = [eN , eN–1, . . . , e1], where ei ∈ RN is the col-
umn vector with the ith row being 1, i.e., JN is a permutation matrix where 1 is on the
counter-diagonal and 0 is elsewhere. Thus the matrices H (m) and S(m) are able to be re-
placed by

H (m) = JN H (m)JN and S(m) = –JN S(m)JN ,

respectively.
Considering that N is even or odd, we discuss the structures of H (m) and S(m) in detail.
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Case I: N is even, let N = 2m. Then H (m) can be rewritten as

H (m) =

[
E JmFJm

F JmEJm

]

,

where E ∈ Rm×m is a symmetric Toeplitz matrix whose first column can be given as

[

vN ,M + (d+ + d–)g(α)
1 ,

d+ + d–

2
(
g(α)

0 + g(α)
2

)
,

d+ + d–

2
g(α)

3 , . . . ,
d+ + d–

2
g(α)

m

]T

,

and F ∈ Rm×m is a Toeplitz matrix whose first row and column are as follows:

[
d+ + d–

2
g(α)

m+1,
d+ + d–

2
g(α)

m ,
d+ + d–

2
g(α)

m–1, . . . ,
d+ + d–

2
(
g(α)

0 + g(α)
2

)
]

,

[
d+ + d–

2
g(α)

m+1,
d+ + d–

2
g(α)

m+2,
d+ + d–

2
g(α)

m+3, . . . ,
d+ + d–

2
g(α)

N

]T

,

respectively.
Analogously, S(m) can be rewritten as

S(m) =

[
G –JmLJm

L –JmGJm

]

,

where G ∈ Rm×m is a skew-symmetric Toeplitz matrix whose first column can be given as

[

0,
d+ – d–

2
(
g(α)

2 – g(α)
0

)
,

d+ – d–

2
g(α)

3 , . . . ,
d+ – d–

2
g(α)

m

]T

,

and L ∈ Rm×m is a Toeplitz matrix whose first row and column are as follows:

[
d+ – d–

2
g(α)

m+1,
d+ – d–

2
g(α)

m ,
d+ – d–

2
g(α)

m–1, . . . ,
d+ – d–

2
(
g(α)

2 – g(α)
0

)
]

,

[
d+ – d–

2
g(α)

m+1,
d+ – d–

2
g(α)

m+2,
d+ – d–

2
g(α)

m+3, . . . ,
d+ – d–

2
g(α)

N

]T

,

respectively.
We give an orthogonal matrix P defined as

P =
√

2
2

[
Im Im

Jm –Jm

]

,

then multiply the left and right sides of (9) by PT from the left and P from the right, re-
spectively, we have the new forms of H̃ (m) and S̃(m):

H̃m = PT H (m)P =

[
E + JmF 0

0 E – JmF

]
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and

S̃(m) = PT S(m)P =

[
0 G + JmL

G – JmL 0

]

.

Hence, let M̃(m) = PT M(m)P, ũ(m) = PT u(m), and b̃(m–1) = PT b(m–1), we can rewrite Eq. (7)
as the following linear system:

M̃(m)ũ(m) = b̃(m–1) (10)

and we have

M̃(m) = PT M(m)P = PT H (m)P + PT S(m)P = H̃ (m) + S̃(m) =

[
E + JmF G + JmL
G – JmL E – JmF

]

.

For simplicity, let B = E + JmF , C = E – JmF and W = –G + JmL, then we can find that

W T = (–G + JmL)T = –GT + LT Jm = G + JmL.

The coefficient matrix M̃(m) can be expressed as

M̃(m) =

[
B W T

–W C

]

, (11)

and M̃(m) is real non-symmetric positive definite because M(m) is real positive definite.
Moreover, B and C are both symmetric positive definite matrices because H̃ (m) is a sym-

metric positive definite matrix. So the linear system (7) is transformed into a generalized
saddle point problem under the assumption of case I.

Case II: N is an odd number, let N = 2m + 1. Then the matrix H (m) can be written as

H (m) =

⎡

⎢
⎣

E Jmz1 JmFJm

zT
1 Jm vN ,M + (d+ + d–)g(α)

1 zT
1

F z1 JmEJm

⎤

⎥
⎦ ,

where E, F and Jm are similar to the above, and the column vector z1 is expressed as follows:

[
d+ + d–

2
g(α)

m+1,
d+ + d–

2
g(α)

m , . . . ,
d+ + d–

2
(
g(α)

0 + g(α)
2

)
]T

.

In addition, S(m) can be expressed as

S(m) =

⎡

⎢
⎣

G Jmz2 –JmLJm

–zT
2 Jm 0 zT

2

L –z2 –JmGJm

⎤

⎥
⎦ ,

where G and L are similar to the above, and the column vector z2 is expressed as follows:

[
d– – d+

2
g(α)

m+1,
d– – d+

2
g(α)

m , . . . ,
d– – d+

2
(
g(α)

2 – g(α)
0

)
]T

.
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Then the orthogonal matrix is defined as

P =
√

2
2

⎡

⎢
⎣

Im 0 Im

0
√

2 0
Jm 0 –Jm

⎤

⎥
⎦ .

Multiplying the left and right sides of (9) by PT from the left and P from the right, re-
spectively, we have the new forms of H̃ (m) and S̃(m) as

H̃ (m) = PT H (m)P =

⎡

⎢
⎣

E + JmF
√

2Jmz1 0√
2zT

1 Jm vN ,M + (d+ + d–)g(α)
1 0

0 0 E – JmF

⎤

⎥
⎦

and

S̃(m) = PT S(m)P =

⎡

⎢
⎣

0 0 G + JmL
0 0 –

√
2zT

2 Jm

G – JmL
√

2Jmz2 0

⎤

⎥
⎦ .

The Toeplitz linear system (7) can also be constructed as a generalized saddle point
problem which has a form similar to (10), where

B =

[
E + JmF

√
2Jmz1√

2zT
1 Jm vN ,M + (d+ + d–)g(α)

1

]

, C = E – JmF , W =

[
G + JmL

–
√

2zT
2 Jm

]T

.

All in all, no matter what positive integer N we choose, the scheme for the FDEs is able
to be transformed into a generalized saddle point problem.

4 A GPIU method on the transformed saddle point problem
By splitting the new coefficient matrix M̃(m) in the linear system (10), we get

M̃(m) = X(m) – Y (m), (12)

where

X(m) =

[
Q1 + B 0

–W + Q3 Q2

]

and Y (m) =

[
Q1 –W T

Q3 Q2 – C

]

,

here the definitions of B, C and W are given in the above section, Q1 ∈ R�N/2� is a sym-
metric positive definite matrix, Q2 ∈ R�N/2� is a symmetric positive definite matrix, and
Q3 ∈ R�N/2�×�N/2� is arbitrary, where �N/2� and �N/2� represents the ceil and the floor of
N/2, respectively.

Considering the GPIU method [23, 24], we choose Q2 = C/δ where δ > 0, so Y (m) can be
rewritten as

Y (m) =

[
Q1 –W T

Q3 (1 – δ)Q2

]

.
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Thus, the linear system (10) is redefined by the splitting form of (12) as

[
Q1 + B 0

–W + Q3 Q2

]

ũ(m)
n+1 =

[
Q1 –W T

Q3 (1 – δ)Q2

]

ũ(m)
n + b̃(m–1). (13)

The form of the iteration matrix corresponding to (13) is as follows:

W =

[
Q1 + B 0

–W + Q3 Q2

]–1 [
Q1 –W T

Q3 (1 – δ)Q2

]

. (14)

Denote by ρ(W) the spectral radius of the iteration matrix W , so Eq. (13) converges if
and only if ρ(W) < 1.

Let λ be an eigenvalue of W and [ũH
x , ũH

y ]H be the corresponding eigenvector with ũx ∈
C�N/2� and ũy ∈ C�N/2�, then we obtain

W

[
ũx

ũy

]

= λ

[
ũx

ũy

]

,

Or, equivalently,

⎧
⎨

⎩

Q1ũx – W T ũy = λ(Q1 + B)ũx,

Q3ũx + (1 – δ)Q2ũy = λ(–W + Q3)ũx + λQ2ũy.
(15)

Aiming to obtain the convergence condition, the lemmas and theorem as follows are
presented.

Lemma 4.1 Suppose that B, C are symmetric positive definite, Q1 is symmetric positive
semidefinite, Q2 = C/δ is symmetric positive definite where δ > 0, and Q3 is arbitrary. If λ

is an eigenvalue of W defined by (14) and [ũH
x , ũH

y ]H is the corresponding eigenvector, where
ũx ∈ C�N/2� and ũy ∈ C�N/2�, then

(a) λ �= 1,
(b) when W is full of row rank, ũx is a non-zero vector,
(c) when W is not full of row rank

(i) if λ �= 1 – δ, ũx is a non-zero vector;
(ii) if λ = 1 – δ, ũx can be a zero vector, and λ = 1 – δ is at least �N/2� – r(W )

eigenvalues of W ; where r(W ) represents the rank of matrix W and
r(W ) = r(W T ).

Proof (a) If λ = 1, then we have

⎧
⎨

⎩

Bũx + W T ũy = 0,

–W ũx + δQ2ũy = 0.

We can rewrite the system as

[
B W T

–W C

][
ũx

ũy

]

= 0.
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Evidently, the coefficient matrix is non-singular, so [ũH
x , ũH

y ]H = 0, which is contradictory,
so λ �= 1.

(b) If ũx = 0, then according to (15) we have

⎧
⎨

⎩

W T ũy = 0,

[λ – (1 – δ)]Q2ũy = 0.
(16)

When W is full of row rank, according to the first equation of (16), we have ũy = 0. This
is a contradiction.

(c) When W is not full of row rank, let ũx = 0.
(i) If λ �= 1 – δ, according to the second equation of (16) and Q2 is symmetric positive

definite, we obtain ũy = 0, which is a contradiction.
(ii) If λ = 1 – δ, the fundamental set of solution can be obtained by the first equation

of (16) on ũy which consists of �N/2� – r(W ) non-zero vector solutions, i.e., λ = 1 – δ

is at least �N/2� – r(W ) eigenvalues, where r(W ) represents the rank of matrix W and
r(W ) = r(W T ). �

Lemma 4.2 Assume that B, C are symmetric positive definite, Q1 is symmetric positive
semidefinite, Q2 = C/δ is symmetric positive definite where δ > 0, and Q3 is arbitrary. Let
λ be an eigenvalue of W and [ũH

x , ũH
y ]H be the corresponding eigenvector with ũx ∈ C�N/2�

and ũy ∈ C�N/2�. If ũy = 0,
(a) when W is full of row rank, then 0 ≤ λ < 1,
(b) when W is not full of row rank, then |λ| < 1 if and only if 0 < δ < 2.

Proof (a) If ũy = 0, from (15), we obtain

⎧
⎨

⎩

Q1ũx – λ(Q1 + B)ũx = 0,

Q3ũx – λ(–W + Q3)ũx = 0.
(17)

When W is full of row rank, since λ �= 1 and ũx �= 0, from Lemma 4.1, we denote

α =
ũH

x Q1ũx

ũH
x ũx

≥ 0, β =
ũH

x Bũx

ũH
x ũx

> 0.

Through multiplying the both sides of the first equation in (17) by ũH
x

ũH
x ũx

from the left, we
get

0 ≤ λ =
α

α + β
< 1.

(b) When W is not full of row rank, if λ �= 1 – δ, then ũx �= 0 from Lemma 4.1. As λ �= 1,
in the same way as with (a), we get 0 ≤ λ < 1.

If λ = 1 – δ, we rewrite the system (17) as

⎧
⎨

⎩

[δQ1 – (1 – δ)B]ũx = 0,

[δQ3 + (1 – δ)W ]ũx = 0.



Shen et al. Advances in Difference Equations        (2020) 2020:398 Page 11 of 17

Thus, ũx ∈ null[δQ1 –(1–δ)B] and ũx ∈ null[δQ3 +(1–δ)W ], where null[x] represents the
null space of the corresponding matrix. For guaranteeing that |λ| < 1, we have |1 – δ| < 1,
i.e., 0 < δ < 2.

Moreover, we get |λ| < 1 if and only if 0 < δ < 2. �

Lemma 4.3 ([23, 27]) If φ and ϕ are real numbers, the sufficient and necessary condition
for the roots of the real quadratic equation x2 + ϕx + φ = 0 to satisfy |x| < 1 is that |φ| < 1
and |ϕ| < 1 + φ.

In order to ensure the convergence of the iteration method (13), the following theorems
are used to give the necessary and sufficient conditions.

Theorem 4.1 Suppose that B, C are symmetric positive definite, Q1 is symmetric posi-
tive semidefinite, Q2 = C/δ is symmetric positive definite where δ > 0, and Q3 is such that
W T Q–1

2 Q3 is symmetric. Then the iteration method (13) is convergent if and only if

0 < δ < 2 and (δ – 2)α +
δ – 2

2
β +

1
2
γ < τ < δα + β ,

where

α =
ũH

x Q1ũx

ũH
x ũx

≥ 0, β =
ũH

x Bũx

ũH
x ũx

> 0,

γ =
ũH

x W T Q–1
2 W ũx

ũH
x ũx

≥ 0, τ =
ũH

x W T Q–1
2 Q3ũx

ũH
x ũx

,

and [ũH
x , ũH

y ]H be a corresponding eigenvector where ũx ∈ C�N/2� and ũy ∈ C�N/2�.

Proof Let λ be an eigenvalue of the iteration matrix W and [ũH
x , ũH

y ]H be its corresponding
eigenvector with ũx ∈ C�N/2� and ũy ∈ C�N/2�. By Lemma 4.1, we know λ �= 1.

If λ = 1 – δ, then (15) results in

⎧
⎨

⎩

[δQ1 – (1 – δ)B]ũx = W T ũy,

[(1 – δ)W + δQ3]ũx = 0.
(18)

Equivalently, ũx ∈ null[(1 – δ)W + δQ3], ũy = (WW T )–1[δWQ1 – (1 – δ)WB]ũx when W is
full of row rank, where null[·] represents the null space of the corresponding matrix. Then
λ = 1 – δ is an eigenvalue of the iteration matrix W .

When W is not full of row rank, ũx ∈ null[(1 – δ)W + δQ3] and there exist �N/2� – r(W )
non-zero eigenvectors of ũy corresponding to λ = 1 – δ which are at least �N/2� – r(W )
eigenvalues of the iteration matrix W . Particularly, when ũx is the zero vector, it has been
introduced in Lemma 4.1.

If λ �= 1 – δ, we have ũx �= 0 from the Lemma 4.1, and (15) can be rewritten as

⎧
⎨

⎩

Q1ũx – λ(Q1 + B)ũx = W T ũy,

ũy = 1
(1–δ)–λ

Q–1
2 [λ(–W + Q3) – Q3]ũx.

(19)
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Eliminating ũy in (19), we obtain

[
(1 – δ) – λ

][
Q1 – λ(Q1 + B)

]
ũx = W T Q–1

2
[
λ(–W + Q3) – Q3

]
ũx. (20)

Then multiplying the left and right sides of (20) by ũH
x

ũH
x ũx

from the left, we obtain

[
(1 – δ) – λ

][
α – λ(α + β)

]
= λ(–γ + τ ) – τ , (21)

where

α =
ũH

x Q1ũx

ũH
x ũx

≥ 0, β =
ũH

x Bũx

ũH
x ũx

> 0,

γ =
ũH

x W T Q–1
2 W ũx

ũH
x ũx

≥ 0, τ =
ũH

x W T Q–1
2 Q3ũx

ũH
x ũx

.

Then (21) can be modified as

λ2 –
(2 – δ)α + (1 – δ)β – γ + τ

α + β
λ +

(1 – δ)α + τ

α + β
= 0. (22)

When γ = 0, we can get W ũx = 0 and multiply the left and right sides of the first equation
in (19) by ũx from the left, we have

0 ≤ λ =
α

α + β
< 1.

When W ũx �= 0, we obtain γ > 0. In accordance with Lemma 4.3, the roots of the
quadratic Eq. (22) satisfy |λ| < 1 if and only if

⎧
⎪⎪⎨

⎪⎪⎩

|1 – δ| < 1,

|(1 – δ)α + τ | < α + β ,

|(2 – δ)α + (1 – δ)β – γ + τ | < (2 – δ)α + β + τ .

(23)

Solving the inequalities of (23), we have

⎧
⎨

⎩

0 < δ < 2,

(δ – 2)α + δ–2
2 β + 1

2γ < τ < δα + β .
(24)

In addition, we consider the case (b) from Lemma 4.2 when ũy = 0, it actually satisfies
the inequalities (24).

Therefore, we can get (24) where we have considered that α ≥ 0 and β > 0. �

Corollary 4.1 Under the assumptions of Theorem 4.1, convergence of the iteration method
(13) is satisfied if and only if 2(2 – δ)Q1 + (2 – δ)B + 2W T Q–1

2 Q3 – W T Q–1
2 W and δQ1 + B –

W T Q–1
2 Q3 are positive definite where 0 < δ < 2.

By choosing different matrices Q1, Q2 and Q3 in (12), we get considerable iteration al-
gorithms from the GPIU method for solving the generalized saddle point problem (11).
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Here, let ũ(m)
n+1 =

[ ũ(m)
x+1

ũ(m)
y+1

]
, ũ(m)

n =
[ ũ(m)

x

ũ(m)
y

]
and b̃(m–1) =

[ b̃(m–1)
1

b̃(m–1)
2

]
, where ũ(m)

x+1, ũ(m)
x , b̃(m–1)

1 ∈ C�N/2�,

and ũ(m)
y+1, ũ(m)

y , b̃(m–1)
2 ∈ C�N/2�. Then an efficient GPIU algorithm can be presented.

The GPIU Algorithm If Q1 = 1
ω

W T Q–1
2 Wω > 0, Q2 = 1

δ
C0 < δ < 2, Q3 = sW , the GPIU

method gives the following iteration scheme:

⎧
⎨

⎩

ũ(m)
x+1 = ũ(m)

x + ( 1
ω

W T Q–1
2 W + B)–1(b̃(m–1)

1 – Bũ(m)
x – W T ũ(m)

y ),

ũ(m)
y+1 = ũ(m)

y + δC–1[(1 – s)W ũ(m)
x+1 + sW ũ(m)

x – Cũ(m)
y + b̃(m–1)

2 ]

where the matrices B, C and W rely on N defined in Sect. 4.

5 Numerical examples
The FDEs problem (1) has been solved by pre-multiplying the coefficient matrix with PT

and post-multiplying it with P which is given in Sect. 3, firstly. Then the FDEs problem is
changed into a generalized saddle point problem, so in Sect. 4 an algorithm is proposed
based on the GPIU method. In this section, we discuss the GPIU algorithm with different
parameters and comparison between the GPIU algorithm and the CGNR method (3). The
initial value is defined as the zero vector at each time step, and each iteration process
terminates when the current residual satisfies ‖rk‖2/‖r0‖2 < 10–7, where rk is the residual
vector of the linear system after k iterations. Then we collect data in the table as follows and
define “N” as the number of spatial grid points, “M” as the number of time steps, “Error” as
the difference between the exact solution and the approximate solution under the infinity
norm, “CPU(s)” as the total CPU(s) time (seconds) to solve the whole FDEs problem, and
“Iter” as the average number of iterations needed to solve the FDEs problem, i.e.,

Iter =
1
M

M∑

m=1

Iter(m),

where Iter(m) represents the number of iterations needed to solve (7). Moreover, we obtain
the true solution approximately by the program command inv(M̃(m))b̃(m–1). All numerical
experiments are executed in MATLAB (2016a) of a Windows 8.1 system on a machine
with Intel (R) Core (TM) (i5-5257U CPU @ 2.70 GHz 2700 MHz).

Example 1 ([17]) Consider the initial-boundary value problem (1) on the spatial domain
[xL, xR] = [0, 2] and time interval [0, T] = [0, 1] with the diffusion coefficients d+ = 0.6, d– =
0.5, and

u(x, 0) = exp

(

–
(x – xc)2

2σ 2

)

, xc = 1.2, σ = 0.08, f (x, t) ≡ 0.

For satisfying vN ,M is bounded away from 0, let �t ≈ 2�xα . From Table 1, we show
the advantage of efficiency according to the CPU time, Iter and Error. When N and M
become large, the CPU time and Error will be slow and show inaccuracy, respectively. But
the average number of iterations remains stabilized.

Table 2 demonstrates that not only the Iter but also CPU(s) by the CGNR method with
optimal parameters are much higher than the GPIU method. The iteration steps and CPU
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Table 1 The GPIU algorithm for solving Example 1 with different choices of parameters for α = 1.5

N M (ω, δ, s) CPU (s) Iter Error

26 93 (0.8, 0.8, 0.2) 0.0541 9.85 2.27e–07
(0.8, 0.9, 0.2) 0.0465 6.97 2.16e–07
(0.9, 0.9, 0.1) 0.0672 6.98 2.14e–07
(1, 0.99, 0.01) 0.0432 4 2.72e–08
(1, 1.1, 0.1) 0.0498 6.98 2.16e–07

27 259 (0.8, 0.8, 0.2) 0.4028 9.73 5.20e–07
(0.8, 0.9, 0.2) 0.3590 6.95 5.02e–07
(0.9, 0.9, 0.1) 0.3599 6.95 5.02e–07
(1, 0.99, 0.01) 0.3286 3.98 1.73e–07
(1, 1.1, 0.1) 0.4187 6.95 5.03e–07

28 728 (0.8, 0.8, 0.2) 3.7215 9.66 1.23e–06
(0.8, 0.9, 0.2) 3.1373 6.93 1.18e–06
(0.9, 0.9, 0.1) 3.2618 6.93 1.18e–06
(1, 0.99, 0.01) 3.4343 3.93 5.68e–07
(1, 1.1, 0.1) 3.4742 6.93 1.18e–06

29 2054 (0.8, 0.8, 0.2) 57.9257 9.61 2.96e–06
(0.8, 0.9, 0.2) 56.3505 6.92 2.78e–06
(0.9, 0.9, 0.1) 55.5128 6.92 2.78e–06
(1, 0.99, 0.01) 53.3056 3.92 1.27e–06
(1, 1.1, 0.1) 56.5414 6.91 2.79e–06

Table 2 Comparing results to solve Example 1 by the GPIU algorithm with ω = 1, δ = 0.99 and
s = 0.01, and the CGNR method for α = 1.2, 1.5 and 1.8

α N M GPIU CGNR HSS

CPU (s) Iter Error CPU (s) Iter Error CPU (s) Iter Error

1.2 26 33 0.0266 4 3.63e–08 0.1506 49 1.12e–07 0.1199 18.36 2.88e–07
27 74 0.0939 3.96 1.64e–07 0.5807 53 1.32e–06 0.5460 18.92 7.19e–07
28 170 0.8145 3.86 5.18e–07 2.5166 54 1.19e–06 3.9674 19 1.33e–06
29 389 10.6105 3.8123 1.12e–06 41.0703 54 1.38e–06 62.5631 19 3.37e–06

1.5 26 93 0.0481 4 2.72e–08 0.4913 58 1.06e–06 0.2374 20.79 3.27e–07
27 259 0.3301 3.98 1.73e–07 2.0613 62 1.35e–06 1.7875 20.95 8.05e–07
28 728 3.3763 3.93 5.68e–07 13.5068 65 1.09e–06 19.7542 21 1.59e–06
29 2054 52.4298 3.92 1.27e–07 250.4274 65 1.19e–06 337.2273 21 4.19e–06

1.8 26 263 0.0994 4 2.42e–08 1.3840 67 1.17e–07 0.5653 22.95 3.74e–07
27 904 1.1810 3.96 2.88e–07 8.3969 73 1.30e–06 5.8788 22.99 9.07e–07
28 3126 12.2058 3.89 7.06e–07 60.9816 77 1.40e–06 72.6848 23 2.69e–06

time of the new method is obviously less than HSS. It also indicates that the Error is obvi-
ously improved for the FDEs over CGNR and HSS.

Figure 1 shows the convergence rate of GPIU and HSS. In order to get the least number
of steps which can makes the error decrease to the ε times initial error, we normally define
– ln(ρ(M)) as the asymptotic convergence rate, where M is the iteration matrix of the iter-
ation method for solving the equations. The minimum number of steps of the iteration is
k ≥ – ln ε

– ln(ρ(M)) . In Fig. 1, the X-axis stands for the scale of the matrix, and the Y-axis stands
for the theoretical minimum steps for iteration. It is shown that, for GPIU, the minimum
number of steps increases slowly and almost tends to a stable value as N increases. But for
HSS, the minimum number of steps increases sharply.
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Figure 1 The convergence rate of GPIU and HSS

Table 3 Comparing results to solve Example 2 by the GPIU algorithm with ω = 1, δ = 0.99 and
s = 0.01, and the CGNR method for α = 1.2, 1.5 and 1.8

α N M GPUI CGNR HSS

CPU (s) Iter Error CPU (s) Iter Error CPU (s) Iter Error

1.2 26 33 0.0419 5.5152 3.55e–06 0.2310 65 1.71e–05 0.0815 16 1.05e–05
27 74 0.1142 5.04 4.19e–06 0.7962 77 2.58e–05 0.5448 22 3.36e–05
28 170 0.8816 5.01 3.35e–06 3.4947 81 2.46e–05 4.1474 22 7.78e–05
29 389 9.7131 4.12 1.85e–05 60.4473 82 2.51e–04 63.5913 22 1.77e–04

1.5 26 93 0.0561 4.98 6.10e–07 0.5494 70 2.49e–05 0.2148 24 1.83e–05
27 259 0.3715 4.04 5.30e–06 2.8837 84 1.98e–04 1.6499 24 5.11e–05
28 728 3.1912 4 3.88e–06 16.7189 88 2.32e–04 18.1177 24 1.28e–04
29 2054 53.8474 4.00 6.35e–06 312.7302 89 2.35e–04 342.1307 24 3.09e–04

1.8 26 263 0.1348 4.00 5.37e–07 1.6771 78 1.51e–05 0.6147 27 2.49e–05
27 904 1.1877 3.99 3.17e–06 11.4262 98 2.33e–05 5.4371 27 6.98e–05
28 3126 13.6965 3.98 1.43e–05 81.1444 103 2.46e–04 73.2352 27 1.88e–04

Example 2 ([21]) The spatial domain [xL, xR] = [0, 1] and the time interval [0, T] = [0, 1]
with d+ = 0.6, d– = 0.2, initial condition u(x, 0) = 4x2(2 – x)2, and the source term f (x, t) =
–32e–t[x2 + (2 – x)2 + 0.125x2(2 – x)2 – 2.5(x3 + (2 – x)3) + 25

22 (x4 + (2 – x)4)].

Table 3 illustrates the numerical results of Example 2. Here we specially select the source
term f (x, t) as non-zero and nonlinear. Obviously, the Iter for the CGNR method is larger
and the Iter of the new method is smaller than HSS. Moreover, the CPU time and the
error of the GPIU method are much smaller than the CGNR method and HSS method.
It indicates that the GPIU algorithm is still highly efficient and accurate for the case of
nonlinear source term, so the GPIU algorithm can be extendable to the case of nonlinear
source term.

Note. The memory usage for all tests in Tables 1, 2 and 3 is O(n), where n denotes the
order of the coefficient matrix of equations [7].
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6 Concluding remarks
In this paper, a GPIU method is put forward to solve the generalized saddle point prob-
lem generated by the fractional diffusion equations with constant coefficients by pre-
multiplying the orthogonal matrix we constructed and post-multiplying the transposition
of it, respectively. Then the convergence condition of the GPIU method is analyzed and
we give a new GPIU algorithm.

The numerical results show that the proposed method is more effective than the CGNR
method and HSS, and its advantages become more obvious as N increases. Compared with
the CGNR method and the HSS method, this GPIU method can achieve a faster conver-
gence rate in practice and theory, and can obtain a more accurate convergence solution
in a shorter time. Unlike the CGNR method and the HSS method, with the increase of
the matrix order N, the number of iteration steps of the GPIU method grows slowly, it
is almost stable near an extremely low value, and the error is significantly improved. The
better convergence results of GPIU are due to the fact that the storage of the new algo-
rithm is greatly reduced to O(n), to be compared with the CGNR and HSS method, where
n denotes the order of the coefficient matrix of equations.

For further consideration, more effective stationary methods like the GPIU method will
be promoted to solve the FDE problems with constant or even variable diffusion coeffi-
cients.
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