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Abstract
This work mainly investigates a class of convex interval-valued functions via the
Katugampola fractional integral operator. By considering the p-convexity of the
interval-valued functions, we establish some integral inequalities of the
Hermite–Hadamard type and Hermite–Hadamard–Fejér type as well as some product
inequalities via the Katugampola fractional integral operator. In addition, we compare
our results with the results given in the literature. Applications of the main results are
illustrated by using examples. These results may open a new avenue for modeling,
optimization problems, and fuzzy interval-valued functions that involve both discrete
and continuous variables at the same time.
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1 Introduction
Fractional calculus [1–21] is invariably important in almost all areas of mathematics and
other natural sciences. Indeed, we can clearly realize that fractional operators have ap-
peared in all fields of natural science and in fractional differential equations [22–35]. In
particular, it has been used in the study of waves in liquids, propagation of sound, gravita-
tional attraction, and vibrations of strings. Numerous significant definitions and concepts
have been established for the investigation of the fractional operators, for instance, Rie-
mann, Liouville, Caputo, Hadamard, Katugampola, Atangana–Baleanu operators, and so
on. Some well-known operators have been utilized for finding the existence of solutions to
the boundary value problems, fractional integrodifferential equations or inclusions were
elaborated [36–40].

In the present scenario, numerous significant fractional derivative and integral operators
are systematically and successfully analyzed with the assistance of fractional integral in-
equalities [41–50]. It is known that variants have many important applications in all parts
of mathematics as well as in different areas of natural science. Among others, numerous
sorts of variants, those conveying the names of Jensen, Hermite–Hadamard, Hardy, Os-
trowski, Minkowski, and Opial et al., have a profound noteworthiness; also, they have an
extraordinary effect in significant fields of research. Convexity [51–60] has received re-
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newed attention in mathematical sciences, statistical theory, optimization theory, fixed
point theory, and several other areas of science and technology. Over the years, convex
sets and convex functions have been modified to a remarkable variety of convexities such
as Hp,q-convexity [61–64], harmonic convexity [65], strong convexity [66, 67], Schur con-
vexity [68, 69], quasi-convexity [70], generalized convexity [71], and so on. In particular,
many inequalities can be found in the literature [72–93] via the convexity theory.

Recently, the following Hermite–Hadamard inequality [94], one of the famous distin-
guished classical inequalities, has gained much consideration.

Let Q : I → R be a convex function. Then the double inequality

(f – e)Q
(

e + f
2

)
≤

∫ f

e
Q(z) dz ≤ (f – e)

Q(e) + Q(f )
2

(1.1)

holds for all e, f ∈ I with f �= e. If Q is concave, then both the inequalities in (1.1) hold in
the reverse direction. Many generalizations, modifications, applications, refinements, and
variants for Hermite–Hadamard inequality (1.1) can be found in the literature [95, 96].

The following weighted generalization of Hermite–Hadamard inequality (1.1) was de-
rived by Fejér:

Q
(

e + f
2

)∫ f

e
W(z) dz ≤

∫ f

e
Q(z)W(z) dz ≤ Q(e) + Q(f )

2

∫ f

e
W(z) dz. (1.2)

Due to the modification among the ideas of convexity, the refinements for double in-
equality (1.2) have been widely investigated by many researchers. To meet the develop-
ment trend of this research field, we delineate a new scheme and future plan in the present
framework. We consider the p-convex function which assumes a dynamic job in portray-
ing the idea of the interval-valued function just as establishing several generalizations by
employing the Katugampola fractional integral operator.

On the other hand, a long history that can be followed back to Archimede’s computa-
tion of the circumference of a circle has based on the theory of interval analysis. It fell
into obscurity for a long time because of the dearth of utilities to different sciences. To
the preeminence of our understanding, the substantial effort did not seem to this extent
until the 1950s. In 1966, the first celebrated monograph concerned with interval analysis
was written by Moore, who is famous as the founder of intervals, in order to compute the
error bounds of the numerical solutions of a finite state machine. After his exploration,
several researchers focused on studying the literature and applications of interval analy-
sis in automatic error analysis, computer graphics, neural network output optimization,
robotics, computational physics, and several other well-known areas in science and tech-
nology. Since then, several analysts have been broadly concentrated on and investigated
the interval analysis and interval-valued functions in both mathematics and its applica-
tions.

The principal objective of this article is that we propose the notion of p-convex func-
tion for the interval-valued function. We also present the results concerning Hermite–
Hadamard inequality, Fejér type inequality, and certain other related variants by employ-
ing p-convexity, which correlates with the Katugampola fractional integral operator. Fi-
nally, the repercussions of the employed technique depict the presentations for various
existing outcomes. Results obtained by the novel approach disclose that the suggested
scheme is very accurate, flexible, effective, and simple to use.
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2 Preliminaries
For the basic notions and definitions on interval analysis, we use the literature [97].

Let M be the space of all intervals of R and D ∈M be defined by

D = [d, d̄] = {z ∈R|d ≤ z ≤ d̄} (d, d̄ ∈R).

Then D is said to be degenerate if d = d̄. If d > 0, then D is said to be positive, and if d̄ < 0,
then D is said to be negative. We use M+ and M– to symbolize the sets of all positive and
negative intervals.

Let η ∈R and ηD be defined by

ηD =

⎧⎨
⎩

[ηd,ηd̄], η ≥ 0,

[ηd̄,ηd], η < 0.

Then the addition D1 +D2 and Minkowski difference D1 –D2 for D1,D2 ∈M are defined
by

D1 + D2 = [d1, d̄1] + [d̄2,d2] = [d1 + d2, d̄1 + d̄2]

and

D1 – D2 = [d1, d̄1] – [d̄2,d2] = [d1 – d2, d̄1 – d̄2],

respectively.
The inclusion relation “⊇” means that

D2 ⊇D1 ⇐⇒ [d2, d̄2] ⊇ [d1, d̄1] ⇐⇒ d1 ≥ d2, d̄2 ≥ d̄1.

Let I ⊆R be an interval andQ(z) = [Q(z), Q̄(z)] (z ∈ I). ThenQ(z) is said to be Lebesgue
integrable if Q(z) and Q̄(z) are measurable and Lebesgue integrable on I . Moreover,∫ f

e Q(z) dz is defined by

∫ f

e
Q(z) dz =

[∫ f

e
Q(z) dz +

∫ f

e
Q̄(z) dz

]
. (2.1)

Now, we introduce the concept of Katugampola fractional integral operator for interval-
valued function.

Let q ≥ 1, c ∈ R, and χ
q
c (e, f ) be the set of all complex-valued Lebesgue integrable

interval-valued functions Q on [e, f ] for which the norm ‖Q‖χq
c is defined by

‖Q‖χq
c =

(∫ f

e

∣∣ηcQ(η)
∣∣q dη

η

) 1
q

< ∞ (2.2)

for 1 ≤ q < ∞ and

‖Q‖χ∞
c = ess sup

e≤η≤f
ηc∣∣Q(η)

∣∣. (2.3)
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Katugampola [98] presented a new fractional integral to generalize the Riemann–
Liouville and Hadamard fractional integrals under certain conditions.

Let p, δ > 0 and JL([e,f ]) be the collection of all complex-valued Lebesgue integrable
interval-valued functions on [e, f ]. Then the interval left and right Katugampola fractional
integrals of Q ∈ JL([e,f ]) with order δ > 0 are defined by

J p,δ
e+ Q(z) =

p1–δ

Γ (δ)

∫ z

e

(
zp – ζ p)δ–1

ζ p–1Q(ζ ) dζ (z > e) (2.4)

and

J p,δ
f – Q(z) =

p1–δ

Γ (δ)

∫ f

z

(
ζ p – zp)δ–1

ζ p–1Q(ζ ) dζ (z < f ), (2.5)

respectively, where Γ (z) =
∫ ∞

0 ζ z–1e–ζ dζ is the Euler gamma function [99].
In [100], Zhang and Wan presented a definition of the p-convex function as follows.

Definition 2.1 ([100]) Let p ∈R with p �= 0. Then the interval I is said to be p-convex if

[
ηep + (1 – η)f p] 1

p ∈ I (2.6)

for all e, f ∈ I and η ∈ [0, 1].

Definition 2.2 ([100]) Let p ∈ R with p �= 0 and I ⊆ R be a p-convex interval. Then the
function Q : I →R is said to be a p-convex function if the inequality

Q
([

ηep + (1 – η)f p] 1
p
) ≤ ηQ(e) + (1 – η)Q(f ) (2.7)

holds for all e, f ∈ I and η ∈ [0, 1].

From Definition 2.2 we clearly see that the p-convexity reduces to classical convexity
and harmonic convexity if p = 1 and p = –1, respectively.

Next, we introduce a novel concept of interval p-convexity.

Definition 2.3 Let p ∈ R with p �= 0 and I ⊆R be a p-convex interval. Then the function
Q : I →M+ is said to be a p-convex interval-valued function if

Q
([

ηep + (1 – η)f p] 1
p
) ⊇ ηQ(e) + (1 – η)Q(f ) (2.8)

for all e, f ∈ I and η ∈ [0, 1]. If the set inclusion (2.8) is reversed, then Q is said to be a
p-concave interval-valued function.

Remark 2.4 From Definition 2.3 we clearly see that
(1) If p = 1, then we get the definition given in [101].
(2) If p = –1, then Definition 2.3 reduces to Definition 3.1 of [102].
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3 Results and discussions
In this section, we establish several Hermite–Hadamard type inequalities for the p-convex
interval-valued functions by employing the Katugampola fractional integral operator. In
what follows, we denote by QC(I ,M+) the family of interval p-convex functions of the
interval I .

Theorem 3.1 Let p, δ > 0, e, f ∈ I such that f > e, Q ∈ JL([e,f ]). Then

Q
([

ep + f p

2

] 1
p
)

⊇ pδΓ (δ + 1)
2(f p – ep)δ

[
J p,δ

e+ Q(f ) + J p,δ
f – Q(e)

]

⊇ Q(e) + Q(f )
2

(3.1)

if Q ∈QC(I ,M+).

Proof It follows from Q ∈QC(I ,M+) that

Q
([

xp + yp

2

] 1
p
)

⊇ Q(x) + Q(y)
2

(3.2)

for all x, y ∈ [e, f ].
Let η ∈ [0, 1], xp = ηep + (1 – η)f p and yp = (1 – η)ep + ηf p. Then (3.2) leads to

2Q
([

ep + f p

2

] 1
p
)

⊇Q
([

ηep + (1 – η)f p] 1
p
)

+ Q
([

(1 – η)ep + ηf p] 1
p
)
. (3.3)

Multiplying both sides (3.3) by ηδ–1 and integrating the obtained result with respect to
η over (0, 1), we have

2
∫ 1

0
ηδ–1Q

([
ep + f p

2

] 1
p
)

dη

⊇
∫ 1

0
ηδ–1[Q([

ηep + (1 – η)f p] 1
p
)

+ Q
([

(1 – η)ep + ηf p] 1
p
)]

dη. (3.4)

From (2.1) and (3.4), we get

2
∫ 1

0
ηδ–1Q

([
ep + f p

2

] 1
p
)

dη

= 2
[∫ 1

0
ηδ–1q

([
ep + f p

2

] 1
p
)

dη,
∫ 1

0
ηδ–1q̄

([
ep + f p

2

] 1
p
)

dη

]

= 2
[

1
δ

q
([

ep + f p

2

] 1
p
)

,
1
δ

q̄
([

ep + f p

2

] 1
p
)]

= 2
1
δ
Q

([
ep + f p

2

] 1
p
)

(3.5)
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and
∫ 1

0
ηδ–1[Q([

ηep + (1 – η)f p] 1
p
)

+ Q
([

(1 – η)ep + ηf p] 1
p
)]

dη

=
[∫ 1

0
ηδ–1[q

([
ηep + (1 – η)f p] 1

p
)
, q

([
(1 – η)ep + ηf p] 1

p
)]

dη

+
∫ 1

0
ηδ–1[q̄

([
ηep + (1 – η)f p] 1

p
)
, q̄

([
(1 – η)ep + ηf p] 1

p
)]

dη

]

=
p

(f p – ep)δ

[∫ f

e

(
f p – yp)δ–1 q(y)

y1–p dy +
∫ f

e

(
xp – ep)δ–1 q(x)

x1–p dx,

∫ f

e

(
f p – yp)δ–1 q̄(y)

y1–p dy +
∫ f

e

(
xp – ep)δ–1 q̄(x)

x1–p dx
]

=
p

(f p – ep)δ

[∫ f

e

(
f p – yp)δ–1 Q(y)

y1–p dy +
∫ f

e

(
xp – ep)δ–1 Q(x)

x1–p dx
]

⊇ pδΓ (δ)
(f p – ep)δ

[
J p,δ

e+ Q(f ) + J p,δ
f – Q(e)

]
. (3.6)

Since Q ∈QC(I ,M+), we get

Q
([

ηep + (1 – η)f p] 1
p
) ⊇ ηQ(e) + (1 – η)Q(f ) (3.7)

and

Q
([

ηf p + (1 – η)ep] 1
p
) ⊇ ηQ(f ) + (1 – η)Q(e). (3.8)

Adding (3.7) and (3.8), we obtain

Q
([

ηep + (1 – η)f p] 1
p
)

+ Q
([

ηf p + (1 – η)ep] 1
p
) ⊇Q(e) + Q(f ). (3.9)

Multiplying both sides (3.9) by ηδ–1 and integrating both sides of the obtained result with
respect to η over (0, 1), we get

pδΓ (δ)
(f p – ep)δ

[
J p,δ

e+ Q(f ) + J p,δ
f – Q(e)

] ⊇ Q(e) + Q(f )
δ

,

which completes the proof of Theorem 3.1. �

Remark 3.2 From Theorem 3.1 we clearly see that
(1) Let q = q̄. Then we get Theorem 2.1 [103].
(2) If p = 1 and q = q̄, then Theorem 3.1 reduces to the result given in [104].
(3) If δ = p = 1 and q = q̄, then Theorem 3.1 becomes the result in [105].

Example 3.3 Let p be an odd number, δ = 1
2 , u ∈ [2, 3], and Q(u) = [2 – u

p
2 , u

p
2 + 2]. Then

we clearly see that Q ∈ JL([2,3]) and

Q
([

ep + f p

2

] 1
p
)

= Q(2.5) =
[

4 –
√

10
2

,
4 +

√
10

2

]
,

[Q(e) + Q(f )]
2

=
[

2 –
√

2 +
√

3
2

, 2 +
√

2 +
√

3
2

]
.
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Note that

pδΓ (δ + 1)
2(f p – ep)δ

[
J p,δ

e+ Q(f ) + J p,δ
f – Q(e)

]

=
Γ ( 3

2 )
2

[
1√
π

∫ 3

2

(
3p – up) –1

2 up–1[2 – u
p
2 , u

p
2 + 2

]
du

+
1√
π

∫ 3

2

(
up – 2p) –1

2 up–1[2 – u
p
2 , u

p
2 + 2

]
du

]

=
1
4

[[
7393

10,000
,

7260
1000

]
+

[
9501

10,000
,

7049
1000

]]

=
[

8447
20,000

,
14,309
4000

]
.

Therefore,

[
4 –

√
10

2
,

4 +
√

10
2

]
⊇

[
8447

20,000
,

14,309
4000

]
⊇

[
2 –

√
2 +

√
3

2
, 2 +

√
2 +

√
3

2

]

and Theorem 3.1 is verified.

The next Theorem 3.4 gives the Hermite–Hadamard–Fejér type inequality for interval-
valued p-convex functions.

Theorem 3.4 Let p, δ > 0, e, f ∈ I with f > e, Q ∈ JL([e,f ]), and W(x) = W([ep + f p – xp]
1
p ) ≥

0 for x ∈ I . Then we have the Hermite–Hadamard–Fejér type inequality for interval-
valued p-convex functions as follows:

Q
([

ep + f p

2

] 1
p
)[

J p,δ
e+ W(f ) + J p,δ

f – W(e)
]

⊇ [
J p,δ

e+ QW(f ) + J p,δ
f – QW(e)

]

⊇ Q(e) + Q(f )
2

[
J p,δ

e+ W(f ) + J p,δ
f – W(e)

]
(3.10)

if Q ∈QC(I ,M+).

Proof Since W is nonnegative, integrable, and p-symmetric with respect to [ ep+f p

2 ]
1
p , we

get

W
([

ηep + (1 – η)f p] 1
p
)

= W
([

ηf p + (1 – η)ep] 1
p
)
.

Multiplying both sides of (3.4) by ηδ–1W([ηf p + (1 – η)up]
1
p ), we have

2
∫ 1

0
ηδ–1Q

([
ep + f p

2

] 1
p
)
W

([
ηf p + (1 – η)ep] 1

p
)

dη

⊇
∫ 1

0
ηδ–1Q

([
ηep + (1 – η)f p] 1

p
)
W

([
ηf p + (1 – η)ep] 1

p
)

dη
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+
∫ 1

0
ηδ–1Q

([
(1 – η)ep + ηf p] 1

p
)
W

([
ηf p + (1 – η)ep] 1

p
)

dη

=
∫ 1

0
ηδ–1[q

([
ηep + (1 – η)f p] 1

p
)

+ q
([

(1 – η)ep + ηf p] 1
p
)]

×W
([

ηf p + (1 – η)ep] 1
p
)

dη

+
∫ 1

0
ηδ–1[q̄

([
ηep + (1 – η)f p] 1

p
)

+ q̄
([

(1 – η)ep + ηf p] 1
p
)]

×W
([

ηf p + (1 – η)ep] 1
p
)

dη.

Let up = ηf p + (1 – η)ep. Then one has

2p
(f p – ep)δ

Q
([

ep + f p

2

] 1
p
)∫ 1

0

(
up – ep)δ–1W(u) du

⊇ p
(f p – ep)δ

[∫ f

e

(
up – ep)δ–1q

([
ep + f p – up] 1

p
)
W(u)up–1 du

+
∫ f

e

(
up – ep)δ–1q(u)W(u)up–1 du,

∫ f

e

(
up – ep)δ–1q̄

([
ep + f p – up] 1

p
)
W(u)up–1 du

+
∫ f

e

(
up – ep)δ–1q̄(u)W(u)up–1 du

]

=
p

(f p – ep)δ

[∫ f

e

(
f p – up)δ–1q(u)W

([
ep + f p – up] 1

p
)
up–1 du

+
∫ f

e

(
up – ep)δ–1q(u)W(u)up–1 du,

∫ f

e

(
f p – up)δ–1q̄(u)W

([
ep + f p – up] 1

p
)
up–1 du

+
∫ f

e

(
up – ep)δ–1q̄(u)W(u)up–1 du

]

=
p

(f p – ep)δ

[∫ f

e

(
f p – up)δ–1q(u)W(u)up–1 du

+
∫ f

e

(
up – ep)δ–1q(u)W(u)up–1 du,

∫ f

e

(
f p – up)δ–1q̄(u)W(u)up–1 du

+
∫ f

e

(
up – ep)δ–1q̄(u)W(u)up–1 du

]

=
p

(f p – ep)δ

[∫ f

e

(
f p – up)δ–1Q(u)W(u)up–1 du

+
∫ f

e

(
up – ep)δ–1Q(u)W(u)up–1 du

]
. (3.11)
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Therefore,

pδΓ (δ)
(f p – ep)δ

Q
([

ep + f p

2

] 1
p
)[

J p,δ
e+ W(f ) + J p,δ

f – W(e)
]

⊇ pδΓ (δ)
(f p – ep)δ

[
J p,δ

e+ QW(f ) + J p,δ
f – QW(e)

]
. (3.12)

Multiplying both sides of (3.9) by ηδ–1W([ηf p + (1 – η)up]
1
p ), we get

∫ 1

0
ηδ–1W

([
ηf p + (1 – η)up] 1

p
)
Q

([
ηep + (1 – η)f p] 1

p
)

dη

+
∫ 1

0
ηδ–1W

([
ηf p + (1 – η)up] 1

p
)
Q

([
ηf p + (1 – η)ep] 1

p
)

dη

⊇ [
Q(e) + Q(f )

] ∫ 1

0
ηδ–1W

([
ηf p + (1 – η)up] 1

p
)

dη. (3.13)

�

Remark 3.5 Theorem 3.4 leads to the conclusion that
(1) Let W(x) = 1. Then we get Theorem 3.1.
(2) If q = q̄ and δ = 1, then we get Theorem 5 of [106].
(3) Let q = q̄ and W(x) = p = δ = 1. Then we get the classical Hermite–Hadamard

inequality (1.1).
(4) If q = q̄ and δ = 1, then we obtain the classical Hermite–Hadamard–Fejér type

inequality (1.2).

Theorem 3.6 Let p, δ > 0, e, f ∈ I with f > e, and Q1,Q2 ∈ JL([e,f ]). Then we have

pδΓ (1 + δ)
2(f p – ep)δ

[
J p,δ

e+ Q1(f )Q2(f ) + J p,δ
f – Q1(e)Q2(e)

]

⊇
(

1
2

–
δ

(δ + 1)(δ + 2)

)
Υ1(e, f ) +

(
δ

(δ + 1)(δ + 2)

)
Υ2(e, f ) (3.14)

if Q1,Q2 ∈QC(I ,M+), where

Υ1(e, f ) =
[
Q1(e)Q2(e) + Q1(f )Q2(f )

]
(3.15)

and

Υ2(e, f ) =
[
Q1(e)Q2(f ) + Q1(f )Q2(e)

]
. (3.16)

Proof Let η ∈ [0, 1]. Then it follows from the assumption of Theorem 3.6 that

Q1
([

ηep + (1 – η)f p] 1
p
) ⊇ ηQ1(e) + (1 – η)Q1(f ) (3.17)

and

Q2
([

ηep + (1 – η)f p] 1
p
) ⊇ ηQ2(e) + (1 – η)Q2(f ). (3.18)
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From (3.17) and (3.18) we get

Q1
([

ηep + (1 – η)f p] 1
p
)
Q2

([
ηep + (1 – η)f p] 1

p
)

⊇ η2Q1(e)Q2(e) + (1 – η)2Q1(f )Q2(f )

+ η(1 – η)
[
Q1(f )Q2(e) + Q1(e)Q2(f )

]
. (3.19)

Analogously, we have

Q1
([

(1 – η)ep + ηf p] 1
p
)
Q2

([
(1 – η)ep + ηf p] 1

p
)

⊇ η2Q1(f )Q2(f ) + (1 – η)2Q2(f )Q1(f )

+ η(1 – η)
[
Q2(f )Q1(e) + Q2(e)Q1(f )

]
. (3.20)

Adding (3.19) and (3.20), we obtain

Q1
([

ηep + (1 – η)f p] 1
p
)
Q2

([
ηep + (1 – η)f p] 1

p
)

+ Q1
([

(1 – η)ep + ηf p] 1
p
)
Q2

([
(1 – η)ep + ηf p] 1

p
)

⊇ [
η2 + (1 – η)2][Q1(e)Q2(e) + Q1(f )Q2(f )

]
+ 2η(1 – η)

[
Q1(f )Q2(e) + Q1(e)Q2(f )

]
. (3.21)

Multiplying both sides of (3.21) by ηδ–1 and integrating the obtained result with respect
to η over (0, 1), we have

∫ 1

0
ηδ–1Q1

([
ηep + (1 – η)f p] 1

p
)
Q2

([
ηep + (1 – η)f p] 1

p
)

dη

+
∫ 1

0
ηδ–1Q1

([
(1 – η)ep + ηf p] 1

p
)
Q2

([
(1 – η)ep + ηf p] 1

p
)

dη

⊇ Υ1(e, f )
∫ 1

0
ηδ–1[η2 + (1 – η)2] + 2Υ2(e, f )

∫ 1

0
ηδ–1η(1 – η) dη. (3.22)

From (2.1) and (3.22), we have
∫ 1

0
ηδ–1Q1

([
ηep + (1 – η)f p] 1

p
)
Q2

([
ηep + (1 – η)f p] 1

p
)

dη

+
∫ 1

0
ηδ–1Q1

([
(1 – η)ep + ηf p] 1

p
)
Q2

([
(1 – η)ep + ηf p] 1

p
)

dη

=
pδΓ (δ)

(f p – ep)δ
[
J p,δ

e+ Q1(f )Q2(f ) + J p,δ
f – Q1(e)Q2(e)

]
(3.23)

and

Υ1(e, f )
∫ 1

0
ηδ–1[η2 + (1 – η)2] + 2Υ2(e, f )

∫ 1

0
ηδ–1η(1 – η) dη

=
2
δ

(
1
2

–
δ

(δ + 1)(δ + 2)

)
Υ1(e, f ) +

2
δ

(
δ

(δ + 1)(δ + 2)

)
Υ2(e, f ). (3.24)

Therefore, the desired result (3.14) follows from (3.22)–(3.24). �
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Example 3.7 Let p be an odd number, [e, f ] = [0, 2], δ = 1
2 ,Q1(u) = [up, 4–eup ], andQ2(u) =

[up, 3 – up]. Then Q1,Q2 ∈ JL([0,2]) and

pδΓ (1 + δ)
2(f p – ep)δ

[
J p,δ

e+ Q1(f )Q2(f ) + J p,δ
f – Q1(e)Q2(e)

]

=
Γ ( 3

2 )
2
√

2

[
1√
π

∫ 2

0

(
2p – up)– 1

2 up–1[u2p,
(
4 – eup)(

3 – up)]du

+
1√
π

∫ 2

0

(
up)– 1

2 up–1[u2p,
(
4 – eup)(

3 – up)]du
]

≈ [1.4666, 2.6446]. (3.25)

Note that

Υ1(e, f ) =
[
Q1(e)Q2(e) + Q1(f )Q2(f )

]
=

[
4, 13 – e2],

Υ2(e, f ) =
[
Q1(e)Q2(f ) + Q1(f )Q2(e)

]
=

[
0, 15 – 3e2].

Therefore, we have

(
1
2

–
δ

(δ + 1)(δ + 2)

)
Υ1(e, f ) +

(
δ

(δ + 1)(δ + 2)

)
Υ2(e, f )

=
11
30

[
4, 13 – e2] +

2
15

[
0, 15 – 3e2] ≈ [1.4666, 1.1017]. (3.26)

It follows that

[1.4666, 2.6446] ⊇ [1.4666, 1.1017]

and Theorem 3.6 is verified.

Theorem 3.8 Let p, δ > 0, e, f ∈ I with f > e, and Q1,Q2 ∈ JL([e,f ]). Then

Q1

([
ep + f p

2

] 1
p
)
Q2

([
ep + f p

2

] 1
p
)

⊇ pδΓ (δ + 1)
4(f p – ep)δ

[
J p,δ

e+ Q1(f )Q2(f ) + J p,δ
f – Q1(e)Q2(e)

]

+
1
2

(
1
2

–
δ

(δ + 1)(δ + 2)

)
Υ2(e, f ) +

δ

2(δ + 1)(δ + 2)
Υ1(e, f ) (3.27)

if Q1,Q2 ∈ QC(I ,M+), where Υ1(a, b) and Υ2(a, b) are given in (3.15) and (3.16), respec-
tively.

Proof Let η ∈ [0, 1]. Then we clearly see that

([
ep + f p

2

] 1
p
)

=
[(1 – η)ep + ηf p]

1
p

2
+

[ηep + (1 – η)f p]
1
p

2
. (3.28)
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Since Q1,Q2 ∈QC([e, f ],K+), we have

Q1

([
ep + f p

2

] 1
p
)
Q2

([
ep + f p

2

] 1
p
)

= Q1

[
[(1 – η)ep + ηf p]

1
p

2
+

[ηep + (1 – η)f p]
1
p

2

]

+ Q2

[
[(1 – η)ep + ηf p]

1
p

2
+

[ηep + (1 – η)f p]
1
p

2

]

⊇ 1
4
[
Q1

([
ηep + (1 – η)f p] 1

p
)

+ Q1
([

(1 – η)ep + ηf p] 1
p
)]

× [
Q2

([
ηep + (1 – η)f p] 1

p
)

+ Q2
([

(1 – η)ep + ηf p] 1
p
)]

=
1
4
[
Q1

([
ηep + (1 – η)f p] 1

p
)
Q2

([
ηep + (1 – η)f p] 1

p
)

+ Q1
([

(1 – η)ep + ηf p] 1
p
)
Q2

([
(1 – η)ep + ηf p] 1

p
)]

+ Q2
([

(1 – η)ep + ηf p] 1
p
)
Q1

([
ηep + (1 – η)f p] 1

p
)

+ Q1
([

(1 – η)ep + ηf p] 1
p
)
Q2

([
ηep + (1 – η)f p] 1

p
)

⊇ 1
4
[
Q1

([
ηep + (1 – η)f p] 1

p
)
Q2

([
ηep + (1 – η)f p] 1

p
)

+ Q1
([

(1 – η)ep + ηf p] 1
p
)
Q2

([
(1 – η)ep + ηf p] 1

p
)]

+
1
4
(
2η2 – 2η + 1

)
Υ2(e, f ) +

1
2
η(1 – η)Υ1(e, f ). (3.29)

Multiplying both sides of (3.29) by ηδ–1 and integrating the obtained result with respect
to η over (0, 1), we have

∫ 1

0
ηδ–1Q1

([
ep + f p

2

] 1
p
)
Q2

([
ep + f p

2

] 1
p
)

dη

⊇ 1
4

[∫ 1

0
ηδ–1Q1

([
ηep + (1 – η)f p] 1

p
)
Q2

([
ηep + (1 – η)f p] 1

p
)

dη

+
∫ 1

0
ηδ–1Q1

([
(1 – η)ep + ηf p] 1

p
)
Q2

([
(1 – η)ep + ηf p] 1

p
)

dη

]

+
1
4

∫ 1

0
ηδ–1(2η2 – 2η + 1

)
Υ2(e, f ) dη +

1
2

∫ 1

0
ηδ–1η(1 – η)Υ1(e, f ) dη. (3.30)

From (2.1) and (3.30), we get

∫ 1

0
ηδ–1Q1

([
ep + f p

2

] 1
p
)
Q2

([
ep + f p

2

] 1
p
)

dη

=
[∫ 1

0
ηδ–1q

1

([
ep + f p

2

] 1
p
)

q
2

([
ep + f p

2

] 1
p
)

dη,

∫ 1

0
ηδ–1q̄1

([
ep + f p

2

] 1
p
)

q̄2

([
ep + f p

2

] 1
p
)

dη

]
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=
[

1
δ

q
1

([
ep + f p

2

] 1
p
)

q
2

([
ep + f p

2

] 1
p
)

,
1
δ

q̄1

([
ep + f p

2

] 1
p
)

q̄2

([
ep + f p

2

] 1
p
)]

=
1
δ
Q1

([
ep + f p

2

] 1
p
)
Q2

([
ep + f p

2

] 1
p
)

. (3.31)

On the other hand, making suitable substitution and applying (2.1), we obtain

1
4

[∫ 1

0
ηδ–1Q1

([
ηep + (1 – η)f p] 1

p
)
Q2

([
ηep + (1 – η)f p] 1

p
)

dη

+
∫ 1

0
ηδ–1Q1

([
(1 – η)ep + ηf p] 1

p
)
Q2

([
(1 – η)ep + ηf p] 1

p
)

dη

]

+
1
4

∫ 1

0
ηδ–1(2η2 – 2η + 1

)
Υ2(e, f ) dη +

1
2

∫ 1

0
ηδ–1η(1 – η)Υ1(e, f ) dη

=
p

4(f p – ep)δ

[∫ f

e

(
f p – xp)δ–1q

1
(x)q

2
(x)xp–1 dx +

∫ f

e

(
xp – ep)δ–1q

1
(y)q

2
(y)yp–1 dy,

∫ f

e

(
f p – xp)δ–1q̄1(x)q̄2(x)xp–1 dx +

∫ f

e

(
yp – ep)δ–1q̄1(y)q̄2(y)yp–1 dy

]

+
1

2δ

(
1
2

–
δ

(δ + 1)(δ + 2)

)
Υ2(e, f ) +

δ

2δ(δ + 1)(δ + 2)
Υ1(e, f )

=
pδΓ (δ)

4(f p – ep)δ
[
J p,δ

e+ Q1(f )Q2(f ) + J p,δ
f – Q1(e)Q2(e)

]

+
1

2δ

(
1
2

–
δ

(δ + 1)(δ + 2)

)
Υ2(e, f ) +

δ

2δ(δ + 1)(δ + 2)
Υ1(e, f ). (3.32)

Combining (3.30)–(3.32) gives the desired result (3.27). �

4 Conclusion
We have proposed the concept of p-convexity for the interval-valued functions, estab-
lished several novel Hermite–Hadamard type and Hermite–Hadamard–Fejér type in-
equalities for the p-convex interval-valued functions. Our results provided the interval-
valued counterparts of the inequalities presented in [103, 106], and our ideas may lead to
a lot of follow-up research.
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