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Abstract
Quantum calculus (the calculus without limit) appeared for the first time in fluid
mechanics, noncommutative geometry and combinatorics studies. Recently, it has
been included into the field of geometric function theory to extend differential
operators, integral operators, and classes of analytic functions, especially the classes
that are generated by convolution product (Hadamard product). In this effort, we aim
to introduce a quantum symmetric conformable differential operator (Q-SCDO). This
operator generalized some well-know differential operators such as Sàlàgean
differential operator. By employing the Q-SCDO, we present subclasses of analytic
functions to study some of its geometric solutions of q-Painlevé differential equation
(type III).
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1 Introduction
The conception of q-calculus model is a creative method for designs of the q-special func-
tions. The procedure of q-calculus improves various kinds of orthogonal polynomials, op-
erators, and special functions, which realize the form of their typical complements. The
idea of q-calculus was principally realized by Carmichael [1], Jackson [2], Mason [3], and
Trjitzinsky [4]. An analysis of this calculus for the early mechanism was offered by Is-
mail et al. [5]. Numerous integral and derivative features were formulated by using the
convolution concept; for example, the Sàlàgean derivative [6], Al-Oboudi derivative (gen-
eralization of the Sàlàgean derivative) [7], and the symmetric Sàlàgean derivative [8]. It is
significant to notify that the procedure of convolution finds its uses in different research,
analysis, and study of the geometric properties of regular functions (see [9–11]). Here, we
aim to study some geometric properties of a new quantum symmetric conformable dif-
ferential operator (Q-SCDO). The classes of analytic functions are suggested by using the
convolution product. The consequences are generalized classes in the open unit disk.
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2 Methodology
This section provides the mathematical information that is used in this paper. Let

∧
be

the category of smooth functions given as follows:

�(ξ ) = ξ +
∞∑

n=2

�nξ
n, ξ ∈ ∪, (2.1)

where ∪ = {ξ ∈C : |ξ | < 1}.

Definition 1 Two functions �1 and �2 in
∧

are said to be subordinate, denoted by �1 ≺
�2, if we can find a Schwarz function ᵀ with ᵀ(0) = 0 and | ᵀ (ξ )| < 1 such that �1(ξ ) =
�2(ᵀ(ξ )), ξ ∈ ∪ (the details can be found in [12]). Obviously,�1(ξ ) ≺ �2(ξ ) implies�1(0) =
�2(0) and �1(∪) ⊂�2(∪). In addition, the subordinate �1(ξ ) ≺r �1(ξ ), ξ ∈ ∪(r) is written
by

�1(rξ ) ≺ �2(rξ ), r < 1.

Definition 2 For two functions �1 and �2 in
∧

, the Hadamard or convolution product
is defined as

�1(ξ ) ∗�2(ξ ) =

(

ξ +
∞∑

n=2

�nξ
n

)

∗
(

ξ +
∞∑

n=2

�nξ
n

)

=

(

ξ +
∞∑

n=2

�n�nξ
n

)

, ξ ∈ ∪. (2.2)

Definition 3 For each nonnegative integer n, the value of q-integer number, denoted by
[n]q, is defined by [n]q = 1–qn

1–q , where [0]q = 0, [1]q = 1 and limq→1– [n]q = n.

Example 2.1 [1]0.5 = 1, [2]0.5 = 1.5, [3]0.5 = 1.75, [2]0.75 = 1.75, [3]0.5 = 2.312, [2]0.99 = 1.99,
[3]0.99 = 2.97, [3]1 = 3.

Definition 4 The q-difference operator of � is written by the formula

�q � (ξ ) =
�(qξ ) – �(ξ )

qξ – ξ
, ξ ∈ ∪. (2.3)

Clearly, we have �qξ
n = [n]qξ

n–1. Consequently, for � ∈ ∧
, we have

�q � (ξ ) =
∞∑

n=1

�n[n]qξ
n–1, ξ ∈ ∪,�1 = 1. (2.4)

For � ∈ ∧
, the Sàlàgean q-derivative factor [13] is formulated as follows:

S0
q � (ξ ) = �(ξ ),

S1
q � (ξ ) = ξ�q � (ξ ),

. . .

Sk
q � (ξ ) = ξ�q

(
Sk–1

q � (ξ )
)
,

(2.5)

where k is a positive integer.
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A computation based on the definition of �q implies that

Sk
q � (ξ ) = ξ +

∞∑

n=2

[n]k
q �n ξn

=

(

ξ +
∞∑

n=2

�nξ
n

)

∗
(

ξ +
∞∑

n=2

[n]k
qξ

n

)

:= �(ξ ) ∗ Ψ k
q (ξ ).

Obviously,

lim
q→1–

Sk
q � (ξ ) = ξ +

∞∑

n=2

nk �n ξn, (2.6)

the Sàlàgean derivative factor [6].

Definition 5 Let �(ξ ) ∈ ∧
, and let ν ∈ [0, 1] be a constant. Then Q-SCDO has the fol-

lowing operations:

[
S0

ν

]
q � (ξ ) = �(ξ ),

[
S1

ν

]
q � (ξ ) =

(
κ1(ν, ξ )

κ1(ν, ξ ) + κ0(ν, ξ )

)

ξ�q � (ξ ) –
(

κ0(ν, ξ )
κ1(ν, ξ ) + κ0(ν, ξ )

)

ξ�q � (–ξ )

=
(

κ1(ν, ξ )
κ1(ν, ξ ) + κ0(ν, ξ )

)(

ξ +
∞∑

n=2

[n]q �n ξn

)

–
(

κ0(ν, ξ )
κ1(ν, ξ ) + κ0(ν, ξ )

)(

–ξ +
∞∑

n=2

[n]q(–1)n �n ξn

)

= ξ +
∞∑

n=2

[n]q

(
κ1(ν, ξ ) + (–1)n+1κ0(ν, ξ )

κ1(ν, ξ ) + κ0(ν, ξ )

)

�n ξn,

S2
ν � (ξ ) = S1

ν

[
S1

ν � (ξ )
]

= ξ +
∞∑

n=2

[n]2
q

(
κ1(ν, ξ ) + (–1)n+1κ0(ν, ξ )

κ1(ν, ξ ) + κ0(ν, ξ )

)2

�n ξn,

...
[
Sk

ν

]
q � (ξ ) = S1

ν

[
Sk–1

ν � (ξ )
]

= ξ +
∞∑

n=2

[n]k
q

(
κ1(ν, ξ ) + (–1)n+1κ0(ν, ξ )

κ1(ν, ξ ) + κ0(ν, ξ )

)k

�n ξn,

(2.7)

so that κ1(ν, ξ ) 	= –κ0(ν, ξ ),

lim
ν→0

κ1(ν, ξ ) = 1, lim
ν→1

κ1(ν, ξ ) = 0, κ1(ν, ξ ) 	= 0,∀ξ ∈ ∪,ν∈(0, 1),
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and

lim
ν→0

κ0(ν, ξ ) = 0, lim
ν→1

κ0(ν, ξ ) = 1, κ0(ν, ξ ) 	= 0,∀ξ ∈ ∪ν∈(0, 1).

The value ν = 0 indicates the Sàlàgean derivative

lim
q→1–

Sk � (ξ ) = ξ +
∞∑

n=2

nk �n ξn.

Moreover, the following operator can be located in [14], where

lim
q→1–

[
Sk

ν

]
q � (ξ ) = Sk

ν � (ξ ).

3 Convolution classes
Based on the definition (2.7), we introduce the following classes. Denote the following
functions:

Ψ k
q (ξ ) := ξ +

∞∑

n=2

[n]k
qξ

n; (3.1)

Φk
ν (ξ ) := ξ +

∞∑

n=2

(
κ1(ν, ξ ) + (–1)n+1κ0(ν, ξ )

κ1(ν, ξ ) + κ0(ν, ξ )

)k

ξn. (3.2)

Thus, in terms of the convolution product, the factor (2.7) is formulated as follows:

[
Sk

ν

]
q � (ξ ) = Ψ k

q (ξ ) ∗ Φk
ν (ξ ) ∗�(ξ ), ∀� ∈

∧
. (3.3)

Let � be a function from
∧

and σ (ξ ) be a convex univalent function in ∪ such that
σ (0) = 1. The class Ξ k

q1,q2 (σ ) is defined by

Ξν,k
q1,q2 (σ ) =

{

� ∈
∧

:
[Sk

ν ]q1 � (ξ )
[Sk

ν ]q2 � (ξ )
=

Ψ k
q1 (ξ ) ∗ Φk

ν (ξ ) ∗�(ξ )
Ψ k

q2 (ξ ) ∗ Φk
ν (ξ ) ∗�(ξ )

≺ σ (ξ ),σ (0) = 1
}

. (3.4)

Also, we define a special class involving the above functions when ν → 0, as follows:

Ξ 0,k
q1,q2 (σ ) =

{

� ∈
∧

:
[Sk

ν ]q1 � (ξ )
[Sk

ν ]q2 � (ξ )
=

Ψ k
q1 (ξ ) ∗�(ξ )

Ψ k
q2 (ξ ) ∗�(ξ )

≺ σ (ξ ),σ (0) = 1
}

. (3.5)

When k = 0, we have Dziok subclass [15].
We denote by S∗(σ ) the class of all functions given by

S∗(σ ) =
{

� ∈
∧ ξ ( ξ

1–ξ
)′ ∗�(ξ )

( ξ

1–ξ
) ∗�(ξ )

≺ σ (ξ ),σ (0) = 1
}

, (3.6)

and by C∗(σ ) the class of all functions

C(σ ) =
{

� ∈
∧

:
ξ ( ξ

(1–ξ )2 )′ ∗�(ξ )

( ξ

(1–ξ )2 ) ∗�(ξ )
≺ σ (ξ ),σ (0) = 1

}

. (3.7)

The following preliminary result can be found in [16, 17].
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Lemma 3.1 If K is smooth (analytic) in ∪, � ∈ C( 1+ξ

1–ξ
) is convex and g ∈ S∗( 1+ξ

1–ξ
) is starlike

then

� ∗ (Kg)
� ∗ g

(∪) ⊆ co
(
K(∪)

)
, (3.8)

where co(K(∪)) is the closed convex hull of K (∪).

Lemma 3.2 For analytic functions h,� ∈ ∪, the subordination h ≺ � implies that

∫ 2π

0

∣
∣h(ξ )

∣
∣p dθ ≤

∫ 2π

0

∣
∣�(ξ )

∣
∣p dθ , (3.9)

where ξ = reiθ , 0 < r < 1, and p is a positive number.

Some of the few studies in q-calculus are realized by comparison between two differ-
ent values of calculus. Class Ξν,k

q1,q2 (σ ) shows the relation between the q1- and q2-calculus
depending on the operator (2.7).

4 Inclusions
This section deals with the geometric representations of the class Ξν,k

q1,q2 (σ ), q1 	= q2 and
their consequences.

Theorem 4.1 Let � ∈ ∧
and let the function g := Ψ k

q2 ∗� ∈ S∗( 1+ξ

1–ξ
), ξ ∈ ∪. If� ∈ Ξ 0,k

q1,q2 (σ ),
q1 	= q2 and the function Φk(ξ ) ∈ C( 1+ξ

1–ξ
) then � ∈ Ξν,k

q1,q2 (σ ), σ (0) = 1.

Proof Suppose that � ∈ Ξ 0,k
q1,q2 (σ ). This implies that there is a Schwarz function υ with

υ(0) = 0 and |υ(ξ )| < 1 satisfying the following relation:

Ψ k
q1 (ξ ) ∗�(ξ )

Ψ k
q2 (ξ ) ∗�(ξ )

= σ
(
υ(ξ )

)
(ξ ∈ ∪). (4.1)

This leads to

Ψ k
q1 (ξ ) ∗�(ξ ) =

(
Ψ k

q2 (ξ ) ∗�(ξ )
)
σ
(
υ(ξ )

)
= g(ξ )σ

(
υ(ξ )

)
. (4.2)

By employing the convolution’s properties, we arrive at

(Ψ k
q1 ∗ Φk

ν ∗�)(ξ )
(Ψ k

q2 ∗ Φk
ν ∗�)(ξ )

=
Φk

ν (ξ ) ∗ (Ψ k
q1 ∗�)(ξ )

Φk
ν (ξ ) ∗ (Ψ k

q2 ∗�)(ξ )

=
Φk

ν (ξ ) ∗ [g(ξ )σ (υ(ξ ))]
Φk

ν (ξ ) ∗ g(ξ )
. (4.3)

Accordingly, by virtue of Lemma 3.1, we obtain

(Ψ k
q1 ∗ Φk

ν ∗�)(ξ )
(Ψ k

q2 ∗ Φk
ν ∗�)(ξ )

∈ co
(
σ
(
υ(∪)

)) ⊂ co
(
σ (∪)

)
. (4.4)
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Since σ (ξ ) is a convex univalent function in ∪ with σ (0) = 1, by the concept of subordina-
tion, we conclude that

Ψ k
q1 (z) ∗ Φk

ν (ξ ) ∗�(ξ )
Ψ k

q2 (ξ ) ∗ Φk
ν (ξ ) ∗�(ξ )

≺ σ (ξ ), (4.5)

which means that � ∈ Ξν,k
q1,q2 (σ ). This completes the proof. �

In this place, we note that the conclusion of Theorem 4.1 yields the following conse-
quence:

Corollary 4.2 Let � be a function from
∧

and σ (ξ ) be a convex univalent function in ∪
such that σ (0) = 1. Then

Ξ 0,k
q1,q2 (σ ) ⊂ Ξν,k

q1,q2 (σ ).

In general, we have the following result:

Theorem 4.3 Let � ∈ ∧
and let the function G := Ψ k

q2 ∗ Φk
ν ∗ � ∈ S∗( 1+ξ

1–ξ
), ξ ∈ ∪. If ρ1 :=

Ψq1 ∗ Φν ≺r ρ2 := Ψq2 ∗ Φν for some r < 1 and the function ρ2 ∈ C( 1+ξ

1–ξ
) then

Ξν,k
q1,q2 (σ ) ⊂ Ξν,k+1

q1,q2 (σ ). (4.6)

Proof Suppose that � ∈ Ξν,k
q1,q2 (σ ). Then there is a Schwarz transform ω with ω(0) = 0 and

|ω(ξ )| < 1 such that

(Ψ k
q1 ∗ Φk

ν ∗�)(ξ )
(Ψ k

q2 ∗ Φk
ν ∗�)(ξ )

= σ
(
ω(ξ )

)
, ξ ∈ ∪. (4.7)

This yields the following equality:

(
Ψ k

q1 ∗ Φk
ν ∗�

)
(ξ ) =

(
Ψ k

q2 ∗ Φk
ν ∗�

)
(ξ )σ

(
ω(ξ )

)
= G(ξ )σ

(
ω(ξ )

)
. (4.8)

By considering the convolution’s properties, we obtain

(Ψ k+1
q1 ∗ Φk+1

ν ∗�)(ξ )
(Ψ k+1

q2 ∗ Φk+1
κ ∗�)(ξ )

=
ρ1(ξ ) ∗ (G(ξ )σ (ξ ))

ρ2(ξ ) ∗ G(ξ )
. (4.9)

Since ρ1 ≺r ρ2, by letting r → 1, we obtain ρ1(ξ ) = ρ2(ξ ). As a result, by Lemma 3.1, we
deduce that

(Ψ k+1
q1 ∗ Φk+1

ν ∗�)(ξ )
(Ψ k+1

q2 ∗ Φk+1
ν ∗�)(ξ )

=
ρ1(ξ ) ∗ (G(ξ )σ (ξ ))

ρ2(ξ ) ∗ G(ξ )
∈ co

(
σ
(
ω(∪)

)) ⊂ co
(
σ (∪)

)
. (4.10)

Since σ (ξ ) is a convex univalent function in ∪ with σ (0) = 1, then by the definition of
subordination, we obtain

(Ψ k+1
q1 ∗ Φk+1

ν ∗�)(ξ )
(Ψ k+1

q2 ∗ Φk+1
ν ∗�)(ξ )

≺ σ (ξ ) ⇒ � ∈ Ξν,k+1
q1,q2 (σ ), (4.11)

which completes the proof. �
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We note that if we replace the condition of Theorem 4.3 by ρ2 ≺r ρ1 such that ρ1 ∈ C( 1+ξ

1–ξ
)

then we obtain the same conclusion.

Theorem 4.4 Let � ∈ ∧
and let the function H := Ψ k

q2 ∗Φk
ν1 ∗� ∈ S∗( 1+ξ

1–ξ
), ξ ∈ ∪. If Φk

ν1 ≺r

Φk
ν2 for some r < 1 then

Ξν1,k
q1,q2 (σ ) ⊂ Ξν2,k

q1,q2 (σ ). (4.12)

Proof Suppose that � ∈ Ξ
ν1,k
q1,q2 (σ ). Consequently, a Schwarz function ϑ exists with ϑ(0) =

0 and |ϑ(z)| < 1 such that

(Ψ k
q1 ∗ Φk

ν1 ∗ ψ)(z)
(Ψ k

q2 ∗ Φk
ν1 ∗�)(ξ )

= σ
(
ϑ(ξ )

)
, ξ ∈ ∪. (4.13)

This yields

(
Ψ k

q1 ∗ Φk
ν1 ∗�

)
(ξ ) =

(
Ψ k

q2 ∗ Φk
ν1 ∗�

)
(ξ )σ

(
ω(ξ )

)
= H(ξ )σ

(
ϑ(ξ )

)
. (4.14)

But the condition Φk
ν1 ≺r Φk

ν2 implies that Φk
ν1 (rξ ) = Φk

ν2 (rξ ) (for some r). It is clear that
η(ξ ) = ξ ∈ C( 1+ξ

1–ξ
); therefore, by the convolution’s properties, we attain

(Ψ k
q1 ∗ Φk

ν2 ∗�)(ξ )
(Ψ k

q2 ∗ Φk
ν2 ∗�)(ξ )

=
η(ξ ) ∗ (H(ξ )ϑ(ξ ))

η(ξ ) ∗ H(ξ )
, ξ ∈ ∪. (4.15)

Thus, in view of Lemma 3.1, we get

(Ψ k
q1 ∗ Φk

ν2 ∗�)(ξ )
(Ψ k

q2 ∗ Φk
ν2 ∗�)(ξ )

∈ co
(
σ
(
ϑ(∪)

)) ⊂ co
(
σ (∪)

)
. (4.16)

Since σ (ξ ) is a convex univalent function in ∪ with σ (0) = 1, then by the definition of
subordination, we obtain

(Ψ k
q1 ∗ Φk

ν2 ∗�)(ξ )
(Ψ k

q2 ∗ Φk
ν2 ∗�)(ξ )

≺ σ (ξ ) ⇒ � ∈ Ξν2,k
q1,q2 (σ ), (4.17)

which completes the proof. �

We record that if we change the condition of Theorem 4.4 by Φk
ν2 ≺r Φk

ν1 , we have

Ξν2,k
q1,q2 (σ ) ⊂ Ξν1,k

q1,q2 (σ ). (4.18)

5 Integral inequalities
The following section deals with some inequalities containing the operator (2.7). For two
functions h(ξ ) =

∑
anξ

n and �(ξ ) =
∑

bnξ
n, we have h � � if and only if |an| ≤ |bn|, ∀n.

This inequality is known as the majorization of two analytic functions.
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Theorem 5.1 Consider the operator [Sk
ν ]q � (ξ ), � ∈ ∧

. If the coefficients of � satisfy the
inequality |�n | ≤ ( 1

nν
)k , ν ∈ (0, 1) then

∫ 2π

0

∣
∣
∣
∣
[Sk

ν ]q � (ξ )
ξ

∣
∣
∣
∣

p

dθ ≤
∫ 2π

0

∣
∣
∣
∣

(
1 + ξ

1 – ξ

)δ∣∣
∣
∣

p

dθ , p > 0. (5.1)

Proof Let

σ (ξ , δ) =
(

1 + ξ

1 – ξ

)δ

, ξ ∈ ∪, δ ≥ 1. (5.2)

Then, a straightforward computation implies that

σ (ξ , 1) = 1 +
∑

n=1

(2n)ξn,

σ (ξ , 2) = 1 +
∑

n=1

(4n)ξn = 1 + 4ξ + 8ξ 2 + 12ξ 3 + 16ξ 4 + 20ξ 5 + · · · ,

σ (ξ , 3) = 1 +
∑

n=1

(
2 + 4n2)ξn = 1 + 6ξ + 18ξ 2 + 38ξ 3 + · · · ,

σ (ξ , 4) = 1 +
∑

n=1

1
3
(
8n

(
2 + n2))ξn = 1 + 8ξ + 16ξ 2 + 24ξ 3 + · · · ,

...

(5.3)

Comparing Eq. (5.3) and the coefficients of [Sk
ν ]q � (ξ ), which are satisfying

lim
q→1–

∣
∣
∣
∣[n]k

q

(
κ1(ν, ξ ) + (–1)n+1κ0(ν, ξ )

κ1(ν, ξ ) + κ0(ν, ξ )

)k

�n

∣
∣
∣
∣ ≤ 1, (5.4)

we conclude that [Sk
ν ]q � (ξ ) is majorized by the function σ (ξ , δ) for all δ ≥ 1. By the prop-

erties of majorization [18], we have

[Sk
ν ]q � (ξ )

ξ
≺ σ (ξ , δ), ξ ∈ ∪. (5.5)

Thus, according to Lemma 3.2, we conclude that

∫ 2π

0

∣
∣
∣
∣
[Sk

ν ]q � (ξ )
ξ

∣
∣
∣
∣

p

dθ ≤
∫ 2π

0

∣
∣
∣
∣

(
1 + ξ

1 – ξ

)δ∣∣
∣
∣

p

dθ , p > 0. (5.6)
�

In the same manner as in the proof of Theorem 5.1, one can get the next result:

Theorem 5.2 Consider the operator [Sk
ν ]q � (ξ ), � ∈ ∧

. If the coefficients of � satisfy the
inequality |�n | ≤ ( 1

nν
)k , ν ∈ (0, 1) then

∫ 2π

0

∣
∣
([
Sk

ν

]
q � (ξ )

)′∣∣p dθ ≤
∫ 2π

0

∣
∣
∣
∣

(
1 + ξ

1 – ξ

)δ∣∣
∣
∣

p

dθ , p > 0.
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Moreover, the inequality in Theorem 5.1 can be studied in the following result:

Theorem 5.3 Consider the operator Sκ ,k
q ψ(z), ψ ∈ Λ. If the coefficients of ψ satisfy the

inequality |ϑn| ≤ ( 1
nκ

)k , κ ∈ (0,∞) then there is a probability measure μ on (∂U)2, for all
δ > 1.

Proof Let ε, ε ∈ ∂∪. Then we have

(
1 + εξ

1 + εξ

)δ

=
(1 + εξ )δ

1 + εξ
.

1
(1 + εξ )δ–1

� (1 + ξ )δ

1 – ξ
.

1
(1 – ξ )δ–1

=
(

1 + ξ

1 – ξ

)δ

, δ > 1. (5.7)

By virtue of Theorem 1.11 in [19], the functional ( 1+εξ

1+εξ
)δ defines a probability measure μ

in (∂∪)2 fulfilling

χ (ξ ) =
∫

(∂∪)2

(
1 + εξ

1 + εξ

)δ

dμ(ε, ε), ξ ∈ ∪. (5.8)

Then there is a constant c (diffusion constant) such that

∫

(∂∪)2

(
1 + εξ

1 + εξ

)δ

dμ(ε, ε) = c
∫

(∂∪)2

(
[Sk

ν ]q � (ξε)
εξ

)δ

dμ(ε, ε), ξ ∈ ∪. (5.9)

This completes the proof. �

6 A class of differential equations
This section deals with an application of the operator (2.7) in a class of differential equa-
tions (for recent work see [20]). The class of quantum III-Painlevé differential equations
has been studied recently in [21–23]. This class takes the formula

ξ � (ξ )
d2 � (ξ )

dξ 2 = ξ

(
d � (ξ )

dξ

)2

– �(ξ )
d � (ξ )

dξ
, ξ ∈ ∪,� ∈

∧
. (6.1)

Rearranging Eq. (6.1), we have

(

1 +
ξ �′′ (ξ )
�′(ξ )

)

–
ξ �′ (ξ )
�(ξ )

= 0, ξ ∈ ∪, (6.2)

subjected to the boundary conditions

�(ξ ) = ξ + �2ξ
2 + O

(
ξ 3), |�n | ≤ 1

[Qn]k
q

, n ≥ 2, ξ ∈ ∪ =
{
ξ ∈C : |ξ | < 1

}
, (6.3)

where

[Qn]k
q := [n]k

q

(
κ1(ν, ξ ) + (–1)n+1κ0(ν, ξ )

κ1(ν, ξ ) + κ0(ν, ξ )

)k

.
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Now by employing the operator (2.7), Eq. (6.2) becomes (called q-Painlevé differential
equation of type III)

(

1 +
ξ ([Sk

ν ]q � (ξ ))′′

([Sk
ν ]q � (ξ ))′

)

–
ξ ([Sk

ν ]q � (ξ ))′

([Sk
ν ]q � (ξ ))

= 0, ξ ∈ ∪, (6.4)

subjected to (6.3). Our aim is to study the geometric solution of (6.4) satisfying the bound-
ary condition (6.3). For this purpose, we define the following analytic class:

Definition 6 For a function � ∈ ∧
and a convex function ψ ∈ ∪ with ψ(0) = 0, the func-

tion � is said to be in the class Vq(ψ) if and only if

P(ξ ) :=
(

1 +
ξ ([Sk

ν ]q � (ξ ))′′

([Sk
ν ]q � (ξ ))′

)

–
ξ ([Sk

ν ]q � (ξ ))′

([Sk
ν ]q � (ξ ))

≺ ψ(ξ ), ξ ∈ ∪, (6.5)

where ψ(ξ ) ∈ ∧
.

For the functions in the class Vq(ψ), the following result holds.

Theorem 6.1 If the function � ∈ Vq(ψ) is given by (2.1), then

|�2 | ≤ 1
[Q2]k

q
, |�3 | ≤ 1

[Q3]k
q

. (6.6)

Proof Let � ∈ Vq(ψ) have the expansion

�(ξ ) = ξ + �2ξ
2 + �3ξ

3 + · · · , ξ ∈ ∪.

Moreover, we let

[Qn]k
q := [n]k

q

(
κ1(ν, ξ ) + (–1)n+1κ0(ν, ξ )

κ1(ν, ξ ) + κ0(ν, ξ )

)k

.

Then by the definition of subordination, there is a Schwarz function � with �(0) = 0 and
|�(ξ )| < 1 satisfying P(ξ ) = ψ(�(ξ )), ξ ∈ ∪. Furthermore, if we assume that |�(ξ )| = |ξ | <
1, then, in view of Schwarz lemma, there is a complex number τ with |τ | = 1 satisfying
�(ξ ) = τξ . Consequently, we obtain

P(ξ ) = ψ
(�(ξ )

)

�⇒
(

1 +
ξ ([Sk

ν ]q � (ξ ))′′

([Sk
ν ]q � (ξ ))′

)

–
ξ ([Sk

ν ]q � (ξ ))′

([Sk
ν ]q � (ξ ))

= ψ
(
τ (ξ )

)

�⇒ 1 +
(
2 �2 [Q2]k

qξ +
(
6 �3 [Q3]k

q – 4
(
�2[Q2]k

q
)2)

ξ 2 + · · · )

–
(
1 + �2[Q2]k

qξ +
(
2 �3 [Q3]k

q –
(
�2[Q2]k

q
)2)

ξ 2 + · · · )

= τ
(
ξ + ψ2ξ

2 + ψ3ξ
3 + · · · )

�⇒ �2[Q2]k
qξ +

(
4 �3 [Q3]k

q – 3
(
�2[Q2]k

q
)2)

ξ 2 + · · ·
= τξ + τψ2ξ

2 + τψ3ξ
3 + · · · .
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It follows that

∣
∣�2[Q2]k

q
∣
∣ = |τ | = 1,

∣
∣�3[Q3]k

q
∣
∣ ≤ 1

4
(|ψ2| + 3

)
.

Since ψ is convex univalent in ∪, |ψn| ≤ 1, ∀n; this implies that

|�2 | ≤ 1
[Q2]k

q
, |�3 | ≤ 1

[Q3]k
q

.

Hence, the proof is complete. �

We need the following fact, which can be located in [12].

Lemma 6.2 Consider functions f1, f2, f3 : ∪ →C such that �(f1) ≥ a ≥ 0. If f ∈H[1, n] (the
set of analytic functions having the expansion f (ξ ) = 1 + ϕ1ξ + · · · ) and

�(
aξ 2f ′′(ξ ) + f1(ξ )ξ f ′(ξ ) + f2(ξ )f (ξ ) + f3(ξ )

)
> 0, a ≥ 0, ξ ∈ ∪,

then �(f (ξ )) > 0.

Lemma 6.3 Let � be convex in ∪ and suppose f1, f2, f3 : ∪ → C are analytic functions such
that �(f1) ≥ a ≥ 0. If g ∈ H[0, m] (the set of analytic functions with the expansion g(ξ ) =
g1ξ

m + · · · ), m ≥ 1 and

aξ 2g ′′(ξ ) + f1(ξ )ξg ′(ξ ) + f2(ξ )g(ξ ) + f3(ξ ) ≺ �(ξ ), a ≥ 0, ξ ∈ ∪,

then g(ξ ) ≺ �(ξ ).

Lemma 6.4 Let a, b, c ∈ R be such that a ≥ 0, b ≥ –a, c ≥ –b. If q ∈ H[0, 1], where q(ξ ) =
q1ξ + · · · and

aξ 2q′′(ξ ) + bξq′(ξ ) + cq(ξ ) ≺ ξ , a ≥ 0, ξ ∈ ∪,

then q(ξ ) ≺ ξ

b+c , which is the best dominant.

Theorem 6.5 Let � ∈ Vq(ξ ) and F(ξ ) = ξ ([Sk
ν ]q�(ξ ))′

([Sk
ν ]q�(ξ ))

. If �(ξF(ξ )) > –1, ξ ∈ ∪, then [Sk
ν ]q� ∈

S∗ (starlike with respect to the origin).

Proof Let F(ξ ) = ξ ([Sk
ν ]q�(ξ ))′

([Sk
ν ]q�(ξ ))

. Then a straightforward computation implies that

ξF ′(ξ ) = ξ

(
ξ ([Sk

ν ]q � (ξ ))′

([Sk
ν ]q � (ξ ))

)′

=
ξ ([Sk

ν ]q � (ξ ))′′

([Sk
ν ]q � (ξ ))′

ξ ([Sk
ν ]q � (ξ ))′

[Sk
ν ]q � (ξ )

+
ξ ([Sk

ν ]q � (ξ ))′

[Sk
ν ]q � (ξ )

–
(

ξ ([Sk
ν ]q � (ξ ))′

[Sk
ν ]q � (ξ )

)2

=
ξ ([Sk

ν ]q � (ξ ))′

�(ξ )

(

1 +
ξ ([Sk

ν ]q � (ξ ))′′

([Sk
ν ]q � (ξ ))′

–
ξ ([Sk

ν ]q � (ξ ))′

[Sk
ν ]q � (ξ )

)

= F(ξ )P(ξ ).



Ibrahim et al. Advances in Difference Equations        (2020) 2020:325 Page 12 of 14

Hence, we obtain

P(ξ ) =
ξF ′(ξ )
F(ξ )

≺ ξ , ψ(ξ ) := ξ .

It is clear that F ∈H[1, 1] and

�
(

ξF ′(ξ )
F(ξ )

)

= �(ξ ) ⇒ 1 + �(
ξF ′(ξ )

)
= 1 + �(

ξF(ξ )
)

> 0.

Then in view of Lemma 6.2, with a = 0, f1 = 1, f2 = 0 and f3 = 1, we have

�(
F(ξ )

)
= �

(
ξ ([Sk

ν ]q � (ξ ))′

[Sk
ν ]q � (ξ )

)

> 0;

that is, [Sk
ν ]q� ∈S∗ with respect to the origin. �

Theorem 6.6 Let � ∈ ∧
and F(ξ ) = ξ ([Sk

ν ]q�(ξ ))′
[Sk

ν ]q�(ξ )
. If

ξF ′(ξ )
F(ξ )

(

2 +
ξF ′′(ξ )
F ′(ξ )

–
ξF ′(ξ )
F(ξ )

)

≺ ψ(ξ ),

where ψ is convex in ∪, then � ∈ Vq(ψ).

Proof Let � ∈ ∧
and F(ξ ) = ξ ([Sk

ν ]q�(ξ ))′
[Sk

ν ]q�(ξ )
. As in the proof of Theorem 6.5, we have P(ξ ) =

ξF ′(ξ )
F(ξ ) . Then a calculation gives

ξP′(ξ ) + P(ξ ) = ξ

(
ξF ′(ξ )
F(ξ )

)′
+

(
ξF ′(ξ )
F(ξ )

)

=
ξF ′(ξ )
F(ξ )

(

2 +
ξF ′′(ξ )
F ′(ξ )

–
ξF ′(ξ )
F(ξ )

)

≺ ψ(ξ ).

Obviously, P ∈ H[0, m], m = 1, and, by letting a = 0, f1(ξ ) = 1, and f2(ξ ) = 1, in view of
Lemma 6.3, we have

P(ξ ) = 1 +
([Sk

ν ]q � (ξ ))′′

([Sk
ν ]q � (ξ ))′

–
ξ ([Sk

ν ]q � (ξ ))′

[Sk
ν ]q � (ξ )

≺ ψ(ξ ).

Consequently, we get � ∈ Vq(ψ). �

Theorem 6.7 Let � ∈ ∧
and F(ξ ) = ξ ([Sk

ν ]q�(ξ ))′
[Sk

ν ]q�(ξ )
. If

ξF ′(ξ )
F(ξ )

(

1 +
ξF ′′(ξ )
F ′(ξ )

–
ξF ′(ξ )
F(ξ )

)

≺ ξ ,

where ψ is convex in ∪, then � ∈ Vq(ξ ).
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Proof Let � ∈ ∧
and F(ξ ) = ξ ([Sk

ν ]q�(ξ ))′
[Sk

ν ]q�(ξ )
. As in the proof of Theorem 6.5, we have P(ξ ) =

ξF ′(ξ )
F(ξ ) . Then a straightforward calculation gives

ξP′(ξ ) = ξ

(
ξF ′(ξ )
F(ξ )

)′

=
ξF ′(ξ )
F(ξ )

(

1 +
ξF ′′(ξ )
F ′(ξ )

–
ξF ′(ξ )
F(ξ )

)

≺ ξ .

Obviously, P ∈ H[0, 1] and, by letting a = 0, b = 1, and c = 0, where c ≥ –b, in view of
Lemma 6.4, we have

P(ξ ) = 1 +
([Sk

ν ]q � (ξ ))′′

([Sk
ν ]q � (ξ ))′

–
ξ ([Sk

ν ]q � (ξ ))′

[Sk
ν ]q � (ξ )

≺ ξ .

Consequently, we obtain � ∈ Vq(ξ ). �

7 Conclusion
In this paper, we presented different types of integral inequalities based on q-calculus and
conformable differential operator. These inequalities described the relations between the
quantum conformable differential operators for different orders.
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