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Abstract
Motivated by the Hilfer and the Hilfer–Katugampola fractional derivative, we
introduce in this paper a new Hilfer generalized proportional fractional derivative,
which unifies the Riemann–Liouville and Caputo generalized proportional fractional
derivative. Some important properties of the proposed derivative are presented.
Based on the proposed derivative, we consider a nonlinear fractional differential
equation with nonlocal initial condition and show that this equation is equivalent to
the Volterra integral equation. In addition, the existence and uniqueness of solutions
are proven using fixed point theorems. Furthermore, we offer two examples to clarify
the results.
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1 Introduction
Fractional calculus has been concerned with integrals and derivatives of arbitrary non-
integer order of functions. In recent years, several researchers in the field of fractional
calculus have brought attention to the search for the best fractional derivative, which will
be used to model real world problems. Fractional calculus is as old as the classical calcu-
lus whose equations are often considered unable to model certain complex systems and it
turned out that the methods used in the fractional calculus are splendid when modeling
long-memory processes and many phenomena that occur in physics, chemistry, electric-
ity, mechanics and many other disciplines [10, 13, 17, 21, 31, 32, 34, 35, 38–40].

However, scientists felt the need for other types of fractional operators restricted to
Riemann–Liouville fractional operators and Caputo fractional derivatives until the turn
of this century. Many scientists proposed a variety of new fractional operators which con-
tributed to the growth of the field of fractional calculus [9, 14, 15, 24, 25, 27–29, 37]. It is
worth noting that the fractional operators proposed in this work are unique instances of
fractional integrals/derivatives in relation to another function described in [4, 5, 22, 41].
But all of these operators possess one of the most important peculiarities of fractional
operators: nonlocality.
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In [30], the authors introduced a local derivative with a non-integer order and called
it a conformable derivative. The process of conceptualization of these local derivatives
will lead to the rediscovery of the nonlocal fractional operators described in [28, 29]. We
explain the key principles of the conformable derivative and suggest a derivative consistent
with the left and right versions. Once again, the nonlocal fractional version as proposed
in [1, 12] is found in [27].

In all types of fractional calculus or calculus with derivative, the order zero for a function
should be equal to the function. The conformable derivative lacks this essential property of
every derivative and in fact it is a deficit. In order to circumvent this deficit, the authors in
[6, 7] redefined the conformal derivative to yield the function itself when this local deriva-
tive is of the order of zero. Following this was work by Jarad et al. [23] where the authors
suggested the fractional version of the redefined conformable derivative. The existence
and uniqueness of solutions belong to the most important qualitative properties of frac-
tional differential equations. The existence and uniqueness of solutions to fractional differ-
ential equations that include different types of fractional derivatives and initial/boundary
conditions were tackled by several mathematicians (see [2, 3, 8, 11, 16, 19, 20, 26, 42–45]
and the references cited therein).

Motivated by [18, 36], we propose a new fractional derivative (simply known as Hilfer
generalized proportional fractional derivative). Therefore, in the context of the defined
derivative, we discuss the existence and uniqueness of solutions for a certain type of non-
linear fractional differential equations with nonlocal initial condition. The Hilfer general-
ized proportional fractional differential equation is of the following form:

⎧
⎨

⎩

Dp,q,ρ
a+ x(t) = f (t, x(t)), t ∈ J = [a, T], T > a ≥ 0,

I1–γ ,ρ
a+ x(a) =

∑m
i=1 cix(τi), p ≤ γ = p + q – pq, τi ∈ (a, T),

(1.1)

where Dp,q,ρ
a+ (·) is the Hilfer generalized proportional fractional derivative of order (0 < p <

1), I1–γ ,ρ
a+ (·) is the generalized proportional fractional integral of order 1 – γ > 0, ci ∈ R,

f : J × R → R is a continuous function and τi ∈ J satisfying a < τ1 < · · · < τm < T for i =
1, . . . , m. To the best of our knowledge no one has discussed the existence and uniqueness
of solutions of (1.1).

The rest of the paper is structured as follows. In Sect. 2, we shall review some basic defi-
nitions and theoretical results that we need to proceed. We describe our proposed deriva-
tives in Sect. 3, the Hilfer generalized proportional derivatives along with some of the
preliminary properties. In addition, we also investigate the comparability between an ini-
tial value problem and an integral equation of Volterra, from which we prove the existence
and uniqueness of the solution using fixed point theorems of Banach and Kransnoselskii’s.
Moreover, two examples were given to clarify the results. The conclusion of the paper is
given in Sect. 4.

2 Preliminaries and theoretical results
We offer some preliminary details, results and definitions of fractional calculus in this
section, which are important throughout this paper.
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Let –∞ < a < b < ∞ be finite and infinite intervals on R+. Denote by C[a, b], the spaces
of the continuous function f on [a, b] with norm defined by [32]

‖f ‖C[a,b] = max
t∈[a,b]

∣
∣f (t)

∣
∣,

and ACn[a, b], the space of n times absolutely continuous differentiable functions, given
by

ACn[a, b] =
{

f : (a, b] →R; f n–1 ∈AC
(
[a, b]

)}
.

The weighted space Cγ [a, b] of a functions f on (a, b] is defined by

Cγ [a, b] =
{

f : (a, b] →R; (t – a)γ f (t) ∈ C
(
[a, b]

)}
, 0 ≤ γ < 1,

with the norm

‖f ‖Cγ [a,b] =
∥
∥(t – a)γ f (t)

∥
∥
C[a,b] = max

t∈[a,b]

∣
∣(t – a)γ f (t)

∣
∣.

The weighted space Cn
γ [a, b] of the functions f on (a, b] is defined by

Cn
γ [a, b] =

{
f : (a, b] →R; f (t) ∈ Cn–1([a, b]

)
; f n(t) ∈ Cγ

(
[a, b]

)}
, 0 ≤ γ < 1,

with the norm

‖f ‖Cn
γ [a,b] =

n–1∑

k=0

∥
∥f k∥∥

C[a,b] +
∥
∥f n∥∥

Cγ [a,b].

Clearly, C0
γ [a, b] = Cγ [a, b], if n = 0.

Definition 2.1 ([32]) Suppose f ∈ L1([a, b],R). Then the fractional operator

Ip
a+ f (t) =

1
Γ (p)

∫ t

a
(t – μ)p–1f (μ) dμ, p > 0, t > a, n ∈ N,

is referred to as the Riemann–Liouville integral of order p with the lower limit a+ of the
function f , where Γ (·) denotes the classical gamma function.

Definition 2.2 ([32]) Let f ∈ C([a, b]). Then the fractional operator

LDp
a+f (t) =

1
Γ (n – p)

dn

dtn

∫ t

a
(t – μ)n–p–1f (μ) dμ, p > 0, t > a, n – 1 < p < n, n ∈N,

is called the Riemann–Liouville fractional derivative of order p with the lower limit a+ of
the function f , where Γ (·) denotes the gamma function.

Definition 2.3 ([32]) Let f ∈ Cn([a, b]). Then the fractional operator

CDp
a+f (t) =

1
Γ (n – p)

∫ t

a
(t – μ)n–p–1f n(μ) dμ, p > 0, n – 1 < p < n, n ∈N,
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is referred to the Caputo fractional derivative of order p with the lower limit a+ of the
function f .

Definition 2.4 ([23]) If ρ ∈ (0, 1] and p ∈C, Re(p) > 0. Then the fractional operator

Ip,ρ
a+ f (t) =

1
ρpΓ (p)

∫ t

a
e

ρ–1
ρ (t–μ)(t – μ)p–1f (μ) dμ, t > a, (2.1)

is called the left-sided generalized proportional integral of order p of the function f .

Definition 2.5 ([23]) The left generalized proportional fractional derivative of order p
and ρ ∈ (0, 1] of a function f is defined by

Dp,ρ
a+ f (t) =

Dn,ρ

ρn–pΓ (n – p)

∫ t

a
e

ρ–1
ρ (t–μ)(t – μ)n–p–1f (μ) dμ, p ∈C, Re(p) > 0, (2.2)

where Γ (·) is the Gamma function and n = [p] + 1.

Definition 2.6 ([23]) Let ρ ∈ (0, 1]. Then the fractional operator

CDp,ρ
a+ f (t) =

1
ρn–pΓ (n – p)

×
∫ t

a
e

ρ–1
ρ (t–μ)(t – μ)n–p–1(Dn,ρ f

)
(μ) dμ, p ∈C, Re(p) > 0, (2.3)

is referred to as the left-sided generalized proportional fractional derivative in the sense
of Caputo of order p of the function f , where Γ (·) is the gamma function and n = [p] + 1.

Remark 2.7 Note that if ρ = 1 Definitions 2.4, 2.5 and 2.6 coincide with the classical def-
initions of the Riemann–Liouville fractional integral, the Riemann–Liouville fractional
derivative and the Caputo fractional derivative (see Definitions 2.1, 2.2 and 2.3).

The following are certain important properties of the generalized proportional frac-
tional integral and derivative.

Proposition 2.8 ([23]) Let p, δ ∈ C such that Re(p) ≥ 0 and Re(δ) > 0. Then for any ρ ∈
(0, 1] we have

(
Ip,ρ

a+ e
ρ–1
ρ s(s – a)δ–1)(t) =

Γ (δ)
ρpΓ (δ + p)

e
ρ–1
ρ t(t – a)δ+p–1,

(
Dp,ρ

a+ e
ρ–1
ρ s(s – a)δ–1)(t) =

ρpΓ (δ)
Γ (δ – p)

e
ρ–1
ρ t(t – a)δ–p–1,

(
Ip,ρ

b e
ρ–1
ρ (b–s)(b – s)δ–1)(t) =

Γ (δ)
ρpΓ (δ + p)

e
ρ–1
ρ (b–t)(b – t)δ+p–1,

(
Dp,ρ

b e
ρ–1
ρ (b–s)(b – s)q–1)(t) =

ρpΓ (δ)
Γ (δ – p)

e
ρ–1
ρ (b–t)(b – t)δ–p–1.

(2.4)

Theorem 2.9 ([23]) Let ρ ∈ (0, 1], Re(p) > 0 and Re(q) > 0. If f ∈ C([a, b], R), then

Ip,ρ
a+

(
Iq,ρ

a+ f
)
(t) = Iq,ρ

a+
(
Ip,ρ

a+ f
)
(t) =

(
Ip+q,ρ

a+ f
)
(t), t ≥ a. (2.5)
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Theorem 2.10 ([23]) Suppose ρ ∈ (0, 1] and 0 ≤ m < [Re(p)] + 1. If f ∈ L1([a, b]). Then

Dm,ρ
a+

(
Ip,ρ

a+ f
)
(t) =

(
Ip–m,ρ

a+ f
)
(t), t > a. (2.6)

Corollary 2.11 ([23]) If 0 < Re(q) < Re(p) and m – 1 < Re(q) ≤ m. Then we get

Dq,ρ
a+ Ip,ρ

a+ f (t) = Ip–q,ρ
a+ f (t).

Theorem 2.12 ([23]) Let f ∈ L1([a, b]), Re(p) > 0 and ρ ∈ (0, 1]. Then

Dp,ρ
a+ Ip,ρ

a+ f (t) = f (t), t ≥ a, n =
[
Re(p)

]
+ 1.

Lemma 2.13 ([23]) If p > 0, ρ ∈ (0, 1] and m ∈ Z+. Then

(
Ip,ρ

a+ Dm,ρ
a+ f

)
(t) =

(
Dm,ρ

a+ Ip,ρ
a+ f

)
(t) –

m–1∑

k=0

e
ρ–1
ρ (t–a)(t – a)p–m+k

ρp–m+kΓ (p + k – m + 1)
(
Dk,ρ

a+ f
)
(a). (2.7)

In particular, if m = 1, we obtain

(
Ip,ρ

a+ Dρ

a+ f
)
(t) =

(
Dρ

a+ Ip,ρ
a+ f

)
(t) –

e
ρ–1
ρ (t–a)(t – a)p–1

ρp–1Γ (p)
f (a). (2.8)

Theorem 2.14 ([23]) Let Re(p) > 0, n = –[– Re(p)], f ∈ L1(a, b) and (Ip,ρ
a+ f )(t) ∈ ACn[a, b].

Then

(
Ip,ρ

a+ Dp,ρ
a+ f

)
(t) = f (t) – e

ρ–1
ρ (t–a)

n∑

j=1

(t – a)p–j

ρp–jΓ (p – j + 1)
(
Ij–p,ρ

a f
)(

a+)
. (2.9)

3 Main results
We introduce the Hilfer generalized proportional fractional derivative in this section and
discuss some of its properties. Additionally, we demonstrate the equivalence between the
proposed problem (1.1) and the integral equation of Volterra type. In addition, we prove
the existence and uniqueness of solutions of problem (1.1) by employing the fixed point
theorems.

Definition 3.1 Let n – 1 < p < n, ρ ∈ (0, 1] and 0 ≤ q ≤ 1, with n ∈N. The left-sided/right-
sided Hilfer generalized proportional fractional derivative of order p and type q of a func-
tion f is defined by

(
Dp,q,ρ

a± f
)
(x) = Iq(n–p),ρ

a±
[
Dρ

(
I (1–q)(n–p),ρ

a± f
)]

(x), (3.1)

where Dρ f (x) = (1–ρ)f (x)+ρf ′(x) and I is the generalized proportional fractional integral
defined in Eq. (2.1).

In particular, if n = 1, Definition 3.1 is equivalent with

(
Dp,q,ρ

a± f
)
(x) = Iq(1–p),ρ

a±
[
Dρ

(
I (1–q)(1–p),ρ

a± f
)]

(x). (3.2)
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Thus, throughout this paper, we discuss the case where n = 1, 0 < p < 1, 0 ≤ q ≤ 1 and
γ = p + q – pq.

Remark 3.2 It is worthwhile to specify that:
• The derivative is used as an interpolator between the Riemann–Liouville and Caputo

generalized proportional fractional derivative, respectively, since

Dp,q,ρ
a± f =

⎧
⎨

⎩

DρI (1–p),ρ
a± f , q = 0 (see Definition 2.5),

I (1–p),ρ
a± Dρ f , q = 1 (see Definition 2.6).

(3.3)

• The parameter γ satisfies

0 < γ ≤ 1, γ ≥ p, γ > q, 1 – γ < 1 – q(1 – p).

Property 3.3 The operator Dp,q,ρ
a+ can be simplified as

Dp,q,ρ
a+ f = Iq(1–p),ρ

a+ DρI (1–γ ),ρ
a+ f = Iq(1–p),ρ

a+ Dγ ,ρ
a+ f , γ = p + q – pq.

Proof In view of Equation (3.2) and Definition 2.5,

(
Dp,q,ρ

a+ f
)
(x) = Iq(1–p),ρ

a+
[
Dρ

(
I (1–q)(1–p),ρ

a+ f
)]

(x)

= Iq(1–p),ρ
a+

{
Dρ

ρ(1–γ )Γ ((1 – γ ))

∫ t

a
e

ρ–1
ρ (t–τ )(t – τ )(1–γ )–1f (τ ) dτ

}

=
(
Iq(1–p),ρ

a+ Dγ ,ρ f
)
(x). �

We consider the following weighted spaces of continuous function on (a, b]:

Cp,q
1–γ [a, b] =

{
f ∈ C1–γ [a, b],Dp,q,ρ

a+ f ∈ C1–γ [a, b]
}

and

Cγ
1–γ [a, b] =

{
f ∈ C1–γ [a, b],Dγ ,ρ

a+ f ∈ C1–γ [a, b]
}

.

Since Dp,q,ρ
a+ = Iq(1–p),ρ

a+ Dγ ,ρ
a+ ,

Cγ
1–γ [a, b] ⊂ Cp,q

1–γ [a, b].

Lemma 3.4 Suppose 0 < p < 1, ρ ∈ (0, 1] and 0 ≤ γ < 1. If f ∈ Cγ [a, b] then

Ip,ρ
a+ f (a) = lim

x→a+
Ip,ρ

a+ f (x) = 0, 0 ≤ γ < p.

Proof Considering f ∈ C[a, b], it implies that f ∈ Cγ [a, b] and (x – a)γ ∈ C[a, b]. Therefore,
there exists M > 0 for which

(x – a)γ f (x) < M, for all x ∈ [a, b],
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and

∣
∣Ip,ρ

a+ e
ρ–1
ρ xf (x)

∣
∣ < M

[
Ip,ρ

a+ e
ρ–1
ρ t(t – a)–γ

]
(x).

It follows from Proposition 2.8, that

∣
∣Ip,ρ

a+ e
ρ–1
ρ xf (x)

∣
∣ < M

[
Γ (1 – γ )

Γ (p + 1 – γ )
e

ρ–1
ρ x(x – a)p–γ

]

,

which implies that the right-hand side → 0 as x → a+. �

Lemma 3.5 Let 0 < p < 1, ρ ∈ (0, 1], 0 ≤ q ≤ 1 and γ = p + q – pq. If f ∈ Cγ
1–γ [a, b] then

Iγ ,ρ
a+ Dγ ,ρ

a+ f = Ip,ρ
a+ Dp,q,ρ

a+ f

and

Dγ ,ρ
a+ Ip,ρ

a+ f = Dq(1–p),ρ
a+ f .

Proof Making use of Theorem 2.9 and Property 3.3,

Iγ ,ρ
a+ Dγ ,ρ

a+ f = Iγ ,ρ
a+

(
I–q(1–p),ρ

a+ Dp,q,ρ
a+ f

)

= Ip+q–pq,ρ
a+ I–q(1–p),ρ

a+ Dp,q,ρ
a+ f

= Ip,ρ
a+ Dp,q,ρ

a+ f .

Furthermore, in view of Theorem 2.9 and Eq. (3.2), we can see that

Dγ ,ρ
a+ Ip,ρ

a+ f = Dρ

a+I1–γ ,ρ
a+ Ip,ρ

a+ f

= Dρ

a+I1–q+pq,ρ
a+ f

= Dq(1–p),ρ
a+ f . �

Lemma 3.6 Suppose f ∈ L1(a, b) such that Dq(1–p),ρ
a+ f exists in L1(a, b). Then

Dp,q,ρ
a+ Ip,ρ

a+ f = Iq(1–p),ρ
a+ Dq(1–p),ρ

a+ f .

Proof It follows from Definition 2.5 and Eq. (3.2) that

Dp,q,ρ
a+ Ip,ρ

a+ f = Iq(1–p),ρ
a+ Dρ

a+I (1–q)(1–p),ρ
a+

= Iq(1–p),ρ
a+ Dρ

a+I1–q(1–p),ρ
a+

= Iq(1–p),ρ
a+ Dq(1–p),ρ

a+ f . �

Lemma 3.7 Let 0 < p < 1, ρ ∈ (0, 1], and 0 ≤ γ < 1. If f ∈ Cγ [a, b] and I1–p,ρ
a+ f ∈ C1

γ [a, b],
then

Ip,ρ
a+ Dp,ρ

a+ f (x) = f (x) – e
ρ–1
ρ (x–a) (x – a)p–1

ρp–1Γ (p)
(
I1–p,ρ

a f
)(

a+)
,

for all x ∈ (a, b].
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Proof The proof is similar to the ones in [23]. �

Lemma 3.8 Let 0 < p < 1, ρ ∈ (0, 1], 0 ≤ q ≤ 1 and γ = p + q – pq. If f ∈ C1–γ [a, b] and
Dp,q,ρ

a+ f then Dp,q,ρ
a+ Ip,ρ

a+ f exists in (a, b) and

Dp,q,ρ
a+ Ip,ρ

a+ f (x) = f (x), x ∈ (a, b].

Proof Now, using Lemmas 3.4, 3.6 and 3.7, we have

(
Dp,q,ρ

a+ Ip,ρ
a+ f

)
(x) =

(
Iq(1–p),ρ

a+ Dq(1–p),ρ
a+ f

)
(x)

= f (x) – e
ρ–1
ρ (x–a) (x – a)q(1–p)–1

ρq(1–p)–1Γ (q(1 – p))
(
I1–q(1–p),ρ

a f
)(

a+)

= f (x). �

Lemma 3.9 Let 0 < p < 1, ρ ∈ (0, 1], 0 ≤ q ≤ 1 and 0 < γ < 1. If f ∈ C1–γ [a, b] and I1–γ ,ρ
a+ f ,

then

Ip,ρ
a+ Dp,q,ρ

a+ f (x) = f (x) – e
ρ–1
ρ (x–a) (x – a)γ –1

ργ –1Γ (γ )
(
I1–γ ,ρ

a f
)(

a+)
, x ∈ (a, b].

Proof It follows from Definition 3.1 and Lemma 3.7 that

(
Ip,ρ

a+ Dp,q,ρ
a+ f

)
(x) = Ip,ρ

a+
(
Iγ –p,ρ

a+ Dγ ,ρ
a+ f

)
(x)

= Iγ ,ρ
a+ Dγ ,ρ

a+ f (x)

= f (x) – e
ρ–1
ρ (x–a) (x – a)γ –1

ργ –1Γ (γ )
(
I1–γ ,ρ

a f
)(

a+)
. �

3.1 Equivalent mixed-type Volterra integral equation
The following lemma shows the equivalence between the proposed problem (1.1) and the
Volterra integral equation.

Lemma 3.10 Let 0 < p < 1, 0 ≤ q ≤ 1 and γ = p + q – pq and let f : J ×R →R be a function
such that f ∈ C1–γ [J ,R] for any x ∈ C1–γ [J ,R]. If x ∈ Cγ

1–γ [J ,R] then x satisfies problem (1.1)
if and only if x satisfies the mixed-type integral equation:

x(t) =
Λ

ρpΓ (p)
e

(ρ–1)
ρ (t–a)(t – a)γ –1

m∑

i=1

ci

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f

(
s, x(s)

)
ds

+
1

ρpΓ (p)

∫ t

a+
e

(ρ–1)
ρ (t–s)(t – s)p–1f

(
s, x(s)

)
ds, (3.4)

where

Λ =
1

ργ –1Γ (γ ) –
∑m

i=1 cie
(ρ–1)

ρ (τi–a)(τi – a)γ –1
. (3.5)
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Proof Suppose, x ∈ Cγ
1–γ [J ,R] be a solution of (1.1). We show that x is also a solution of

(3.4). In view of Lemma 3.9, we have

x(t) =
(t – a)γ –1

ργ –1Γ (γ )
e

(ρ–1)
ρ (t–a)I1–γ ,ρ

a+ x
(
a+)

+
1

ρpΓ (p)

∫ t

a+
e

(ρ–1)
ρ (t–s)(t – s)p–1f

(
s, x(s)

)
ds. (3.6)

Now, substituting t = τi and multiplying both sides by ci in (3.6), we get

cix(τi) =
(τi – a)γ –1

ργ –1Γ (γ )
e

(ρ–1)
ρ (τi–a)ciI1–γ ,ρ

a+ x
(
a+)

+ ciIp,ρ
a+ f (τi), (3.7)

which implies that

m∑

i=1

cix(τi) =
1

ργ –1Γ (γ )

m∑

i=1

cie
(ρ–1)

ρ (τi–a)(τi – a)γ –1I1–γ ,ρ
a+ x

(
a+)

+
1

ρpΓ (p)

m∑

i=1

ci

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f

(
s, x(s)

)
ds. (3.8)

From the initial condition I1–γ ,ρ
a+ x(a) =

∑m
i=1 cix(τi), we get

I1–γ ,ρ
a+ x

(
a+)

=
ργ –1Γ (γ )
ρpΓ (p)

Λ

m∑

i=1

ci

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f

(
s, x(s)

)
ds. (3.9)

Therefore, the result follows by substituting (3.9) in (3.6). This shows that x(t) satisfies
(3.4).

Conversely, suppose that x ∈ Cγ
1–γ satisfies Eq. (3.4), then we show that x also satisfies

Eq. (1.1). Applying Dγ ,ρ
a+ to both sides of (3.4) and in view of Proposition 2.8, Lemma 2.10

and Definition 3.1, we have

Dγ ,ρ
a+ x(t)

= Dγ ,ρ
a+

(
Λ

ρpΓ (p)
e

(ρ–1)
ρ (t–a)(t – a)γ –1

m∑

i=1

ci

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f

(
s, x(s)

)
ds

)

+ Dγ ,ρ
a+

(
1

ρpΓ (p)

∫ t

a+
e

(ρ–1)
ρ (t–s)(t – s)p–1f

(
s, x(s)

)
ds

)

=
(
Dq(1–p),ρ

a+ f
(
t, x(t)

))
(x). (3.10)

Since Dp,q,ρ
a+ x ∈ C1–γ [J ,R], by the definition of Cγ

1–γ [J ,R] Eq. (3.10) implies that

Dq(1–p),ρ
a+ f = DρI1–q(1–ρ),ρ

a+ f ∈ C1–γ ,ρ[J ,R].

For f ∈ C1–γ [J ,R] and from Lemma 2.12, we can see that I1–q(1–p),ρ
a+ f ∈ C1–γ ,ρ[J ,R], this

implies that I1–q(1–p),ρ
a+ f ∈ C1

1–γ [J ,R] from the definition of Cn
γ [J ,R].
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Applying Iq(1–p),ρ
a+ on both sides of (3.10) and in view of Proposition 2.8, Lemma 3.7 and

Definition 3.1,

Iq(1–p),ρ
a+ Dγ ,ρ

a+ x(t) = Iq(1–p),ρ
a+ Dq(1–p),ρ

a+ f
(
t, x(t)

)
.

= f
(
t, x(t)

)
–

(I1–q(1–p),ρ
a+ f )(a)
Γ (q(1 – p))

(t – a)q(p–1)–1

= f
(
t, x(t)

)
. (3.11)

Hence, its remains to show that if x ∈ Cγ
1–γ [J ,R] satisfies (3.4), it also satisfies the initial

condition. So, by applying I1–γ ,ρ
a+ to both sides of (3.4) and using Proposition 2.8, Theo-

rem 2.9 and 2.11, we obtain

I1–γ ,ρ
a+ x(t)

= I1–γ ,ρ
a+

(
Λ

ρpΓ (p)
e

(ρ–1)
ρ (t–a)(t – a)γ –1

m∑

i=1

ci

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f (s) ds

)

+ I1–γ ;ϕ
a+

(
1

ρpΓ (p)

∫ t

a+
e

(ρ–1)
ρ (t–s)(t – s)p–1f (s) ds

)

=
ργ –1Γ (γ )
ρpΓ (p)

Λe
(ρ–1)

ρ (t–a)
m∑

i=1

ci

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f (s) ds

+ I1–q(1–p),ρ
a+ f (t). (3.12)

Taking the limit as t → a+ in Eq. (3.12) and the fact that 1 – q < 1 – p(1 – r) give

I1–γ ,ρ
a+ x

(
a+)

=
ργ –1Γ (γ )
ρpΓ (p)

Λ

m∑

i=1

ci

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f

(
s, x(s)

)
ds. (3.13)

Substituting t = τi and multiplying through by ci in (3.4),

cix(τi) =
Λ

ρpΓ (p)
e

(ρ–1)
ρ (τi–a)(τi – a)γ –1

m∑

i=1

ci

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f (s) ds

+
ci

ρpΓ (p)

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f

(
s, x(s)

)
ds, (3.14)

which implies that

m∑

i=1

cix(τi) = Λ

m∑

i=1

ciIp,ρ
a+ f (τi)

m∑

i=1

cie
(ρ–1)

ρ (τi–a)(τi – a)γ –1 +
m∑

i=1

ciIp,ρ
a+ f (τi)

=
m∑

i=1

ciIp,ρ
a+ f (τi)

(

1 + Λ

m∑

i=1

cie
(ρ–1)

ρ (τi–a)(τi – a)γ –1

)

. (3.15)

Thus

m∑

i=1

cix(τi) =
ργ –1Γ (γ )
ρpΓ (p)

Λ

m∑

i=1

ci

∫ τi

a+
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f

(
s, x(s)

)
ds. (3.16)
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Figure 1 Graph of x(t), for the Hilfer fractional derivatives (ρ = 1) and Hilfer generalized proportional
fractional derivatives (ρ ∈ (0, 1))

So, in view of (3.13) and (3.16), we have

I1–γ ,ρ
a+ x

(
a+)

=
m∑

i=1

cix(τi). (3.17)

Hence, the proof is completed. �

Remark 3.11 As shown below, the proposed Hilfer generalized proportional fractional
derivative (see Definition 3.1) unifies the existing ones of Riemann–Liouville, the gen-
eralized proportional and the Hilfer fractional derivatives. We present the approximate
numerical solution of Eq. (3.4) and present these solutions in Figs. 1–3.

3.2 Uniqueness result
This subsection will a detailed proof of the uniqueness of solutions of the proposed prob-
lem (1.1) using the concepts of the Banach contraction principle. Thus, we need the fol-
lowing assumptions.

(H1) Let f : J ×R →R be a function such that f ∈ Cq(1–p)
1–γ [J ,R] for any x ∈ Cγ

1–γ [J ,R].
(H2) There exists a constant K > 0 such that

∣
∣f (t, u) – f (t, ū)

∣
∣ ≤ K |u – ū|,

for any u, ū ∈R and t ∈ J .
(H3) Suppose that

Kψ < 1,
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Figure 2 Graph of x(t), for the Riemann–Liouville fractional derivatives (q = 0, ρ = 1), and generalized
proportional fractional derivatives (q = 0, ρ ∈ (0, 1))

Figure 3 Graph of x(t), for the Riemann–Liouville fractional derivatives (q = 0, ρ = 1), generalized proportional
fractional derivatives (q = 0, ρ = 0.8) and Hilfer generalized proportional fractional derivatives (q ∈ (0, 1),
ρ ∈ (0, 1))

where

ψ =
B(γ , p)
ρpΓ (p)

(

|Λ|
m∑

i=1

ci(τi – a)p+γ –1 + (T – a)p

)

(3.18)
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and B(γ , p) is the Beta function defined by [32]

B(γ , p) =
∫ 1

0
xγ –1(1 – x)p–1 dx, Re(γ ), Re(p) > 0.

Theorem 3.12 Let 0 < p < 1, 0 ≤ q ≤ 1 and γ = p + q – pq. Suppose that the assumptions
(H1)–(H3) are satisfied. Then problem (1.1) has a unique solution in the space Cγ

1–γ [J ,R].

Proof Define the operator T : C1–γ [J ,R] → C1–γ [J ,R] by

(Tx)(t) =
Λ

ρpΓ (p)
e

(ρ–1)
ρ (t–a)(t – a)γ –1

m∑

i=1

ci

∫ τi

a
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f

(
s, x(s)

)
ds

+
1

ρpΓ (p)

∫ t

a
e

(ρ–1)
ρ (t–s)(t – s)p–1f

(
s, x(s)

)
ds. (3.19)

It follows that the operator T is well defined. Now for any x1, x2 ∈ C1–γ [J ,R] and t ∈ J , this
gives

∣
∣
(
(Tx1)(t) – (Tx2)(t)

)
(t – a)1–γ

∣
∣

≤ |Λ|
ρpΓ (p)

∣
∣e

(ρ–1)
ρ (t–a)∣∣

m∑

i=1

bi

∫ τi

a

∣
∣e

(ρ–1)
ρ (τi–s)∣∣(τi – s)p–1∣∣f

(
s, x1(s)

)
– f

(
s, x2(s)

)∣
∣ds

+
1

ρpΓ (p)

∫ t

a

∣
∣e

(ρ–1)
ρ (t–s)∣∣(t – s)p–1∣∣f

(
s, x1(s)

)
– f

(
s, x2(s)

)∣
∣ds. (3.20)

Since |e (ρ–1)
ρ t| < 1, we get

∣
∣
(
(Tx1)(t) – (Tx2)(t)

)
(t – a)1–γ

∣
∣

≤ K |Λ|
ρpΓ (p)

( m∑

i=1

bi

∫ τi

a+
(τi – s)p–1(s – a)γ –1 ds

)

‖x1 – x2‖C1–γ [J ,R]

+
K

ρpΓ (p)
(t – a)1–γ

(∫ t

a+
(t – s)p–1(s – a)γ –1 ds

)

‖x1 – x2‖C1–γ [J ,R]

≤ K |Λ|
ρpΓ (p)

B(γ , p)
m∑

i=1

ci(τi – a)p+γ –1‖x1 – x2‖C1–γ [J ,R]

+
K

ρpΓ (p)
(T – a)pB(γ , p)‖x1 – x2‖C1–γ [J ,R]. (3.21)

Therefore,

∥
∥(Tx1) – (Tx2)

∥
∥
C1–γ [J ,R]

≤ K
ρpΓ (p)

B(γ , p)

(

|Λ|
m∑

i=1

ci(τi – a)p+γ –1 + (T – a)p

)

‖x1 – x2‖C1–γ [J ,R]

≤ Kψ‖x1 – x2‖C1–γ [J ,R]. (3.22)
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Hence, it follows from (3.18) that T is a contraction map. Thus, as a consequence of the
Banach contraction principle, problem (1.1) has a unique solution. �

3.3 Existence result
In this subsection, we prove the existence of solutions of problem (1.1) using the concepts
of Kransnoselskii’s fixed point theorem [33].

(H4) Suppose that

K
 < 1,

where


 =
B(γ , p)
ρpΓ (p)

|Λ|
m∑

i=1

ci(τi – a)p+γ –1. (3.23)

Theorem 3.13 Let 0 < p < 1, 0 ≤ q ≤ 1 and γ = p + q – pq. Suppose that the hypotheses
(H1), (H2) and (H4) are satisfied. Then problem (1.1) has at least one solution in the space
Cγ

1–γ [J ,R].

Proof We have ‖η‖C1–γ [J ,R] = supt∈J |(t – a)1–γ η(t)| and choose κ ≥ M‖η‖C1–γ [J ,R], where

M =
B(γ , p)
ρpΓ (p)

(

|Λ|
m∑

i=1

ci(τi – a)p+γ –1 + (T – a)p

)

, (3.24)

we consider Bκ = {x ∈C[J ,R] : ‖x‖C1–γ [J ,R] ≤ κ}. Define the operators T1 and T2 on Bκ by

T1x(t) =
1

ρpΓ (p)

∫ t

a
e

(ρ–1)
ρ (t–s)(t – s)p–1f

(
s, x(s)

)
ds,

T2x(t) =
Λ

ρpΓ (p)
e

(ρ–1)
ρ (t–a)(t – a)γ –1

m∑

i=1

ci

∫ τi

a
e

(ρ–1)
ρ (τi–s)(τi – s)p–1f

(
s, x(s)

)
ds,

for all t ∈ [a, T]. Now, for every x, y ∈ Bκ ,

∣
∣
(
T1x(t) + T2y(t)

)
(t – a)1–γ

∣
∣

≤ (t – a)1–γ

ρpΓ (p)

∫ t

a
(t – s)p–1(s – a)γ –1∣∣f

(
s, x(s)

)
(s – a)1–γ

∣
∣ds

+
|Λ|

ρpΓ (p)

m∑

i=1

ci

∫ τi

a
(τi – s)p–1(τi – a)γ –1∣∣f

(
s, y(s)

)
(τi – a)1–γ

∣
∣ds

≤ ‖η‖
[
B(γ , p)
ρpΓ (p)

|Λ|
m∑

i=1

ci(τi – a)p+γ –1 +
B(γ , p)
ρpΓ (p)

(T – a)p

]

≤ ‖η‖M

≤ κ < ∞. (3.25)

This implies that T1x + T2y ∈ Bκ .
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Step 2. We show that T2 is a contraction.
Now, let x, y ∈ C1–γ [J ,R] and t ∈ J , then

∣
∣
(
T2x(t) – T2y(t)

)
(t – a)1–γ

∣
∣

=

∣
∣
∣
∣
∣
Λe

(ρ–1)
ρ (t–a)

m∑

i=1

ciIp,ρ
a+

(
f
(
s, x(s)

)
– f

(
s, y(s)

))
(τi)

∣
∣
∣
∣
∣

≤ K |Λ|
ρpΓ (p)

m∑

i=1

ci

∫ τi

a
(τi – s)p–1(τi – s)γ –1∣∣x(s) – y(s)

∣
∣ds

≤
[

K |Λ|
ρpΓ (p)

B(γ , p)
m∑

i=1

ci(τi – a)p+γ –1

]

‖x – y‖C1–γ [J ,R]

≤ K
‖x – y‖C1–γ [J ,R]. (3.26)

Hence, it follows from (H4) that T2 is a contraction.
Step 3. We show that the operator T1 is continuous and compact.
Clearly, the operator T1 is continuous, due to the fact that the function f is continuous.

Thus, for any x ∈ C1–γ [J ,R], we have

‖T1x‖ ≤ ‖η‖B(γ , p)
ρpΓ (p)

(T – a)p < ∞.

This shows that the operator T1 is uniformly bounded on Bκ . Thus, it remains to shows
that T1 is compact. Denoting sup(t,x)∈J×Bκ

|f (t, x(t))| = δ < ∞ and for any a < τ1 < τ2 < T ,

∣
∣(τ2 – a)1–γ

(
T1x(τ2)

)
+ (τ1 – a)1–γ

(
T1x(τ1)

)∣
∣

=
∣
∣
∣
∣
(τ2 – a)1–γ

ρpΓ (p)

∫ τ2

a
e

(ρ–1)
ρ (τ2–s)(τ2 – s)p–1f

(
s, x(s)

)
ds

–
(τ1 – a)1–γ

ρpΓ (p)

∫ τ1

a
e

(ρ–1)
ρ (τ1–s)(τ1 – s)p–1f

(
s, x(s)

)
ds

∣
∣
∣
∣

≤ 1
ρpΓ (p)

∫ τ2

a

[
(τ2 – a)1–γ (τ2 – s)p–1 – (τ1 – a)1–γ (τ1 – s)p–1]∣∣f

(
s, x(s)

)∣
∣ds

+
1

ρpΓ (p)

∫ τ2

τ1

(τ2 – a)1–γ (τ2 – s)p–1∣∣f
(
s, x(s)

)∣
∣ds

−→ 0, as τ2 → τ1. (3.27)

As a consequences of Arzelá–Ascoli theorem, the operator T1 is compact on Bκ . Thus,
problem (1.1) has at least one solution. �

3.4 Examples
Example 3.14 Consider the fractional differential equation which involves the Hilfer gen-
eralized proportional derivative of the form

⎧
⎨

⎩

D
2
3 , 1

2 ,1
0+ x(t) = 1

25e2t ( cos 2t
1+|x(t)| ) + 3

2 , t ∈ J = [0, 2],

I1–γ ,1
0+ x(0) = 2x( 2

5 ).
(3.28)
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By comparing (1.1) with (3.28), we get p = 2
3 , q = 1

2 , ρ = 1, γ = 5
6 , a = 0, T = 2, c1 = 2 since

m = 1, τ1 = 2
5 ∈ J and f : J ×R →R is a function defined by

f (t, u) =
1

25e2t

(
cos 2t
1 + |u|

)

+
3
2

, t ∈ J , u ∈ R+.

Thus, f is continuous and for all u, v ∈ R+ and t ∈ J , we have |f (t, u) – f (t, v)| ≤ 1
25 |u – v|.

Thus, it follows that conditions (H1) and (H3) are true with K = 1
25 . Therefore, by simple

calculation, we can see that |Λ| ≈ 0.8325 and ψ ≈ 3.3628, which implies that

Kψ ≈ 0.1345 < 1.

Hence, all the assumptions of Theorem 3.12 are satisfied. So, problem (1.1) has a unique
solution on J .

Similarly, we find that 
 ≈ 1.3413 > 0 and K
 ≈ 0.0537 < 1. Since all the hypotheses of
Theorem 3.13 hold, we conclude that problem (1.1) has at least one solution on J .

Example 3.15 Consider the Hilfer generalized proportional fractional differential equa-
tion described by

⎧
⎨

⎩

D
2
3 , 1

2 , 1
5

0+ x(t) = 1
25e2t ( cos 2t

1+|x(t)| ) + 3
2 , t ∈ J = [0, 2],

I1–γ , 1
5

0+ x(0) = 2x( 2
5 ).

(3.29)

Repeating application of the same procedure as Example 3.14 above, we get the values
|Λ| ≈ 0.9943, ψ ≈ 10.5950 and 
 ≈ 4.6839. Thus

Kψ ≈ 0.4238 < 1.

According to Theorem 3.12, problem (1.1) has a unique solution on J . In addition,

K
 ≈ 0.1874 < 1,

hence, by Theorem 3.13, problem (1.1) has at least one solution on J .

It should be noted here that the proposed Hilfer generalized proportional derivative
(3.1) unifies the existing ones in the sense of Riemann–Liouville and Caputo generalized
proportional fractional derivative, respectively. In addition:

• If ρ → 1 and q ∈ [0, 1], the formulation for this problem, reduce to Hilfer fractional
derivative [18, 32, 44] (see Fig. 1).

• If ρ ∈ (0, 1) and q ∈ [0, 1], we obtain the proposed Hilfer generalized proportional
fractional derivative, which we can see that it covers the classical Hilfer fractional
derivative, as shown in Fig. 1.

• If ρ → 1 and q = 0, the formulation for this problem reduces to the
Riemann–Liouville fractional derivative [32] (see Fig. 2).

• If ρ → 1 and q = 1, we obtain the Caputo fractional derivative [32].
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• If ρ ∈ (0, 1) and q = 0, we obtain the Riemann–Liouville generalized proportional
fractional derivative [23], which we can see from Fig. 2 to cover the
Riemann–Liouville fractional derivative.

• If ρ ∈ (0, 1) and q = 1, we obtain the Caputo generalized proportional fractional
derivative [23].

• If q,ρ ∈ (0, 1), it is easily to observe from Fig. 3 that the newly proposed derivative
unifies the ones in the setting of the Hilfer, Riemann–Liouville and generalized
proportional fractional derivatives.

4 Conclusions
In this paper, we defined the proportional fractional derivatives in the Hilfer setting. We
used some known theorems from the fixed point theory that enabled us to prove the ex-
istence and uniqueness of solutions to a specific type of fractional initial value problem
involving the Hilfer proportional fractional derivative. Furthermore, to show the effective-
ness of our results, we presented some examples. In fact, the Hilfer proportional derivative
contains three parameters. The existence of more parameters is useful especially when
one considers the stability and other qualitative aspects of differential equations involving
fractional derivative.
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