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Abstract
In this work, we provide upper and lower bounds for the numerical radius of an n× n
off-diagonal operator matrix, which extends some results by Abu-Omar and Kittaneh
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45(4):1055–1065, 2015), and Paul and Bag (Appl. Math. Comput. 222:2731–2943, 2013).
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1 Introduction
Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space
H endowed with inner product 〈·, ·〉. The numerical radius and the usual operator norm of
T ∈ B(H) are given by w(T) = sup |〈Tx, x〉| and ‖T‖ = sup

√〈Tx, Tx〉, respectively, over all
the unit vectors x ∈ H . Also, the nonnegative number m(T) is given by m(T) = inf |〈Tx, x〉|.
It is well known that the numerical radius w(T) defines an equivalent norm to the usual
operator norm on B(H) as follows [8]:

1
2
‖T‖ ≤ w(T) ≤ ‖T‖. (1.1)

In [9], Kittaneh gives an improvement for the upper bound of (1.1) by using several norm
inequalities

1
4
∥
∥|T | +

∣
∣T∗∣∣∥∥≤ w2(T) ≤ 1

2
∥
∥|T | +

∣
∣T∗∣∣∥∥, (1.2)

which has been again refined in [1] by using the concept of the generalized Aluthge trans-
form of T as follows:

w(T) ≤ 1
2
(‖T‖ + w(T̃t)

)

, (1.3)
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where T̃t = |T |tU|T |1–t for t ∈ [0, 1]. Another improvement for the two-sided inequality
(1.1) has been provided in [3] by showing that

1
2

√

α + 2m
(

T2
)≤ w(T) ≤ 1

2

√

α + 2w
(

T2
)

, (1.4)

where α = ‖|T |2 + |T∗|2‖. This estimation has been recently improved in [12] in the fol-
lowing form:

1
4

c2(T2) +
1
8

m
(

T2P + PT2) +
1

16
‖P‖2

≤ w4(T) ≤ 1
4

w2(T2) +
1
8

w
(

T2P + PT2) +
1

16
‖P‖2, (1.5)

with P = |T |2 + |T∗| and c(T) = inf‖x‖=1
x∈H

infθ∈R ‖Re(eiθ T)x‖. Moreover, the authors in [2]
gave a generalization for (1.4) in this fashion:

1
2
√

β + 2m(CB) ≤ w

([

0 B
C 0

])

≤ 1
2
√

β + 2w(CB), (1.6)

where β = ‖|B|2 + |C∗|2‖.
Let H1, H2 be Hilbert spaces, and let A ∈ B(H1), B ∈ B(H2, H1), C ∈ B(H1, H2), and D ∈

B(H2). For our purposes, we recall the following fundamental facts that are relevant to our
work:

∥
∥
∥
∥
∥

[

A 0
0 B

]∥
∥
∥
∥
∥

= max
{‖A‖,‖B‖}, (1.7)

∥
∥
∥
∥
∥

[

0 A
B 0

]∥
∥
∥
∥
∥

= max
{‖A‖,‖B‖}, (1.8)

w

([

A 0
0 B

])

= max
{

w(A), w(B)
}

, (1.9)

w

([

0 A
A 0

])

= w(A), (1.10)

w

([

A B
C D

])

≥ max

{

w(A), w(D), w

([

0 B
C 0

])}

. (1.11)

It is worth mentioning here that the inequalities (1.7), (1.8), and (1.9) remain valid for n×n
operator matrices.

The aim of this paper is to give generalizations for the inequalities (1.3), (1.4), (1.5), (1.6),
and (1.10).

2 Numerical radius inequalities for n × n operator matrices
In this section, we will extend several well-known numerical radius inequalities of 2 × 2
operator matrices. We start by the following characterization for the numerical radius of
T ∈ B(H) [13].
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Theorem 2.1 Let T ∈ B(H). Then

w(T) = max
θ∈R
∥
∥Re
(

eiθ T
)∥
∥.

We now state our main results which can be seen as a generalization of (1.10) from 2×2
operator matrices to a broad family of n × n operator matrices.

Theorem 2.2 Let Y ∈ B(H) and n be an odd natural number. Then, for arbitrary
λ1, . . . ,λ n+1

2
∈ C, we have

w

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1Y
0 λ2Y

. . .

λ n+1
2

Y

. . .

λ2Y 0
λ1Y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= max
{|λi|

} n+1
2

i=1 w(Y ). (2.1)

Proof Let

U =
1√
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 I
. . . . . .

I I
0

√
2I 0

–I I

. . . . . .
–I 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A direct computation shows that U is unitary operator and

U

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1Y
0 λ2Y

. . .

λ n+1
2

Y

. . .

λ2Y 0
λ1Y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1Y
λ2Y 0

. . .
λ n+1

2
Y

–λ n–1
2

Y

0
. . .

–λ1Y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Therefore, the result follows by the weakly unitary invariance of w(·) and (1.9). �

As a direct consequence, we have the following generalization of (1.10).

Corollary 2.3 Let Y ∈ B(H). Then, for every n ∈N, we have

w

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

0 Y
Y

. . .

Y 0

⎤

⎥
⎥
⎥
⎥
⎦

n

⎞

⎟
⎟
⎟
⎟
⎠

= w(Y ).
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Proof It suffices to show the result in the case when n = 2 and n is an odd natural number.
The first case follows from (1.10), and the second case from Theorem 2.2 by letting λi = 1,
(i = 1, 2, . . . , n+1

2 ). �

In our next result, we extend inequality (1.3) to arbitrary finite number of bounded linear
operators on a complex Hilbert space.

Theorem 2.4 Let {Ai}n
i=1 ∈ B(H) and let Ai = Ui|Ai| be the polar decomposition of Ai. Then

w

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

0 A1

A2

. . .

An 0

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

≤ 1
2

max
{‖Ai‖

}n
i=1

+
1
2

w

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

0 O1

O2

. . .

On 0

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

, (2.2)

where Oi = |An+1–i|tUi|Ai|1–t , t ∈ [0, 1].

Proof Note that we have the following polar formulation

⎡

⎢
⎢
⎢
⎢
⎣

0 A1

A2

. . .

An 0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0 U1

U2

. . .

Un 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

|A1| 0
|A2|

. . .
0 |An|

⎤

⎥
⎥
⎥
⎥
⎦

.

Thus the result follows from inequality (1.3). �

It is worth noting here that the inequality (1.3) can now be seen as a direct consequence
of Theorems 2.2 and 2.4 when A1 = A2 = · · · = An.

Now, by using Theorem 2.1 together with the inequality (1.8), we have the following
extension of the two-sided inequality (1.6).

Theorem 2.5 Let H1, H2, ..., Hn be Hilbert spaces, and let

T =

⎡

⎢
⎢
⎢
⎢
⎣

0 A1

A2

. . .

An 0

⎤

⎥
⎥
⎥
⎥
⎦

,

with {Am}n
m=1 ∈ B(Hn–m+1, Hm). Set E = {1, 2, . . . , n

2 } and O = {1, 2, . . . , n–1
2 }, then

max
k∈E

{dk} ≤ 2w(T) ≤ max
k∈E

{ck}, for n even, (2.3)

max
k∈O

{dk} ≤ 2w(T) ≤ max
k∈O

{

2w(A n+1
2

), ck
}

, for n odd, (2.4)
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where

ck =
√
∥
∥|Ak|2 +

∣
∣A∗

n–k+1
∣
∣
2∥
∥ + 2w(An–k+1Ak)

and

dk =
√
∥
∥|Ak|2 +

∣
∣A∗

n–k+1
∣
∣
2∥
∥ + 2m(An–k+1Ak).

Proof Let n be an even number. Then

∥
∥Re
(

eiθ T
)∥
∥ =

1
2

max
k∈E

{∥
∥eiθ Ak + e–iθ A∗

n–k+1
∥
∥
}

.

Now,

∥
∥eiθ Ak + e–iθ A∗

n–k+1
∥
∥ =

∥
∥
(

e–iθ A∗
k + eiθ An–k+1

)(

eiθ Ak + e–iθ A∗
n–k+1

)∥
∥

1
2

=
∥
∥|Ak|2 +

∣
∣A∗

n–k+1
∣
∣
2 + 2 Re

(

e2iθ An–k+1Ak
)∥
∥

1
2

≤ ck .

Therefore,

w(T) = sup
θ∈R

∥
∥Re
(

eiθ T
)∥
∥

=
1
2

sup
θ∈R

{

max
k∈E

{∥
∥eiθ Ak + e–iθ An–k+1

∥
∥
}}

≤ 1
2

max
k∈E

{ck},

which shows the upper bound of inequality (2.3). To show the lower bound of inequality
(2.3), let ψ ∈ R be such that e2iψ 〈An–s+1Asx, x〉 = |〈An–s+1Asx, x〉| for any unit vector x ∈
Hn–s+1 where s ∈ E. Then

w(T) ≥ ∥∥Re
(

eiψT
)∥
∥

≥ 1
2
∥
∥eiψAs + e–iψA∗

n–s+1
∥
∥

≥ 1
2

√
∣
∣
〈(|As|2 +

∣
∣A∗

n–s+1
∣
∣
2)x, x

〉

+ 2 Re
(

e2iψ 〈An–s+1Asx, x〉)∣∣

=
1
2

√
〈(|As|2 +

∣
∣A∗

n–s+1
∣
∣
2)x, x

〉

+ 2
∣
∣〈An–s+1Asx, x〉∣∣

≥ 1
2

√
〈(|As|2 +

∣
∣A∗

n–s+1
∣
∣
2)x, x

〉

+ 2m(An–s+1As).

Therefore,

w(T) ≥ 1
2

sup
‖x‖=1

√
〈(|As|2 +

∣
∣A∗

n–s+1
∣
∣
2)x, x

〉

+ 2m(An–s+1As) =
1
2

ds.

As s ∈ E is arbitrary, 2w(T) ≥ maxk∈E{dk}, which completes the proof of inequality (2.3).
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On the other hand, if n is an odd number, then

‖Re
(

eiθ T
)‖ =

1
2

max
k∈O

{

2
∥
∥Re
(

eiθ A n+1
2

)∥
∥,
∥
∥eiθ Ak + e–iθ A∗

n–k+1
∥
∥
}

.

Now, arguing in a like fashion for the remaining steps completes the proof of inequality
(2.4). �

It is clear that the two-sided inequality (1.6) can be obtained as a special case of Theo-
rem 2.5 by taking n = 2 in (2.3). Further, the two-sided inequality (1.4) can be viewed as a
consequence of Corollary 2.3 together with Theorem 2.5 when H1 = H2 = · · · = Hn = H .

Theorem 2.6 Under the same assumption of the previous theorem with Bk = |Ak|2 +
|A∗

n–k+1|2, we have

max
k∈E

{bk} ≤ 16w4(T) ≤ max
k∈E

{ak}, n even, (2.5)

max
k∈O

{bk} ≤ 16w4(T) ≤ max
k∈O

{

32w(A n+1
2

), ak
}

, n odd, (2.6)

where

ak = ‖Bk‖2 + 4w2(An–k+1Ak) + 2w(An–k+1AkBk + BkAn–k+1Ak),

bk = ‖Bk‖2 + 4c2(An–k+1Ak) + 2m(An–k+1AkBk + BkAn–k+1Ak),

and

c(An–k+1Ak) = inf‖x‖=1
x∈Hn–k+1

inf
θ∈R

∥
∥Re
(

eiθ An–k+1Ak
)

x
∥
∥.

Proof Let n be an even number. Then

16
∥
∥Re
(

eiθ T
)∥
∥

4 = max
k∈E

{∥
∥eiθ Ak + e–iθ A∗

n–k+1
∥
∥

4}.

Now,

∥
∥eiθ Ak + e–iθ A∗

n–k+1
∥
∥

4 =
∥
∥Bk + 2 Re

(

e2iθ An–k+1Ak
)∥
∥

2

=
∥
∥
(

Bk + 2 Re
(

e2iθ An–k+1Ak
))2∥
∥

≤ ‖Bk‖2 + 4
∥
∥Re
(

e2iθ An–k+1Ak
)∥
∥

2

+ 2
∥
∥Re
(

e2iθ (An–k+1AkBk + BkAn–k+1Ak)
)∥
∥

≤ ‖Bk‖2 + 4w2(An–k+1Ak) + 2w(An–k+1AkBk + BkAn–k+1Ak).

Thus,

16w4(T) = sup
θ∈R

16
∥
∥Re
(

eiθ T
)∥
∥

4

≤ max
k∈E

{ak},
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which shows the upper bound of inequality (2.5). To show the lower bound of inequality
(2.5), let ψ ∈ R be such that e2iψ 〈An–s+1Asx, x〉 = |〈An–s+1Asx, x〉| for any unit vector x ∈
Hn–s+1 where s ∈ E. Then

16w4(T) ≥ 16
∥
∥Re
(

eiψT
)∥
∥

4

≥ ∥∥eiψAs + e–iψA∗
n–s+1

∥
∥

4

≥ ∣∣〈B2
s x, x

〉

+ 4
〈

Re
(

e2iψAn–s+1As
)2x, x

〉

+ 2eiψ 〈Re(An–s+1AsBs + BsAn–s+1As)x, x
〉∣
∣

≥ ‖Bsx‖2 + 4c2(An–s+1As) + 2m(An–s+1AsBs + BsAn–s+1As).

Now, applying the supremum over all the unit vectors x ∈ Hn–s+1 yields

16w4(T) = sup
θ∈R

∥
∥Re
(

eiθ T
)∥
∥

≥ bs,

for any s ∈ E. Thus, we have the lower bound of (2.5).
Following the same argument as above, one can easily show that the inequality (2.6)

holds when n is an odd number. �

It is clear to see that the lower bound provided in inequality (2.5) is preferable over
the corresponding one of (1.2). Also, the upper bound of inequality (2.5) is better than
the upper bound of inequality (1.11). To justify this, we need first to recall the following
lemma from [7].

Lemma 2.7 Let T1, T2 ∈ B(H) such that ‖T2‖ ≤ 1. Then w(T1T2 + T∗
2 T1) ≤ 2w(T).

Now, by Theorem 2.6 with n = 2 and the last lemma, we have

w

([

0 A1

A2 0

])

≤ 1
2

4√a1

=
1
2

4

√

‖B1‖2 + 4w2(A2A1) + 2w
(

A2A1
B1

‖B1‖ +
B1

‖B1‖A2A1

)

‖B1‖

≤ 1
2

4
√

‖B1‖2 + 4w2(A2A1) + 4w(A2A1)‖B1‖

=
1
2
√‖B1‖ + 2w(A2A1).

3 Conclusion
In the current work, novel upper and lower bounds for the numerical radius of n × n off-
diagonal operator matrices have been provided. The obtained numerical radius inequali-
ties generalize several well-known related results in the literature. As an application, these
numerical radius inequalities can be naturally utilized to provide new bounds for the zeros
of polynomials over the complex field as in [4, 5, 10].
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Lastly, it is worth mentioning here that several mathematical concepts have been re-
cently modified in the sense of fractional calculus; see for example [6, 11, 14–16]. Our aim
in the future is to extend the ideas that we have discussed here into the fractional sense.
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