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Abstract
Using the fractional Caputo–Fabrizio derivative, we investigate a new version of the
mathematical model of Rabies disease. Using fixed point results, we prove the
existence of a unique solution. We calculate the equilibrium points and check the
stability of solutions. We solve the equation by combining the Laplace transform and
Adomian decomposition method. In numerical results, we investigate the effect of
coefficients on the number of infected groups. We also examine the effect of
derivation orders on the behavior of functions and make a comparison between the
results of the integer-order derivative and the Caputo and Caputo–Fabrizio
fractional-order derivatives.
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1 Introduction
The Rabies viral disease, which is characterized by the initial symptoms of fever and tin-
gling at the site of exposure, causes inflammation of the brain in humans and other mam-
mals. Another symptom of this disease is the inability to move parts of the body, harsh
movements, uncontrolled excitement, fear of water, confusion, and loss of consciousness.
After catching the disease, it usually takes one to three months for the initial symptoms
to appear; at the same time, this period can take less than a week or more than a year, It
depends on the distance the virus takes during the peripheral nerves to reach the central
nervous system; however, this disease can often cause death [1]. Although it is possible to
prevent Rabies, it still exists in groups of warm-blooded animals in more than 150 coun-
tries, and more than 55,000 people die of the disease each year. Rabies is still one of the
most important issues in the field of human health and wildlife management [2–4]. There
are various mathematical models explaining the release of Rabies by ordinary and par-
tial differential equations (see, e.g., [5–7]). The study of disease dynamics is a dominating
theme for many biologists and mathematicians (see, e.g., [8–12]). It has been studied by
many researchers that fractional extensions of mathematical models of integer order rep-
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resent the natural fact in a very systematic way such as in the approaches of Akbari et al.
[13], Aydogan et al. [14, 15], Baleanu et al. [16–28], Ozdemir et al. [29–33], and Talaee et
al. ([34]). Recently, many works related to the fractional Caputo–Fabrizio derivative [35]
have been published (see, e.g., [8–12, 36–38], and [7]).

In this paper, we first study the integer-order Rabies model with the Caputo–Fabrizio
fractional-order derivative and investigate the behavior of the results obtained from the
model. We will also investigate the effect of the coefficients in the model on the number
of infected animals.

Now we recall some fundamental notions. The Riemann–Liouville derivative of order η

for a function f is given by

Dηf (t) =
dn

dtn

∫ t

0

f (s)
(t – s)1–n+η

ds, n – 1 ≤ η < n.

The Caputo fractional derivative of order η for a function f via integrable differentiations
is defined by

CDηf (t) =
1

Γ (n – η)

∫ t

0

f (n)(s)
(t – s)η–n+1 ds, n = [η] + 1.

Our second notion is a fractional derivative without singular kernel, introduced by Caputo
and Fabrizio [35] in 2015. Let b > a, f ∈ H1(a, b), and η ∈ (0, 1). The Caputo–Fabrizio
derivative of order η for a function f is defined by

CF Dηf (t) =
M(η)

(1 – η)

∫ t

a
exp

(
–η

1 – η
(t – s)

)
f ′(s) ds, t ≥ 0,

where M(η) is a normalization function such that M(0) = M(1) = 1. If f /∈ H1(a, b) and
0 < η < 1, then this derivative can be presented for f ∈ L1(–∞, b) as (see [39])

CF Dηf (t) =
ηM(η)
(1 – η)

∫ b

–∞

(
f (t) – f (s)

)
exp

(
–η

1 – η
(t – s)

)
ds.

Let n ≥ 1 and η ∈ (0, 1). The fractional derivative CF Dη+n of order η + n is defined by
CF Dη+nf (t) := CF Dη(Dnf (t)) [14]. The Laplace transform of the Caputo–Fabrizio deriva-
tive is defined by L[CF D(η+n)f (t)](s) = sn+1L[f (t)]–snf (0)–sn–1f ′(0)–···–f (n)(0)

s+η(1–s) , where 0 < η ≤ 1 and
M(η) = 1 [39]). The Riemann–Liouville fractional integral of order η with Re(η) > 0 is de-
fined by (see [14])

Iηf (t) =
1

Γ (η)

∫ t

0
(t – s)η–1f (s) ds.

The Caputo–Fabrizio fractional integral is defined by (see [39])

CF Iηf (t) =
2(1 – η)

(2 – η)M(η)
f (t) +

2η

(2 – η)M(η)

∫ t

0
f (s) ds, 0 < η < 1.

The Sumudu transform is derived from the classical Fourier integral [40–42]. Consider the
set A = {F : ∃λ, k1, k2 ≥ 0, |F(t)| < λ exp( t

kj
), t ∈ (–1)j × [0,∞)}. The Sumudu transform
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of a function f ∈ A is defined by

F(u) = ST
[
f (t); u

]
=

1
u

∫ ∞

0
exp(–t/u)f (t) dt

[
u ∈ (–k1, k2)

]

for all t ≥ 0, and the inverse Sumudu transform of F(u) is denoted by f (t) = ST–1[F(u)]
[41]. The Sumudu transform of the Caputo derivative is given by

ST
[cDη

t f (t); u
]

= u–η

[
F(u) –

m∑
i=0

uη–i[cDη–if (t)
]

t=0

]
,

where m – 1 < η ≤ m [40]. Let F be a function such that its Caputo–Fabrizio fractional
derivation exists. The Sumudu transform of F with Caputo–Fabrizio fractional derivative
is defined by ST(CF

0 Dη
t )(F(t)) = M(η)

1–η+ηu [ST(F(t)) – F(0)] [43].
Let (X, d) be a metric space. A map g : X → X is called a Picard operator if there exists

x∗ ∈ X such that Fix(g) = {x∗} and the sequence (gn(x0))n∈N converges to x∗ for all x0 ∈ X
([44]).

2 Mathematical model of Rabies with a fractional derivative involving a
nonsingular kernel

In 2014, Demirci [5] has investigated a model explaining the spread of Rabies with an
integer order. In this section, we consider this model with a new approach of fractional-
order derivative. In this SIR model the total population of animals N at time t is divided
into three groups, susceptible animals S(t), infected animals I(t), and recovered animals
R(t). Rabies is a fatal disease: the animals annually die from this disease, and the only way to
control the mortality caused by this disease is vaccination. The desired model is as follows:

⎧⎪⎪⎨
⎪⎪⎩

dS
dt = bN + z(N – S – I) – d(N)S – aS – bI – cSI,
dI
dt = bI + cSI – d(N)I – eI,
dN
dt = N(b – d(N)) – eI,

(1)

where the parameters have the following meanings:
b: the rate of per capita birth,
z: waning immunity,

d(N): the rate function of per capita death, which depends on the population size N ,
a: the rate of vaccination,
c: the rate of Rabies transmission,
e: the mortality rate in disease.

The initial conditions are S(0) = S0, I(0) = I0, N(0) = N0. In this model, d(N) is a contin-
uous increasing function on R+ such that d(m) = b for some positive constant m.

In model (1), we are going to replace the integer-order derivative with the fractional-
order derivative introduced by Caputo and Fabrizio [35] as follows:

⎧⎪⎪⎨
⎪⎪⎩

CF
0 Dη

t S(t) = bN(t) + z(N(t) – S(t) – I(t)) – d(N)S(t) – aS(t) – bI(t) – cS(t)I(t),
CF
0 Dη

t I(t) = bI(t) + cS(t)I(t) – d(N)I(t) – eI(t),
CF
0 Dη

t N(t) = N(t)(b – d(N)) – eI(t),

(2)
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with initial conditions S(0) = S0, I(0) = I0, and N(0) = N0. In system (2) the right-hand sides
of the equations have dimension time–1. When we change the order of the equations to η,
the dimension of the left-hand side becomes time–η . In order to make the dimensions
match, we should change the dimensions of the parameters, and the system we obtain
eventually is

⎧⎪⎪⎨
⎪⎪⎩

CF
0 Dη

t S(t) = bηN(t) + zη(N(t) – S(t) – I(t)) – dη(N)S(t) – aηS(t) – bηI(t) – cηS(t)I(t),
CF
0 Dη

t I(t) = bηI(t) + cηS(t)I(t) – dη(N)I(t) – eηI(t),
CF
0 Dη

t N(t) = N(t)(bη – dη(N)) – eηI(t).

For simplicity, we consider A = aη , B = bη , C = cη , D(N) = dη(N), E = eη , and Z = zη , and
we use D instead of D(N). We also assume that there exists a positive constant M such
that D(M) = B. Then

⎧⎪⎪⎨
⎪⎪⎩

CF
0 Dη

t S(t) = BN(t) + Z(N(t) – S(t) – I(t)) – DS(t) – AS(t) – BI(t) – CS(t)I(t),
CF
0 Dη

t I(t) = BI(t) + CS(t)I(t) – DI(t) – EI(t),
CF
0 Dη

t N(t) = N(t)(B – D) – EI(t),

(3)

where 0 < η ≤ 1, S(0) = S0, I(0) = I0, and N(0) = N0. In the next section, we show that
system (3) has a unique solution.

3 Equilibrium points of the model and asymptotic stability
We set the right-hand side of the equations to zero to determine the equilibrium points of
the fractional-order system (3):

CF Dη
t S(t) =CF Dη

t I(t) =CF Dη
t N(t) = 0.

By solving these algebraic equations we obtain the equilibrium points E0 = ( (B+Z)M
B+Z+A , 0, M)

and E∗ = (S∗, I∗, N∗) such that

S∗ =
D + E – B

C
, I∗ =

(A + D + Z)(B – D)
C(D + Z)

, N∗ =
E(A + D + Z)

C(D + Z)
.

Also, by the next-generation method [45] we obtain the basic reproduction number R0 =
CM(B+Z)
E(A+B+Z) . To investigate the stability of equilibrium point, we first consider the fractional-
order linear system

CF Dη
t v(t) = ψv(t), (4)

where v(t) ∈ Rn, ψ ∈ Rn×n, and 0 < η < 1.

Definition 3.1 [46] For system (4) with Caputo–Fabrizio fractional derivative, the char-
acteristic equation is given by

det
(
λ
(
I – (1 – η)ψ

)
– ηψ

)
= 0. (5)
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The Jacobian matrix associated with system (3) is

J =

⎡
⎢⎣

–(Z + D + A + CI) –(Z + B + CS) B + Z
CI B + CS – D – E 0
0 –E B – D

⎤
⎥⎦ ,

and thus the characteristic equation of system (3) is

det
(
λ
(
I – (1 – η)J

)
– ηJ

)
= 0. (6)

Since E0 = ( (B+Z)M
B+Z+A , 0, M), we have N = M, so that D(N) = D(M) = B. The Jacobian matrix

associated with system (3) in E0 is

J
(
E0) =

⎡
⎢⎣

–(Z + B + A) –Z – B – CM(B+Z)
A+B+Z B + Z

0 –E + CM(B+Z)
A+B+Z 0

0 –E 0

⎤
⎥⎦ .

and thus the characteristic equation is

λ
[
λ
(
1 + (1 – η)(A + B + Z)

)
+ η(A + B + Z)

][
λ

(
1 – (1 – η)

(
–E +

CM(B + Z)
A + B + Z

))

– η

(
–E +

CM(B + Z)
A + B + Z

)]
= 0.

The roots of the latter are as follows:

λ1 = 0, λ2 =
–η(A + B + Z)

1 + (1 – η)(A + B + Z)
, λ3 =

η( –E(A+B+Z)+CM(B+Z)
A+B+Z )

1 – (1 – η)( –E(A+B+Z)+CM(B+Z)
A+B+Z )

.

Theorem 3.1 If R0 < 1, then system (3) is stable at E0.

Proof Since A, B, and C are positive and η ∈ (0, 1), we easily see that λ2 < 0. By the
assumption we have R0 = CM(B+Z)

E(A+B+Z) < 1. Hence CM(B + Z) – E(A + B + Z) < 0, and so
η( –E(A+B+Z)+CM(B+Z)

A+B+Z ) < 0 and 1 – (1 – η)( –E(A+B+Z)+CM(B+Z)
A+B+Z ) > 0. This implies that λ3 < 0.

Thus system (3) is stable at E0. �

4 Existence and uniqueness
In this section, we prove that the system has a unique solution. For this purpose, we write
system (3) as follows:

⎧⎪⎪⎨
⎪⎪⎩

CF
0 Dη

t S(t) = G1(t, S(t)),
CF
0 Dη

t I(t) = G2(t, I(t)),
CF
0 Dη

t N(t) = G3(t, N(t)).
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Using the integral operator introduced by Losada and Nieto [39] on both sides of the equa-
tions in the system, we obtain

⎧⎪⎪⎨
⎪⎪⎩

S(t) – S(0) = 2(1–η)
(2–η)M(η) G1(t, S(t)) + 2η

(2–η)M(η)
∫ t

0 G1(η, S) dη,

I(t) – I(0) = 2(1–η)
(2–η)M(η) G2(t, I(t)) + 2η

(2–η)M(η)
∫ t

0 G2(η, I) dη,

N(t) – N(0) = 2(1–η)
(2–η)M(η) G3(t, N(t)) + 2η

(2–η)M(η)
∫ t

0 G3(η, N) dη.

(7)

First, we show that the kernels G1, G2, G3 satisfy the Lipschitz condition and are contrac-
tions.

Theorem 4.1 The kernel G1 satisfies the Lipschitz condition and is a contraction if

0 ≤ (–Z – D – A – Cm1) < 1.

Proof For S and S1, we have

∥∥G1(t, S) – G1(t, S1)
∥∥

=
∥∥–Z

(
S(t) – S1(t)

)
– D

(
S(t) – S1(t)

)
– A

(
S(t) – S1(t)

)
– CI(t)

(
S(t) – S1(t)

)∥∥
≤ (

–Z – D – A – C
∥∥I(t)

∥∥)∥∥S(t) – S1(t)
∥∥≤ b1

∥∥S(t) – S1(t)
∥∥.

Let b1 = –Z – D – A – C‖I(t)‖, where I is a bounded function: ‖I(t)‖ ≤ m1. So

∥∥G1(t, S) – G1(t, S1)
∥∥≤ b1

∥∥S(t) – S1(t)
∥∥. (8)

So G1 satisfies the Lipschitz condition, and if 0 ≤ (–Z – D – A – C‖I(t)‖) < 1, then G1 is a
contraction. �

Similarly, G2 and G3 satisfy the Lipschitz conditions:
⎧⎨
⎩

‖G2(t, I) – G2(t, I1)‖ ≤ b2‖(I(t) – I1(t))‖,

‖G3(t, N) – G3(t, N1)‖ ≤ b3‖(N(t) – N1(t))‖,

where b2 = B – D – E + C‖S(t)‖ and b3 = B – D, and S is a bounded function (‖S(t)‖ ≤ m2).
If 0 ≤ (B – D – E + C‖S‖) < 1 and 0 ≤ B – D < 1, then G2 and G3 are contractions.

According to system (7), consider the following recursive forms:

H1n(t) = Sn(t) – Sn–1(t)

=
2(1 – η)

(2 – η)M(η)
(
G1(t, Sn–1) – G1(t, Sn–2)

)

+
2η

(2 – η)M(η)

∫ t

0

(
G1(η, Sn–1) – G1(η, Sn–2)

)
dη,

H2n(t) = In(t) – In–1(t)

=
2(1 – η)

(2 – η)M(η)
(
G2(t, In–1) – G2(t, In–2)

)

+
2η

(2 – η)M(η)

∫ t

0

(
G2(η, In–1) – G2(η, In–2)

)
dη,
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H3n(t) = Nn(t) – Nn–1(t)

=
2(1 – η)

(2 – η)M(η)
(
G3(t, Nn–1) – G3(t, Nn–2)

)

+
2η

(2 – η)M(η)

∫ t

0

(
G3(η, Nn–1) – G3(η, Nn–2)

)
dη

with initial conditions S0(t) = S(0), I0(t) = I(0), and N0(t) = N(0). We take the norm of the
first equation in the system:

∥∥H1n(t)
∥∥ =

∥∥Sn(t) – Sn–1(t)
∥∥

=
∥∥∥∥ 2(1 – η)

(2 – η)M(η)
(
G1(t, Sn–1) – G1(t, Sn–2)

)

+
2η

(2 – η)M(η)

∫ t

0

(
G1(η, Sn–1) – G1(η, Sn–2)

)
dη

∥∥∥∥
≤ 2(1 – η)

(2 – η)M(η)
∥∥G1(t, Sn–1) – G1(t, Sn–2)

∥∥

+
2η

(2 – η)M(η)

∥∥∥∥
∫ t

0

(
G1(η, Sn–1) – G1(η, Sn–2)

)
dη

∥∥∥∥.

With Lipschitz condition (8), we have

∥∥H1n(t)
∥∥≤ 2(1 – η)

(2 – η)M(η)
b1
∥∥H1(n–1)(t)

∥∥ +
2η

(2 – η)M(η)
b1

∫ t

0

∥∥H1(n–1)(η)
∥∥dη. (9)

Similarly, we obtain

∥∥H2n(t)
∥∥≤ 2(1 – η)

(2 – η)M(η)
b2
∥∥H2(n–1)(t)

∥∥ +
2η

(2 – η)M(η)
b2

∫ t

0

∥∥H2(n–1)(η)
∥∥dη,

∥∥H3n(t)
∥∥≤ 2(1 – η)

(2 – η)M(η)
b3
∥∥H1(n–1)(t)

∥∥ +
2η

(2 – η)M(η)
b3

∫ t

0

∥∥H3(n–1)(η)
∥∥dη.

(10)

Then we can write that

Sn(t) =
n∑

i=1

H1i(t), In(t) =
n∑

i=1

H2i(t), Nn(t) =
n∑

i=1

H3i(t).

To prove the existence of a solution, we state the following theorem.

Theorem 4.2 The Rabies Caputo–Fabrizio fractional model (3) has a solution if there
exists t1 such that

2(1 – η)
(2 – η)M(η)

bi +
2ηt1

(2 – η)M(η)
bi < 1.
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Proof From recursive technique, by Eqs. (9) and (10) we conclude that

∥∥H1n(t)
∥∥≤ ∥∥Sn(0)

∥∥
[

2(1 – η)
(2 – η)M(η)

b1 +
2ηt1

(2 – η)M(η)
b1t

]n

,

∥∥H2n(t)
∥∥≤ ∥∥In(0)

∥∥
[

2(1 – η)
(2 – η)M(η)

b2 +
2ηt1

(2 – η)M(η)
b2t

]n

,

∥∥H3n(t)
∥∥≤ ∥∥Nn(0)

∥∥
[

2(1 – η)
(2 – η)M(η)

b3 +
2ηt1

(2 – η)M(η)
b3t

]n

.

Then the system has a solution, and also it is continuous. Now we show that the above
functions give a solution for model (3). Let

S(t) – S(0) = Sn(t) – B1n(t),

I(t) – I(0) = In(t) – B2n(t),

N(t) – N(0) = Nn(t) – B3n(t).

Hence

∥∥B1n(t)
∥∥ =

∥∥∥∥ 2(1 – η)
(2 – η)M(η)

(
G1(t, S) – G1(t, Sn–1)

)

+
2η

(2 – η)M(η)

∫ t

0

(
G1(η, S) – G1(η, Sn–1)

)
dη

∥∥∥∥
≤ 2(1 – η)

(2 – η)M(η)
∥∥G1(t, S) – G1(t, Sn–1)

∥∥

+
2η

(2 – η)M(η)

∫ t

0

∥∥G1(η, S) – G1(η, Sn–1)
∥∥dη

≤ 2(1 – η)
(2 – η)M(η)

b1‖S – Sn–1‖ +
2η

(2 – η)M(η)
b1‖S – Sn–1‖t.

By repeating the method we obtain

∥∥B1n(t)
∥∥≤

[
2(1 – η)

(2 – η)M(η)
+

2η

(2 – η)M(η)
t
]n+1

bn+1
1 h.

At t1, we get

∥∥B1n(t)
∥∥≤

[
2(1 – η)

(2 – η)M(η)
+

2η

(2 – η)M(η)
t1

]n+1

bn+1
1 h.

Taking the limit as n tends to ∞, we obtain ‖B1n(t)‖ → 0. Similarly, we can show that
‖B2n(t)‖ → 0 and ‖B3n(t)‖ → 0, and the proof is complete. �
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To show the uniqueness of a solution, suppose that the system has another solution S1(t),
I1(t), and N1(t). Then we have

S(t) – S1(t) =
2(1 – η)

(2 – η)M(η)
(
G1(t, S) – G1(t, S1)

)

+
2η

(2 – η)M(η)

∫ t

0

(
G1(η, S) – G1(η, S1)

)
dη.

Taking the norm, we have

∥∥S(t) – S1(t)
∥∥≤ 2(1 – η)

(2 – η)M(η)
∥∥G1(t, S) – G1(t, S1)

∥∥

+
2η

(2 – η)M(η)

∫ t

0

∥∥G1(η, S) – G1(η, S1)
∥∥dη.

From Lipschitz condition (8) it follows that

∥∥S(t) – S1(t)
∥∥≤ 2(1 – η)

(2 – η)M(η)
b1
∥∥S(t) – S1(t)

∥∥ +
2η

(2 – η)M(η)
b1t

∥∥S(t) – S1(t)
∥∥.

So

∥∥S(t) – S1(t)
∥∥
(

1 –
2(1 – η)

(2 – η)M(η)
b1 –

2η

(2 – η)M(η)
b1t

)
≤ 0. (11)

Theorem 4.3 The solution of the Rabies model is unique if

1 –
2(1 – η)

(2 – η)M(η)
b1 –

2η

(2 – η)M(η)
b1t > 0.

Proof Suppose that condition (11) holds. Then ‖S(t) – S1(t)‖ = 0, and so S(t) = S1(t). Sim-
ilarly, we can show the same equality for I and N . �

5 Solution of equations by Laplace Adomian decomposition method
In this section, we solve the fractional-order model of Rabies by the Laplace Adomian
decomposition method. Applying the Laplace transform to both sides of system (3), we
have

⎧⎪⎪⎨
⎪⎪⎩

L{CF
0 Dη

t S(t)} = L{BN(t) + Z(N(t) – S(t) – I(t)) – DS(t) – AS(t) – BI(t) – CS(t)I(t)},
L{CF

0 Dη
t I(t)} = L{BI(t) + CS(t)I(t) – DI(t) – EI(t)},

L{CF
0 Dη

t N(t)} = L{N(t)(B – D) – EI(t)},

and so

⎧⎪⎪⎨
⎪⎪⎩

sL(S)–S(0)
s+η(1–s) = L[BN(t) + Z(N(t) – S(t) – I(t)) – DS(t) – AS(t) – BI(t) – CS(t)I(t)],

sL(I)–I(0)
s+η(1–s) = L[BI(t) + CS(t)I(t) – DI(t) – EI(t)],

sL(N)–N(0)
s+η(1–s) = L[N(t)(B – D) – EI(t)].
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Using the initial conditions and taking the inverse Laplace transform of these equations,
we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S(t) = S(0) + L–1[ s+η(1–s)
s L{BN(t) + Z(N(t) – S(t) – I(t))

– DS(t) – AS(t) – BI(t) – CS(t)I(t)}],
I(t) = I(0) + L–1[ s+η(1–s)

s L{BI(t) + CS(t)I(t) – DI(t) – EI(t)}],
N(t) = N(0) + L–1[ s+η(1–s)

s L{N(t)(B – D) – EI(t)}].

(12)

Suppose that the solutions S, I , N can be written in the form of infinite series

S(t) =
∞∑

n=0

Sn(t), I(t) =
∞∑

n=0

In(t), N(t) =
∞∑

n=0

Nn(t) (13)

and that the nonlinear term SI involved in the model can be decomposed by Adomian
polynomials as

S(t)I(t) =
∞∑

n=0

Pn(t).

Recall that the Adomian polynomials Pn are defined as

Pn(t) =
1

Γ (n + 1)
dn

dλn

[ n∑
k=0

λkSk(t)
n∑

k=0

λkIk(t)

] ∣∣∣∣∣
λ=0

.

The first three polynomials are given by

⎧⎪⎪⎨
⎪⎪⎩

P0(t) = S0(t)I0(t),

P1(t) = S0(t)I1(t) + S1(t)I0(t),

P2(t) = 2S0(t)I2(t) + 2S1(t)I1(t) + 2S2(t)I0(t).

Using (13), (14), and (15) in model (12), we get

L

{ ∞∑
n=0

Sn(t)

}
=

S(0)
s

+

[
s + η(1 – s)

s
L

{
B

∞∑
n=0

Nn(t)

+ Z

( ∞∑
n=0

Nn(t) –
∞∑

n=0

Sn(t) –
∞∑

n=0

In(t)

)

– (D + A)
∞∑

n=0

Sn(t) – B
∞∑

n=0

In(t) – C
∞∑

n=0

Pn(t)

}]
,

L

{ ∞∑
n=0

In(t)

}
=

I(0)
s

+

[
s + η(1 – s)

s
L

{
B

∞∑
n=0

In(t) + C
∞∑

n=0

Pn(t) – (D + E)
∞∑

n=0

In(t)

}]
,

L

{ ∞∑
n=0

Nn(t)

}
=

N(0)
s

+

[
s + η(1 – s)

s
L

{
(B – D)

∞∑
n=0

Nn(t) – E
∞∑

n=0

In(t)

}]
.
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By matching the two sides of equations we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(S0) = S0
s ,

L(S1) = s+η(1–s)
s [BL{N0} + Z(L{N0} – L{S0} – L{I0})

– (D + A)L{S0} – BL{I0} – CL{P0}],
L(S2) = s+η(1–s)

s [BL{N1} + Z(L{N1} – L{S1} – L{I1})
– (D + A)L{S1} – BL{I1} – CL{P1}],

...

L(Sn+1) = s+η(1–s)
s [BL{Nn} + Z(L{Nn} – L{Sn} – L{In})

– (D + A)L{Sn} – BL{In} – CL{Pn}];⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(I0) = I0
s ,

L(I1) = s+η(1–s)
s [BL{I0} + CL{P0} – DL{I0} – EL{I0}],

L(I2) = s+η(1–s)
s [BL{I1} + CL{P1} – DL{I1} – EL{I1}],

...

L(In+1) = s+η(1–s)
s [BL{In} + CL{Pn} – DL{In} – EL{In}];⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(N0) = N0
s ,

L(N1) = s+η(1–s)
s [(B – D)L{N0} – EL{I0}],

L(N2) = s+η(1–s)
s [(B – D)L{N1} – EL{I1}],

...

L(Nn+1) = s+η(1–s)
s [(B – D)L{Nn} – EL{In}].

Taking the Laplace inverse on both sides of the previous equations, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0 = S0, I0 = I0, N0 = N0,

S1 = [BN0 + Z(N0 – I0 – S0) – DS0 – AS0 – BI0 – CI0S0](1 + η(t – 1)),

I1 = [BI0 + CI0S0 – DI0 – EI0](1 + η(t – 1)),

N1 = [(B – D)N0 – EI0](1 + η(t – 1)), S2 = [(B + Z)((B – D)N0 – EI0)

– (Z + D + A + CI0)((B + Z)N0 – (Z + D + A)S0 + (–Z – B – CS0)I0)

+ (–Z – B – CS0)(B + CS0 – D – E)I0]( 1
2η2t2 – 2tη2 + 2ηt + (η – 1)2),

I2 = [(B – D – E + CS0)2I0 + CI0((B + Z)N0

– (Z + D + A)S0 + (Z – B – CS0)I0)]( 1
2η2t2 – 2tη2 + 2ηt + (η – 1)2),

N2 = [(B – D)2N0 – EI0(2B – 2D + CS0 – E)]( 1
2η2t2 – 2tη2 + 2ηt + (η – 1)2).

Similarly, we can obtain the remaining terms. Finally, we get the solution in the form of
infinite series given by

S(t) =
∞∑

n=0

Sn, I(t) =
∞∑

n=0

In, N(t) =
∞∑

n=0

Nn. (14)
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5.1 Convergence analysis
The series obtained from the Adomian method converge rapidly and uniformly to the
exact solution of the system. For this purpose, we use the classical method described in
[38]. The series of solutions obtained by the Adomian decomposition method (16) can be
described as follows (see [47]):

un = Tun–1, un–1 =
n∑

i=1

ui, n = 1, 2, 3, . . . .

We state the convergence conditions of {un} in the following theorem [38, 48, 49].

Theorem 5.1 Let Ω be a Banach space, and let T : Ω → Ω be a contraction map with
contractive constant 0 < h < 1, Then T has a unique point u such that T(u) = u, where u =
(S, I, N). Let u0 = u0 ∈ Fr(u), where Fr(u) = {u′ ∈ Ω : ‖u′ – u‖ < r}. Then we have un ∈ Fr(u)
for all n and un → u.

Proof We use mathematical induction. For n = 1, we have

‖u0 – u‖ =
∥∥T(u0) – T(u)

∥∥≤ h‖u0 – x‖.

If the statement is true for n – 1, then ‖un–1 – u‖ ≤ hn–1‖u0 – u‖. So

‖un – u‖ =
∥∥T(un–1) – T(u)

∥∥≤ h‖un–1 – u‖ ≤ hn‖u0 – u‖.

Also, u0 ∈ Fr(u), and consequently ‖u0 – u‖ < r, so we get ‖un – u‖ ≤ hn‖u0 – u‖ ≤ hnr < r.
This implies that un ∈ Fr(u). Furthermore, since ‖un – u‖ ≤ hn‖u0 – u‖ and limn→∞ hn = 0,
we have limn→∞ ‖un – u‖ = 0, and then limn→∞ un = u, and the proof is complete. �

6 Stability of solution
In this section, we first introduce a special solution to the Rabies model by using the
Sumudu transform and then prove the stability of the method by a fixed point theorem.

6.1 Special solution by using Sumudu transform
Here we provide a special solution to the Rabies model. Applying the Sumudu transform
to system (3), we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ST(CF
0 Dη

t S(t)) = ST[BN(t) + Z(N(t) – S(t)

– I(t)) – DS(t) – AS(t) – BI(t) – CS(t)I(t)],

ST(CF
0 Dη

t I(t)) = ST[BI(t) + CS(t)I(t) – DI(t) – EI(t)],

ST(CF
0 Dη

t N(t)) = ST[N(t)(B – D) – EI(t)].

By the definition of the Sumudu transform of CF-derivative we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M(η)
1–η+ηu (ST(S(t)) – S(0)) = ST[BN(t) + Z(N(t)

– S(t) – I(t)) – DS(t) – AS(t) – BI(t) – CS(t)I(t)],
M(η)

1–η+ηu (ST(I(t)) – I(0)) = ST[BI(t) + CS(t)I(t) – DI(t) – EI(t)],
M(η)

1–η+ηu (ST(N(t)) – N(0)) = ST[N(t)(B – D) – EI(t)].



Aydogan et al. Advances in Difference Equations        (2020) 2020:382 Page 13 of 21

Rearranging, we obtain following equalities:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ST(S(t)) = S(0) + 1–η+ηu
M(η) ST[BN(t) + Z(N(t) – S(t)

– I(t)) – DS(t) – AS(t) – BI(t) – CS(t)I(t)],

ST(I(t)) = I(0) + 1–η+ηu
M(η) ST[BI(t) + CS(t)I(t) – DI(t) – EI(t)],

ST(N(t)) = N(0) + 1–η+ηu
M(η) ST[N(t)(B – D) – EI(t)].

We obtain the following recursive formulas:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Sn+1(t) = Sn(0) + ST–1{ 1–η+ηu
M(η) ST[BN(t) + Z(N(t) – S(t)

– I(t)) – DS(t) – AS(t) – BI(t) – CS(t)I(t)]},
In+1(t) = In(0) + ST–1{ 1–η+ηu

M(η) ST[BI(t) + CS(t)I(t) – DI(t) – EI(t)]},
Nn+1(t) = Nn(0) + 1–η+ηu

M(η) ST[N(t)(B – D) – EI(t)].

(15)

Finally, the solution of system (3) is approximates as follows:

S(t) = lim
n→∞ Sn(t), I(t) = lim

n→∞ In(t), N(t) = lim
n→∞ Nn(t).

6.2 Stability analysis of iteration method
Consider a Banach space (Y ,‖ · ‖), a self-map F on Y , and a recursive method Pn+1 =
φ(F , Pn). Denote by Ω(F) �= ∅ the fixed point set of F , and let limn→∞ Pn = p ∈ Ω(F). Let
{fn} ⊂ Ω and en = ‖fn+1 –φ(F , fn)‖. If limn→∞ en = 0 implies that limn→∞ fn = p, then the re-
cursive procedure Pn+1 = φ(F , Pn) is F-stable. Suppose that our sequence {fn} has an upper
bound. If Picard’s iteration Pn+1 = FPn satisfies all these conditions, then it is F-stable.

Theorem 6.1 ([44]) Let (Y ,‖ · ‖) be a Banach space, and let F be a self-map of Y satisfying

‖Fx – Fy‖ ≤ H‖x – Fx‖ + h‖x – y‖

for all x, y ∈ Y where H ≥ 0 and 0 ≤ h < 1. Suppose that F is Picard F-stable.

Suppose that the fractional model of Rabies (3) is connected with the subsequent itera-
tive formula (15). Consider the following theorem.

Theorem 6.2 Let F be a self-map defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(Sn(t)) = Sn+1(t)

= Sn(t) + ST–1{ 1–η+ηu
M(η) ST[BN(t) + Z(N(t)

– S(t) – I(t)) – DS(t) – AS(t) – BI(t) – CS(t)I(t)]]},
F(In(t)) = In+1(t)

= In(t) + ST–1{ 1–η+ηu
M(η) ST[BI(t) + CS(t)I(t) – DI(t) – EI(t)]},

F(Nn(t)) = Nn+1(t) = Nn(t) + 1–η+ηu
M(η) ST[N(t)(B – D) – EI(t)].
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This iterative recursion is F-stable in L1(a, b) if the following conditions are satisfied:

⎧⎪⎪⎨
⎪⎪⎩

(1 + (B + Z)f1(ν) + (Z + D + A)f2(ν) + (Z + B)f3(ν) + CL2f4(ν) + CL1f5(ν)) < 1,

(1 + (B – D – E)f6(ν) + CL2f7(ν) + CL1f8(ν)) < 1,

(1 + (B – D)f9(ν) – Ef10(ν)) < 1.

Proof First, we compute the following equality for (n, m) ∈ N × N to prove that F has a
fixed point:

F(Sn(t) – F
(
Sm(t)

)

= Sn(t) – Sm(t)

+ ST–1{1 – η + ηu
M(η)

ST
[
(B + Z)Nn + (–Z – D – A)Sn + (–Z – B)In – CSnIn

]

– ST–1
{

1 – η + ηu
M(η)

ST
[
(B + Z)Nm + (–Z – D – A)Sm + (–Z – B)Im – CSmIm

]}
.

Applying the norm on both sides, we obtain

‖F
(
Sn(t)

)
– F

(
Sm(t)

)

=
∥∥∥∥Sn(t) – Sm(t) + ST–1{1 – η + ηu

M(η)
ST
[
(B + Z)Nn + (–Z – D – A)Sn + (–Z – B)In

– CSnIn
]

– ST–1
{

1 – η + ηu
M(η)

ST
[
(B + Z)Nm

+ (–Z – D – A)Sm + (–Z – B)Im – CSmIm
]}∥∥∥∥

≤ ∥∥Sn(t) – Sm(t)
∥∥ + ST–1{1 – η + ηu

M(η)
ST
[∥∥(B + Z)(Nn – Nm)

∥∥

+
∥∥(–Z – D – A)(Sn – Sm)

∥∥
+
∥∥(–Z – B)(In – Im)

∥∥ +
∥∥–CIn(Sn – Sm)

∥∥ +
∥∥CSm(In – Im)

∥∥] (16)

Because of the same role of both solutions, we consider

∥∥Sn(t) – Sm(t)
∥∥∼= ∥∥In(t) – Im(t)

∥∥∼= ∥∥Nn(t) – Nm(t)
∥∥. (17)

From Eqs. (16) and (17) we obtain

‖F
(
Sn(t)

)
– F

(
Sm(t)

)

≤ ∥∥Sn(t) – Sm(t)
∥∥ + ST–1{1 – η + ηu

M(η)
ST
[
(B + Z)

∥∥(Sn – Sm)
∥∥

+ (Z + D + A)
∥∥(Sn – Sm)

∥∥ + (Z + B)
∥∥(Sn – Sm)

∥∥
+ C‖In‖

∥∥(Sn – Sm)
∥∥ + C‖Sm‖∥∥(Sn – Sm)

∥∥]. (18)
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Since Sn, In, Nn are convergent sequences, they are bounded, so there exist L1, L2, L3 for
all t such that

‖Sn‖ < L1, ‖In‖ < L2, ‖Nn‖ < L3, (m, n) ∈ N × N . (19)

From Eqs. (18) and (19) we obtain

∥∥F
(
Sn(t)

)
– F

(
Sm(t)

)∥∥
≤ (

1 + (B + Z)f1(ν) + (Z + D + A)f2(ν) + (Z + B)f3(ν)

+ CL2f4(ν) + CL1f5(ν)
)∥∥Sn(t) – Sm(t)

∥∥, (20)

where fi are functions from ST–1[ 1–η+ηu
M(η) ST[∗]]. In the same way, we get

∥∥F(In(t) – F
(
Im(t)

)∥∥
≤ (

1 + (B – D – E)f6(ν) + CL2f7(ν) + CL1f8(ν)
)∥∥In(t) – Im(t)

∥∥, (21)
∥∥F(Nn(t) – F

(
Nm(t)

)∥∥≤ (
1 + (B – D)f9(ν) – Ef10(ν)

)∥∥Nn(t) – Nm(t)
∥∥, (22)

where

⎧⎪⎪⎨
⎪⎪⎩

(1 + (B + Z)f1(ν) + (Z + D + A)f2(ν) + (Z + B)f3(ν) + CL2f4(ν) + CL1f5(ν)) < 1,

(1 + (B – D – E)f6(ν) + CL2f7(ν) + CL1f8(ν)) < 1,

(1 + (B – D)f9(ν) – Ef10(ν)) < 1.

Then the self-mapping F has a fixed point. Let (20), (21), and (22) hold. We assume that

H = (0, 0, 0),

h =

⎧⎪⎪⎨
⎪⎪⎩

1 + (B + Z)f1(ν) + (Z + D + A)f2(ν) + (Z + B)f3(ν) + CL2f4(ν) + CL1f5(ν),

1 + (B – D – E)f6(ν) + CL2f7(ν) + CL1f8(ν),

1 + (B – D)f9(ν) – Ef10(ν).

Then all conditions of Theorem 5.1 hold, and this completes the proof. �

7 Numerical results
In this section, we give a numerical simulation of the results of solving the Rabies model
(3) by using the Laplace Adomian decomposition method (LADM). This method provides
the solution of the system in the form of infinite series. We have chosen the parameters
b = 0.083, c = 0.1, e = 0.5, a = 0, z = 0, d = 0.01 + 0.004N and the initial conditions S0 = 9,
I0 = 1, N0 = 10 (see [5]). In Figs. 1 and 2, we show the solutions of model (4) for different
values of η = 1, 0.9, 0.8, 0.7, 0.6, 0.5. The figures show that different fractional orders have
an important effect on the dynamics of the system and indicate that as η → 1, the ap-
proximate solutions tend to the classic integer solution with η = 1. Also, figures show that
every function has the same behavior for different values of η, but the obtained results for
various values of η are different.
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Figure 1 Dynamics of susceptible animals S and infected animals I for various values of η

Figure 2 Dynamics of N(t) (population of animals at
time t) for various values of η

Figure 3 Dynamics of I(t) for various values of b

Figures 3–7 show the effect of coefficients on the number of infected animals I(t). In
Fig. 3, we plotted I(t) for different values of b, and we see that increasing b increases the
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Figure 4 Dynamics of I(t) for various values of z

Figure 5 Dynamics of I(t) for various values of c

number of infected animals and decreasing b reduces the number of infected animals; I(t)
for different values of z is plotted in Fig. 4, and we see that increasing z reduces the number
of infected animals. Figure 5 shows the effect of Rabies transmission on the number of
infected animals, and as w can see, c has a direct effect on I(t), and a slight increase or
decrease causes a significant increase or decrease in the number of infected animals. Also,
one way to control the disease is vaccination, which affects the number of infected animals
as shown in Fig. 6. With the increase in vaccination rate a, the number of infected animals
rapidly decreases. The disease mortality rate also has a direct effect on the number of
infected animals, and as Fig. 7 shows, increasing or decreasing e causes a similar behavior
of I(t).

A comparison between the noninteger-order model with η = 0.98 and the integer order
η = 1 is also given in Tables 1–3. The results of all three types of derivatives for S, I , N
shown in Tables 1–3 indicate the similar behavior of functions in all three types of deriva-
tives, but they are different in terms of values, and this difference is not uniform. At some
points the value derived from the fractional-order Caputo derivative is closer to the result
of integer order, and at other points the result of the fractional-order Caputo–Fabrizio
derivative is closer to that of integer order.
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Figure 6 Dynamics of I(t) for various values of a

Figure 7 Dynamics of I(t) for various values of e

Table 1 Results of three types of derivative: Ordinary derivative Dν , Caputo fractional derivative cDν ,
and Caputo–Fabrizio fractional derivative cf Dν for S(t)

t 0 1 2 3 4 5

Dν (ν = 1) 9 8.61205 8.6542 9.12645 10.0288 11.36125
cDν (ν = 0.98) 9 8.6150 8.6685 9.1367 10.011 11.285
cf Dν (ν = 0.98) 8.988112 8.620566 8.666090 9.124682 9.996344 11.281074

Table 2 Results of three types of derivative: Ordinary derivative Dν , Caputo fractional derivative cDν ,
and Caputo–Fabrizio fractional derivative cf Dν for I(t)

t 0 1 2 3 4 5

Dν (ν = 1) 1 1.57959 2.28636 3.12031 4.08144 5.16975
cDν (ν = 0.98) 1 1.586274 2.282928 3.0951379 4.0227778 5.065352
cf Dν (ν = 0.98) 1.010371 1.582113 2.276007 3.0920537 4.030253 5.090604

8 Conclusion
In this work, we have studied the mathematical model of Rabies by the concept of
Caputo–Fabrizio fractional derivative. We solved the fractional differential equations by
the Laplace Adomian decomposition method. The equilibrium points are calculated, and
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Table 3 Results of three types of derivative: Ordinary derivative Dν , Caputo fractional derivative cDν ,
and Caputo–Fabrizio fractional derivative cf Dν for N(t)

t 0 1 2 3 4 5

Dν (ν = 1) 10 10.19164 10.94056 12.24676 14.11024 16.531
cDν (ν = 0.95) 10 10.2012980 10.951449 12.231931 14.033640 16.3503797
cf Dν (ν = 0.95) 9.998483 10.202680 10.942097 12.216736 14.026596 16.371678

the existence and uniqueness of the solutions are studied by fixed point theorem. The
stability of the method was investigated with the F-stability approach. Eventually, some
numerical results are presented for different values of η to show the effect of the fractional
order. The effect of the model coefficients on the number of infected animals I(t) has been
investigated using figures, so that we observed that b, c, and e have a direct effect on I(t),
whereas a and z have an inverse effect on I(t). Finally, we compared the results of the
integer-order derivative with the Caputo and Caputo–Fabrizio fractional-order deriva-
tives. We observed that the behavior of S(t), I(t), N(t) in all three types of derivatives is
the same, but the resulting numerical values are different. Also, in some cases the results of
the Caputo derivative are closer to those of integer-order derivative, and in some cases the
results of the Caputo–Fabrizio derivative are closer to those of integer-order derivative.
Therefore, with this information, it is not possible to conclude which type of fractional
derivatives is better.
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