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Abstract
In the present paper, using the discrete analogue of the operator d6/dx6 – 1, we
construct an interpolation spline that minimizes the quantity

∫ 1
0 (ϕ

′′′(x) + ϕ(x))2 dx in
the Hilbert spaceW (3,0)

2 . We obtain explicit formulas for the coefficients of the
interpolation spline. The obtained interpolation spline is exact for the
exponential-trigonometric functions e–x , e

x
2 cos(

√
3
2 x), and e

x
2 sin(

√
3
2 x).
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1 Introduction. Statement of the problem
One of the problems of approximation is the interpolation problem. The classical method
of its solution consists of construction of an interpolation polynomial. However, it is
known that the polynomial approximation is unpractical for approximating functions with
finite and small smoothness, which often occurs in applications. Therefore, in practice, to
approximate functions, splines are used. There are algebraic and variational approaches in
the theory of splines [1]. In the algebraic approach, splines are considered as some smooth
piecewise polynomial functions. In the variational approach, splines are understood as el-
ements of a Hilbert or Banach space minimizing certain functionals. Then problems of
existence, uniqueness, and convergence of splines and algorithms for their constructions
are studied based on intrinsic properties of splines (see, e.g., [22]).

L-(generalized) splines are a generalization of polynomial splines. Since the results of
this paper are connected with L-splines, we give some definitions following Ahlberg, Nil-
son, and Walsh [1].

Let L be a linear differential operator given by

L ≡ am(x)Dm + am–1(x)Dm–1 + · · · + a0(x),

where D = d/dx, each aj(x) (j = 0, 1, . . . , m) is in Cm[a, b], and am(x) �= 0 on [a, b]. By L∗ we
denote the formal adjoint of L:

L∗ ≡ (–1)mDm{
am(x)

}
+ (–1)m–1Dm–1{am–1(x)

}
+ · · · – D

{
a1(x)

}
+ a0(x).

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02805-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02805-8&domain=pdf
mailto:kholmatshadimetov@mail.ru


Shadimetov and Boltaev Advances in Difference Equations        (2020) 2020:352 Page 2 of 16

By Km(a, b) we denote the class of all functions f (x) defined on [a, b] that possess absolutely
continuous (n – 1)th derivatives on [a, b] and have the nth derivatives in L2(a, b); it is a
Hilbert space with the inner product

〈f , g〉 =
∫ b

a
(Lf )(x) · (Lg)(x) dx (1)

if functions that differ by a solution of the equation Lf = 0 are identified.
If � : a = x0 < x1 < · · · < xN = b is a mesh on [a, b], then a generalized spline of deficiency

k (0 ≤ k ≤ m) with respect to � is a function S�(x) from K2m–k(a, b) that satisfies the
differential equation

L∗LS� = 0

on each open mesh interval (xi–1, xi) (i = 1, 2, . . . , N ) of �. The ordinary spline of deficiency
1 allows discontinuities in the (2m – 1)th derivative, but only at mesh points.

From the results of Ahlberg, Nilson, and Walsh [1] ti is known that for generalized
spline of deficiency 1, the following is true: Let � : a = x0 < x1 < · · · < xN = b and Y =
{yi, i = 0, 1, . . . , N} be given. Then among all functions f (x) in Km(a, b) such that f (xi) = yi

(i = 0, 1, . . . , N), the generalized spline S�(Y ; x), when it exists, minimizes the quantity
∫ b

a (Lf (x))2 dx.
Further, we give some results obtained from the theory of L-splines. First, contributions

to the theory of splines include the works of Greville, Ahlberg, Nilson, and Walsh and of
Schultz and Varga (see [22, p. 459]). These works are concentrated on natural L-splines,
which appear as solutions to the corresponding best interpolation problems, and the order
of approximation of generalized splines was first studied.

Trigonometric splines were first considered by Schoenberg [20]. Construction of local
B-splines for general spaces of L-splines was studied in [9, 14]. Further results on the of
approximation of trigonometric splines were obtained in [16] based on construction of
quasi-interpolation operators. In [12], control curves of trigonometric splines are con-
structed, and it is proved that they have similar properties as polynomial splines. Then
trigonometric B-splines were studied in [8, 10, 19].

The space of natural hyperbolic splines was introduced in [22, p. 407]. In [21], it is shown
that hyperbolic splines can be treated as an example of L-splines.

There are different variants of hyperbolic and trigonometric L-splines. Recently, sev-
eral classwa of splines whose parts are combinations of algebraic polynomials and expo-
nential or trigonometric functions are considered. Splines whose parts are spanned by
{1, x, exp(ρx), exp(–ρx)} are called tension exponential splines. Such splines were studied
in [11, 17–19]. Algebraic and exponential B-splines generated over the space spanned
by {1, x, . . . , xm–3, cosh x, sinh x} were presented in [15]. Algebraic-trigonometric splines
generated by {1, x, sin x, cos x} were studied in [31, 32]. Similar results were developed in
[13, 30] for splines obtained by combinations of functions {1, x, . . . , xm–3, cos x, sin x}. In
[5], using Sobolev’s method, interpolation splines that minimize the expression

∫ 1
0 (ϕ(m) +

ω2ϕ(m–2)(x))2 dx in the space K2(Pm) are constructed. Explicit formulas for the coefficients
of the interpolation splines are obtained. The obtained interpolation splines are exact for
monomials 1, x, x2, . . . , xm–3 and for trigonometric functions sinωx and cosωx.
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In the present work, we solve the problem of construction of a natural L-spline in the
case m = 3, L ≡ d3/dx3 + 1 on the interval [0, 1], and we denote by W (3,0)

2 (0, 1) the corre-
sponding space, that is,

W (3,0)
2 (0, 1) =

{
ϕ : [0, 1] → R | ϕ′′ is absolutely continuous, and ϕ′′′ ∈ L2(0, 1)

}
.

The class W (3,0)
2 , equipped with the seminorm

‖ϕ‖W (3,0)
2

=
(∫ 1

0

(
ϕ′′′(x) + ϕ(x)

)2 dx
)1/2

, (2)

is a Hilbert space if we identify functions that differ by a solution of the equation ϕ′′′(x) +
ϕ(x) = 0. A solution of the last equation has the form ϕ(x) = d0e–x + d1e x

2 · cos(
√

3
2 x) + d2e x

2 ·
sin(

√
3

2 x).
Suppose we are given the values yβ , β = 0, 1, . . . , N , at points xβ ∈ [0, 1], β = 0, 1, . . . , N .
Consider the following variational interpolation problem.

Problem 1 Among all functions f (x) in W (3,0)
2 satisfying the conditions

f (xβ ) = ϕ(xβ ), β = 0, 1, . . . , N , (3)

find a function S(x) that gives the minimum of the norm (2), where xβ ∈ [0, 1] are the nodes
of interpolation, and ϕ(xβ) = yβ are given values.

The solution S(x) of Problem 1 is a ordinary generalized spline and is uniquely defined
with respect to mesh � : 0 = x0 < x1 < · · · < xN = 1 on the interval [0, 1] as follows:

(i) S(x) is a linear combination of functions e–x, e x
2 cos(

√
3

2 x), e x
2 sin(

√
3

2 x), ex,
e– x

2 cos(
√

3
2 x), and e– x

2 sin(
√

3
2 x) on each open mesh interval (xβ , xβ+1),

β = 0, 1, . . . , N – 1;
(ii) S(x) is a linear combination of functions e–x, e x

2 cos(
√

3
2 x), and e x

2 sin(
√

3
2 x) on the

intervals (–∞, 0) and (1,∞);
(iii) S(α)(x–

β ) = S(α)(x+
β ), α = 0, 1, . . . , 4 and β = 1, 2, . . . , N – 1;

(iv) S(xβ ) = ϕ(xβ ), β = 0, 1, . . . , N ;
(v) S(x) satisfies the following boundary conditions:

S′′′(1) + S(1) = 0, S′′′(0) + S(0) = 0,

S(4)(1) + S′(1) = 0, S(4)(0) + S′(0) = 0.

We consider the fundamental solution

G(x) =
sgn x

6
·
[

sinh(x) + e
x
2 cos

(√
3

2
x +

π

3

)

+ e– x
2 cos

(√
3

2
x +

2π

3

)]

(4)

of the differential operator d6

dx6 – 1, that is, the solution of the equation

G(6)(x) – G(x) = δ(x), (5)

where δ(x) is the Dirac delta-function.
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Remark The following rule for finding a fundamental solution of a linear differential op-
erator

P
(

d
dx

)

:=
dm

dxm + a1
dm–1

dxm–1 + · · · + am, (6)

where aj are real numbers, is given in [29, pp. 88–89]: replacing d
dx by p, we get a polyno-

mial P(p). Then we expand the expression 1
P(p) to partial fractions:

1
P(p)

=
∏

j

(p – λ)–kj =
∑

j

[
cj,kj (p – λ)–kj + · · · + cj,1(p – λ)–1], (7)

and with every partial fraction (p – λ)–k , we associate xk–1 sgn x
2(k–1)! · eλx.

Using this rule, we find the function G(x) that is the fundamental solution of the operator
d6

dx6 – 1 and has the form (4).
It is easy to check that the fifth derivative of the function

G(x – xγ ) =
sgn(x – xγ )

6
·
[

sinh(x – xγ ) + e
x–xγ

2 · cos

(√
3

2
(x – xγ ) +

π

3

)

+ e– x–xγ
2 · cos

(√
3

2
(x – xγ ) +

2π

3

)]

has a discontinuity equal to 1 at the point xγ , and the third and the fours derivatives of
G(x – xγ ) are continuous. Suppose a function pγ (x) coincides with the spline S(x) on the
interval (xγ , xγ +1), that is, pγ (x) := pγ –1(x) + Cγ G(x – xγ ), x ∈ (xγ , xγ +1), where Cγ is the
jump of the function S(5)(x) at xγ :

Cγ = S(5)(x+
γ

)
– S(5)(x–

γ

)
.

Then the spline S(x) can be written in the form

S(x) =
N∑

γ =0

Cγ G(x – xγ ) + p–1(x), (8)

where p–1(x) = d0e–x +d1e x
2 ·cos(

√
3

2 x)+d2e x
2 ·sin(

√
3

2 x), and d0, d1, and d2 are real numbers.
It is known that (see, e.g., [28]) the solution S(x) of the form (4) of Problem 1 exists and

is unique when N ≥ 2, and the coefficients Cγ , d0, d1, and d2 of S(x) are determined by the
following system of N + 4 linear equations:

N∑

γ =0

Cγ G(xβ – xγ ) + d0e–xβ + d1e
xβ
2 cos

(√
3

2
xβ

)

+ d2e
xβ
2 sin

(√
3

2
xβ

)

= ϕ(xβ), β = 0, 1, . . . , N , (9)

N∑

γ =0

Cγ e–xγ = 0, (10)
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N∑

γ =0

Cγ e
xγ
2 cos

(√
3

2
xγ

)

= 0, (11)

N∑

γ =0

Cγ e
xγ
2 sin

(√
3

2
xγ

)

= 0. (12)

It is easy to show that the spline S(x) defined by equation (8) with coefficients Cγ , d0, d1,
and d2 satisfies conditions (i)–(v).

The main aim of the present paper is to solve Problem 1, that is, to solve system (9)–
(12) for equally spaced nodes xβ = hβ , β = 0, 1, . . . , N , h = 1/N , N ≥ 2, and to find analytic
formulas for the coefficients Cγ , d0, d1, and d2 of S(x).

It should be noted that using Sobolev method, interpolation splines minimizing the
seminorms in different Hilbert spaces were constructed in [2, 4, 6, 7, 23, 24]. Further-
more, connection between interpolation splines and optimal quadrature formulas in the
sense of Sard in L(m)

2 (0, 1) and K2(P2) spaces were shown in [4] and [6].
The rest of the paper is organized as follows. In Sect. 2, we give some definitions and

known results. In Sect. 3, we give an algorithm for solving system (9)–(12) when the nodes
xβ are equally spaced. Using this algorithm, the coefficients of the interpolation spline S(x)
are computed in Sect. 4.

2 Preliminaries
In this section, we give some definitions and known results that we need to prove the main
results.

We mainly use the concept of discrete argument functions and operations on them. The
theory of discrete argument functions is given in [25, 27]. For completeness, we give some
definitions about functions of discrete argument.

Assume that the nodes xβ are equally spaced, that is, xβ = hβ , h = 1
N , N = 1, 2, . . . . Further,

we also use the notation [β] = hβ .

Definition 1 The function ϕ[β] is a function of discrete argument if it is given on some
set of integer values of β .

Definition 2 The inner product of two discrete-argument functions ϕ[β] and ψ[β] is
given by

[
ϕ[β],ψ[β]

]
=

∞∑

β=–∞
ϕ[β] · ψ[β],

if the series on the right-hand side of the last equality converges absolutely.

Definition 3 The convolution of two functions ϕ[β] and ψ[β] is the inner product

ϕ[β] ∗ ψ[β] =
[
ϕ[γ ],ψ[β – γ ]

]
=

∞∑

γ =–∞
ϕ[γ ] · ψ[β – γ ].

In our computations we need the discrete analogue D[β] of the differential operator
d6

dx6 – 1, which satisfies the equality

D[β] ∗ G[β] = δ[β], (13)
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where G[β] is the discrete-argument function corresponding to G(x) defined by (4), δ[β]
is equal to 0 when β �= 0 and to 1 when β = 0, that is, δ[β] is the discrete delta-function.
Equation (13) is a discrete analogue of equation (5).

In [2, 3] the discrete analogue D[β] of the differential operator d6

dx6 – 1, which satisfies
equation (13), was constructed, and the following theorem was proved.

Theorem 1 The discrete analogue of the differential operator d6

dx6 – 1 satisfying equation
(13) has the form

D[β] =
3
K

⎧
⎪⎪⎨

⎪⎪⎩

∑2
k=1 Bkλ

|β|–1
k , |β| ≥ 2,

1 +
∑2

k=1 Bk , |β| = 1,

K3 – K1 +
∑2

k=1
Bk
λk

, β = 0,

(14)

where

K = sinh(h) + sinh

(
h
2

)

· cos

(√
3

2
h
)

–
√

3 · cosh

(
h
2

)

· sin

(√
3

2
h
)

,

K1 = 2 cosh(h)

+
4 cos(

√
3

2 h) cosh( h
2 ) sinh(h) + sinh(h) –

√
3 sin(

√
3h) – 2 sinh(h) cosh(h)

sinh(h) + sinh( h
2 ) · cos(

√
3

2 h) –
√

3 · cosh( h
2 ) · sin(

√
3

2 h)
,

K2 = 2 +
2 cos(

√
3h) sinh(h) + 4 sinh(h) cosh(h) – 2

√
3 sin(

√
3h) cosh(h)

sinh(h) + sinh( h
2 ) · cos(

√
3

2 h) –
√

3 · cosh( h
2 ) · sin(

√
3

2 h)
,

K3 = 2 ·
(

cosh(h) + 2 cos

(√
3

2
h
)

cosh

(
h
2

))

,

Bk =
(λ2

k – 2λk · cosh(h) + 1) · A4(λk)
(λ2

k – 1) · (2λ2
k – K1λk + 2)

,

A4(λk) = λ4
k – 4λ3

k · cos

(√
3

2
h
)

cosh

(
h
2

)

+ 2λ2
k · (1 + cos(

√
3h) + cosh(h)

)

– 4λk · cos

(√
3

2
h
)

cosh

(
h
2

)

+ 1,

λk =
1
4

· [K1 +
√

K2
1 – 4 · K2 + 8 + (–1)k

√
(
K1 +

√
K2

1 – 4 · K2 + 8
)2 – 16

]
, k = 1, 2,

h is a small positive parameter, and λk are the roots of the polynomial A4(λ) such that
|λk| < 1.

Furthermore, several properties of the discrete-argument function D[β] were given in
[2, 3]. Here we give the following its properties, which we need in our computations.

Theorem 2 The discrete analogue D[β] of the differential operator d6

dx6 – 1 satisfies the
following equalities:

(1) D[β] ∗ e[β] = 0,
(2) D[β] ∗ e–[β] = 0,
(3) D[β] ∗ e

[β]
2 · cos(

√
3

2 [β]) = 0,
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(4) D[β] ∗ e
[β]
2 · sin(

√
3

2 [β]) = 0,
(5) D[β] ∗ e– [β]

2 · cos(
√

3
2 [β]) = 0,

(6) D[β] ∗ e– [β]
2 · sin(

√
3

2 [β]) = 0.

3 The algorithm for computation of coefficients of interpolation spline
In the present section, we give an algorithm for solving system (9)–(12) when the nodes
xβ are equally spaced, that is, xβ = hβ , h = 1

N , N = 1, 2, . . . . Here we use a similar method
suggested by Sobolev [26, 27] for finding the coefficients of optimal quadrature formulas
in the Sobolev space L(m)

2 (0, 1). We note that here [β] means (hβ).
Suppose that C[β] = 0 when β < 0 and β > N . Using Definition 3, we rewrite system

(9)–(12) in the convolution form:

G[β] ∗ C[β] + d0e–[β] + d1e
[β]
2 · cos

(√
3

2
[β]

)

+ d2e
[β]
2 · sin

(√
3

2
[β]

)

= ϕ[β], β = 0, 1, . . . , N , (15)

N∑

β=0

C[β] · e–[β] = 0, (16)

N∑

β=0

C[β] · e
[β]
2 · cos

(√
3

2
[β]

)

= 0, (17)

N∑

β=0

C[β] · e
[β]
2 · sin

(√
3

2
[β]

)

= 0. (18)

Thus we have the following problem.

Problem 2 Find the coefficients C[β] (β = 0, 1, . . . , N ), d0, d1, and d2 that satisfy system
(15)–(18).

Further, we investigate Problem 2, which is equivalent to Problem 1. Instead of C[β], we
introduce the following discrete-argument functions:

v[β] = G[β] ∗ C[β], (19)

u[β] = v[β] + d0e–[β] + d1e
[β]
2 · cos

(√
3

2
[β]

)

+ d2e
[β]
2 · sin

(√
3

2
[β]

)

. (20)

Now we express the coefficients C[β] by the function u[β].
Taking into account (14), (20), and Theorems 1 and 2, for the coefficients, we have

C[β] = D[β] ∗ u[β]. (21)

Thus, if we find the function u[β], then the coefficients C[β] will be found from equality
(21).

To calculate convolution (21), it is required to find the representation of the function
u[β] for all integer values of β . From equality (15) we get that u[β] = ϕ[β] when [β] ∈ [0, 1].
Now we need to find the representation of the function u[β] when β < 0 and β > N .
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Since C[β] = 0 when [β] /∈ [0, 1], we have

C[β] = D[β] ∗ u[β] = 0 for [β] /∈ [0, 1].

Now we calculate the convolution v[β] = G[β] ∗ C[β] when β ≤ 0 and β ≥ N .
Suppose β ≤ 0. Then taking into account equalities (8) and (16)–(18), we have

v[β] =
∞∑

γ =–∞
C[γ ]G[β – γ ]

= –
1

12

[

–e–[β]
N∑

γ =0

C[γ ]e[γ ]

+

( N∑

γ =0

C[γ ]e– [γ ]
2 cos

(√
3

2
[γ ]

)

+
√

3
N∑

γ =0

C[γ ]e– [γ ]
2 sin

(√
3

2
[γ ]

))

× e
[β]
2 cos

(√
3

2
[β]

)

+

( N∑

γ =0

C[γ ]e– [γ ]
2 sin

(√
3

2
[γ ]

)

–
√

3
N∑

γ =0

C[γ ]e– [γ ]
2 cos

(√
3

2
[γ ]

))

× e
[β]
2 sin

(√
3

2
[β]

)]

.

Thus, when β ≤ 0, we get

v[β] = –b0e–[β] – b1e
[β]
2 cos

(√
3

2
[β]

)

– b2e
[β]
2 sin

(√
3

2
[β]

)

, (22)

where

b0 = –
1

12

N∑

γ =0

C[γ ]e[γ ],

b1 =
1

12

N∑

γ =0

C[γ ]e– [γ ]
2

[

cos

(√
3

2
[γ ]

)

+
√

3 sin

(√
3

2
[γ ]

)]

,

and

b2 =
1

12

N∑

γ =0

C[γ ]e– [γ ]
2

[

sin

(√
3

2
[γ ]

)

–
√

3 cos

(√
3

2
[γ ]

)]

. (23)

Similarly, in the case β ≥ N , for the convolution v[β] = G[β] ∗ C[β], we obtain

v[β] = b0e–[β] + b1e
[β]
2 cos

(√
3

2
[β]

)

+ b2e
[β]
2 sin

(√
3

2
[β]

)

. (24)

We denote

d–
0 = d0 – b0, d–

1 = d1 – b1, d–
2 = d2 – b2, (25)
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d+
0 = d0 + b0, d+

1 = d1 + b1, d+
2 = d2 + b2, (26)

Taking into account (20), (22), and (24), we get the following problem.

Problem 3 Find the solution of the equation

D[β] ∗ u[β] = 0, [β] /∈ [0, 1], (27)

of the form

u[β] =

⎧
⎪⎪⎨

⎪⎪⎩

d–
0 e–[β] + d–

1 e
[β]
2 cos(

√
3

2 [β]) + d–
2 e

[β]
2 sin(

√
3

2 [β]), β ≤ 0,

ϕ[β], 0 ≤ β ≤ N ,

d+
0 e–[β] + d+

1 e
[β]
2 cos(

√
3

2 [β]) + d+
2 e

[β]
2 sin(

√
3

2 [β]), β ≥ N .

(28)

If we find d–
0 , d+

0 , d–
1 , d+

1 , and d–
2 , d+

2 , then from (25) and (26) we have

dn =
1
2
(
d+

n + d–
n
)
, n = 0, 1, 2,

bn =
1
2
(
b+

n – b–
n
)
, n = 0, 1, 2.

(29)

The unknowns d–
0 , d+

0 , d–
1 , d+

1 , and d–
2 , d+

2 can be found from equation (27) using the
function D[β] defined by (14). Then we obtain an explicit form of the function u[β], and
from (21) we find the coefficients C[β]. Furthermore, from (29) we get d0, d1, and d2.

Thus Problem 3 and, respectively, Problems 2 and 1 will be solved.
In the next section, we apply this algorithm to compute the coefficients C[β], β =

0, 1, . . . , N , d0, d1, and d2 of the interpolation spline (8) for N ≥ 2.

4 Computation of coefficients of interpolation spline (8)
In this section, using the presented algorithm, we obtain explicit formulas for the coeffi-
cients of the interpolation spline (8), which, as we have proved in the previous section, is
the solution of Problem 1.

It should be noted that the interpolation spline (8), the solution of Problem 1, is exact
for functions e–x, e x

2 cos(
√

3
2 x), and e x

2 sin(
√

3
2 x).

We now obtain exact formulas for the coefficients of the interpolation spline (8) in the
following:

Theorem 3 The coefficients of the interpolation spline (8) with equally spaced nodes in the
space W (3,0)

2 have the following form:

C[0] =
3
K

[

ϕ(0)(K3 – K1) + ϕ(h) + d–
0 eh + d–

1 e– h
2 cos

(√
3

2
h
)

– d–
2 e– h

2 sin

(√
3

2
h
)

+
2∑

k=1

Bk

λk

( N∑

γ =0

λ
γ

k ϕ(hγ ) + Mk + λN
k · Nk

)]

,
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C[β] =
3
K

[

ϕ(hβ)(K3 – K1) + ϕ
(
h(β – 1)

)
+ ϕ

(
h(β + 1)

)

+
2∑

k=1

Bk

λk

( N∑

γ =0

λ
|β–γ |
k ϕ(hγ ) + λ

β

k · Mk + λ
N–β

k · Nk

)]

, β = 1, 2, . . . , N – 1,

C[N] =
3
K

[

ϕ(1)(K3 – K1) + ϕ(1 – h) + d+
0 e–(1+h) + d+

1 e
1+h

2 cos

(√
3

2
(1 + h)

)

+ d+
2 e

1+h
2 sin

(√
3

2
(1 + h)

)

+
2∑

k=1

Bk

λk

( N∑

γ =0

λ
N–γ

k ϕ(hγ ) + λN
k · Mk + Nk

)]

,

dn =
1
2
(
d+

n + d–
n
)
, n = 0, 1, 2,

where

Mk = λk

[
d–

0 eh

1 – λkeh –
d–

1 (λk – e h
2 cos(

√
3

2 h)) + d–
2 e h

2 sin(
√

3
2 h)

λ2
k – 2λke h

2 cos(
√

3
2 h) + eh

]

, (30)

Nk = λk

[
d+

0 e–1

eh – λk
+ e

1+h
2

[d+
1 (cos(

√
3

2 (1 + h)) – λke h
2 cos(

√
3

2 ))

λ2
keh – 2λke h

2 cos(
√

3
2 h) + 1

+
d+

2 (sin(
√

3
2 (1 + h)) – λke h

2 sin(
√

3
2 ))

λ2
keh – 2λke h

2 cos(
√

3
2 h) + 1

]]

, k = 1, 2, (31)

and K , K1, K3, Bk , and λk are defined in Theorem 1, |λk| < 1, d–
n and d+

n , n = 0, 1, 2, are
defined from system (32)–(33), (35)–(38).

Proof First, we find the expressions for d–
0 and d+

0 . When β = 0 and β = N , from (28) for
d–

0 and d+
0 we get

d–
0 = ϕ(0) – d–

1 , (32)

d+
0 = e · ϕ(1) – e

3
2 cos

√
3

2
d+

1 – e
3
2 sin

√
3

2
d+

2 . (33)

Now we have four unknowns d–
1 , d–

2 , d+
1 , and d+

2 .
From equation (27) for β = –1, –2 and β = N + 1, N + 2, we find d–

1 , d–
2 , d+

1 , and d+
2 .

Taking into account (29), (32), and (33), from (27) we get the following equation for d–
1 ,

d–
2 , d+

1 , and d+
2 :

–1∑

γ =–∞
D[β – γ ]

[

d–
0 e–[β] + d–

1 e
[β]
2 cos

(√
3

2
[β]

)

+ d–
2 e

[β]
2 sin

(√
3

2
[β]

)]

+
N∑

γ =0

D[β – γ ]ϕ[γ ] +
∞∑

γ =N+1

D[β – γ ]
[

d+
0 e–[β] + d+

1 e
[β]
2 cos

(√
3

2
[β]

)

+ d+
2 e

[β]
2 sin

(√
3

2
[β]

)]

= 0, (34)
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where β < 0 and β > N . First, we consider the cases β = –1, –2. From (34) we obtain the
following system of two linear equations

∞∑

γ =1

D[γ – 1] ·
[

d–
1

(

e– [γ ]
2 cos

(√
3

2
[γ ]

)

– e[γ ]
)

– d–
2 e– [γ ]

2 sin

(√
3

2
[γ ]

)]

+
∞∑

γ =1

D[N + γ + 1] ·
[

d+
1

(

e
1+[γ ]

2 cos

(√
3

2
(
1 + [γ ]

)
)

– e
1
2 cos

(√
3

2

)

e–[γ ]
)

+ d+
2

(

e
1+[γ ]

2 sin

(√
3

2
(
1 + [γ ]

)
)

– e
1
2 sin

(√
3

2

)

e–[γ ]
)]

= –

[

ϕ(0)
∞∑

γ =1

D[γ – 1]e[γ ] + ϕ(1)
∞∑

γ =1

D[N + γ + 1]e–[γ ] +
N∑

γ =0

D[γ + 1]ϕ[γ ]

]

, (35)

∞∑

γ =1

D[γ – 2] ·
[

d–
1

(

e– [γ ]
2 cos

(√
3

2
[γ ]

)

– e[γ ]
)

– d–
2 e– [γ ]

2 sin

(√
3

2
[γ ]

)]

+
∞∑

γ =1

D[N + γ + 2] ·
[

d+
1

(

e
1+[γ ]

2 cos

(√
3

2
(
1 + [γ ]

)
)

– e
1
2 cos

(√
3

2

)

e–[γ ]
)

+ d+
2

(

e
1+[γ ]

2 sin

(√
3

2
(
1 + [γ ]

)
)

– e
1
2 sin

(√
3

2

)

e–[γ ]
)]

= –

[

ϕ(0)
∞∑

γ =1

D[γ – 2]e[γ ] + ϕ(1)
∞∑

γ =1

D[N + γ + 2]e–[γ ] +
N∑

γ =0

D[γ + 2]ϕ[γ ]

]

. (36)

Now we consider the cases β = N + 1, N + 2. From (34) we obtain

∞∑

γ =1

D[N + γ + 1] ·
[

d–
1

(

e– [γ ]
2 cos

(√
3

2
[γ ]

)

– e[γ ]
)

– d–
2 e– [γ ]

2 sin

(√
3

2
[γ ]

)]

+
∞∑

γ =1

D[γ – 1] ·
[

d+
1

(

e
1+[γ ]

2 cos

(√
3

2
(
1 + [γ ]

)
)

– e
1
2 cos

(√
3

2

)

e–[γ ]
)

+ d+
2

(

e
1+[γ ]

2 sin

(√
3

2
(
1 + [γ ]

)
)

– e
1
2 sin

(√
3

2

)

e–[γ ]
)]

= –

[

ϕ(0)
∞∑

γ =1

D[N + γ + 1]e[γ ] + ϕ(1)
∞∑

γ =1

D[γ – 1]e–[γ ]

+
N∑

γ =0

D[N + 1 – γ ]ϕ[γ ]

]

, (37)

∞∑

γ =1

D[N + γ + 2] ·
[

d–
1

(

e– [γ ]
2 cos

(√
3

2
[γ ]

)

– e[γ ]
)

– d–
2 e– [γ ]

2 sin

(√
3

2
[γ ]

)]

+
∞∑

γ =1

D[γ – 2] ·
[

d+
1

(

e
1+[γ ]

2 cos

(√
3

2
(
1 + [γ ]

)
)

– e
1
2 cos

(√
3

2

)

e–[γ ]
)

+d+
2

(

e
1+[γ ]

2 sin

(√
3

2
(
1 + [γ ]

)
)

– e
1
2 sin

(√
3

2

)

e–[γ ]
)]
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= –

[

ϕ(0)
∞∑

γ =1

D[N + γ + 2]e[γ ] + ϕ(1)
∞∑

γ =1

D[γ – 2]e–[γ ]

+
N∑

γ =0

D[N + 2 – γ ]ϕ[γ ]

]

. (38)

Thus for unknowns d–
1 , d+

1 , d–
2 , and d+

2 we get system (35)–(38) consisting of four linear
equations. Since the interpolation problem has a unique solution, the main matrix of this
system is nonsingular. To find the unknowns d–

1 , d+
1 , d–

2 , and d+
2 , we rewrite system (35)–

(38) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M11d–
1 + M12d–

2 + M13d+
1 + M14d+

2 = T1,

M21d–
1 + M22d–

2 + M23d+
1 + M24d+

2 = T2,

M31d–
1 + M32d–

2 + M33d+
1 + M34d+

2 = T3,

M41d–
1 + M42d–

2 + M43d+
1 + M44d+

2 = T4,

(39)

where

M11 =
3
K

[

(K3 – K1)
(

e– h
2 cos

(√
3

2
h
)

– eh
)

+ e–h cos(
√

3h) – e2h

–
2∑

k=1

Bk

λk

[
λk – e h

2 cos(
√

3
2 h)

λ2
k – 2λke h

2 cos(
√

3
2 h) + eh

+
eh

1 – λkeh

]]

,

M12 = –
3
K

[

(K3 – K1) · e– h
2 sin

(√
3

2
h
)

+ e–h sin(
√

3h)

+
2∑

k=1

Bk

λk

e h
2 sin(

√
3

2 h)

λ2
k – 2λke h

2 cos(
√

3
2 h) + eh

]

,

M13 = –
3e 1

2

K

2∑

k=1

Bkλ
N+1
k

[eh cos(
√

3
2 )λk – e h

2 cos(
√

3
2 (1 + h))

ehλ2
k – 2λke h

2 cos(
√

3
2 h) + 1

–
cos(

√
3

2 )
λk – eh

]

,

M14 = –
3e 1

2

K

2∑

k=1

Bkλ
N+1
k

[eh sin(
√

3
2 )λk – e h

2 sin(
√

3
2 (1 + h))

ehλ2
k – 2λke h

2 cos(
√

3
2 h) + 1

–
sin(

√
3

2 )
λk – eh

]

,

M21 = –
3
K

2∑

k=1

Bkλ
N+1
k

[
λk – e h

2 cos(
√

3
2 h)

λ2
k – 2λke h

2 cos(
√

3
2 h) + eh

+
eh

1 – ehλk

]

,

M22 = –
3
K

2∑

k=1

Bkλ
N+1
k

e h
2 sin(

√
3

2 h)

λ2
k – 2λke h

2 cos(
√

3
2 h) + eh

,

M23 =
3e 1

2

K

[

(K3 – K1)
(

e
h
2 cos

(√
3

2
(1 + h)

)

– cos

(√
3

2

)

e–h
)

+ eh cos

(√
3

2
(1 + 2h)

)

– cos

(√
3

2

)

e–2h –
2∑

k=1

Bk

λk

[eh cos(
√

3
2 )λk – e h

2 cos(
√

3
2 (1 + h))

ehλ2
k – 2λke h

2 cos(
√

3
2 h) + 1

–
cos(

√
3

2 )
λk – eh

]]

,
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M24 =
3e 1

2

K

[

(K3 – K1)
(

e
h
2 sin

(√
3

2
(1 + h)

)

– sin

(√
3

2

)

e–h
)

+ eh sin

(√
3

2
(1 + 2h)

)

– sin

(√
3

2

)

e–2h –
2∑

k=1

Bk

λk

[eh sin(
√

3
2 )λk – e h

2 sin(
√

3
2 (1 + h))

ehλ2
k – 2λke h

2 cos(
√

3
2 h) + 1

–
sin(

√
3

2 )
λk – eh

]]

,

M31 =
3
K

[

(K3 – K1)
(
e–h cos(

√
3h) – e2h) + e– h

2 cos

(√
3

2
h
)

– eh + e– 3
2 h cos

(
3
√

3
2

h
)

– e3h +
(

e– h
2 cos

(√
3

2
h
)

– eh
) 2∑

k=1

Bk

λ2
k

(
λ2

k – 1
)

–
2∑

k=1

Bk

λ2
k

[
λk – e h

2 cos(
√

3
2 h)

λ2
k – 2λke h

2 cos(
√

3
2 h) + eh

+
eh

1 – ehλk

]]

,

M32 = –
3
K

[

(K3 – K1)e–h sin(
√

3h) + e– h
2 sin

(√
3

2
h
)

+ e– 3
2 h sin

(
3
√

3
2

h
)

+ e– h
2 sin

(√
3

2
h
) 2∑

k=1

Bk

λ2
k

(
λ2

k – 1
)

+
2∑

k=1

Bk

λ2
k

e h
2 sin(

√
3

2 h)

λ2
k – 2λke h

2 cos(
√

3
2 h) + eh

]

,

M33 = –
3e 1

2

K

2∑

k=1

Bkλ
N+2
k

[eh cos(
√

3
2 )λk – e h

2 cos(
√

3
2 (1 + h))

ehλ2
k – 2λke h

2 cos(
√

3
2 h) + 1

–
cos(

√
3

2 )
λk – eh

]

,

M34 = –
3e 1

2

K

2∑

k=1

Bkλ
N+2
k

[eh sin(
√

3
2 )λk – e h

2 sin(
√

3
2 (1 + h))

ehλ2
k – 2λke h

2 cos(
√

3
2 h) + 1

–
sin(

√
3

2 )
λk – eh

]

,

M41 = –
3
K

2∑

k=1

Bkλ
N+2
k

[
λk – e h

2 cos(
√

3
2 h)

λ2
k – 2λke h

2 cos(
√

3
2 h) + eh

+
eh

1 – ehλk

]

,

M42 = –
3
K

2∑

k=1

Bkλ
N+2
k

e h
2 sin(

√
3

2 h)

λ2
k – 2λke h

2 cos(
√

3
2 h) + eh

,

M43 =
3e 1

2

K

[

(K3 – K1)
(

eh cos

(√
3

2
(1 + 2h)

)

– cos

(√
3

2

)

e–2h
)

+ e
h
2 cos

(√
3

2
(1 + h)

)

– cos

(√
3

2

)

e–h + e
3
2 h cos

(√
3

2
(1 + 3h)

)

– cos

(√
3

2

)

e–3h

+
(

e
h
2 cos

(√
3

2
(1 + h)

)

– cos

(√
3

2

)

e–h
) 2∑

k=1

Bk

λ2
k

(
λ2

k – 1
)

–
2∑

k=1

Bk

λ2
k

[eh cos(
√

3
2 )λk – e h

2 cos(
√

3
2 (1 + h))

ehλ2
k – 2λke h

2 cos(
√

3
2 h) + 1

–
cos(

√
3

2 )
λk – eh

]]

,

M44 =
3e 1

2

K

[

(K3 – K1)
(

eh sin

(√
3

2
(1 + 2h)

)

– sin

(√
3

2

)

e–2h
)

+ e
h
2 sin

(√
3

2
(1 + h)

)

– sin

(√
3

2

)

e–h + e
3
2 h sin

(√
3

2
(1 + 3h)

)

– sin

(√
3

2

)

e–3h

+
(

e
h
2 sin

(√
3

2
(1 + h)

)

– sin

(√
3

2

)

e–h
) 2∑

k=1

Bk

λ2
k

(
λ2

k – 1
)
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–
2∑

k=1

Bk

λ2
k

[eh sin(
√

3
2 )λk – e h

2 sin(
√

3
2 (1 + h))

ehλ2
k – 2λke h

2 cos(
√

3
2 h) + 1

–
sin(

√
3

2 )
λk – eh

]]

,

T1 = –
3
K

[ 2∑

k=1

Bk

N∑

γ =0

λ
γ

k ϕ(hγ ) + ϕ(0)

[

1 + (K3 – K1)eh + e2h +
2∑

k=1

Bkeh

λk – ehλ2
k

]

+ ϕ(1)
2∑

k=1

Bkλ
N+1
k

eh – λk

]

,

T2 = –
3
K

[ 2∑

k=1

Bk

N∑

γ =0

λ
N–γ

k ϕ(hγ ) + ϕ(0)
2∑

k=1

ehBkλ
N+1
k

1 – ehλk
+ ϕ(1)

[

1 + (K3 – K1)e–h

+ e–2h –
2∑

k=1

Bk

λ2
k – ehλk

]]

,

T3 = –
3
K

[ 2∑

k=1

Bk

N∑

γ =0

λ
γ +1
k ϕ(hγ ) + ϕ(0)

[

(K3 – K1)e2h + eh + e3h

+ eh
2∑

k=1

Bk

λ2
k

(
λ2

k – 1
)

+
2∑

k=1

Bkeh

λ2
k – ehλ3

k

]

+ ϕ(1)
2∑

k=1

Bkλ
N+2
k

eh – λk

]

,

T4 = –
3
K

[ 2∑

k=1

Bk

N∑

γ =0

λ
N+1–γ

k ϕ(hγ ) + ϕ(0)
2∑

k=1

ehBkλ
N+2
k

1 – ehλk
+ ϕ(1)

[

(K3 – K1)e–2h

+ e–h + e–3h + e–h
2∑

k=1

Bk

λ2
k

(
λ2

k – 1
)

–
2∑

k=1

Bk

λ3
k – ehλ2

k

]]

,

where |λk| < 1.
Solving system (39), we find d–

1 , d–
2 , d+

1 , d+
2 . Then using (32) and (33), we find d–

0 and d+
0 .

From (21), for β = 0, 1, . . . , N , we deduce

C[β] =
N∑

γ =0

D[β – γ ]ϕ[γ ] +
∞∑

γ =1

D[β + γ ]
[

d–
0 e[γ ] + d–

1 e– [γ ]
2 cos

(√
3

2
[γ ]

)

– d–
2 e– [γ ]

2 sin

(√
3

2
[γ ]

)]

+
∞∑

γ =1

D[N + γ – β]
[

d+
0 e–(1+[γ ])

+ d+
1 e

1+[γ ]
2 cos

(√
3

2
(
1 + [γ ]

)
)

+ d+
2 e

1+[γ ]
2 sin

(√
3

2
(
1 + [γ ]

)
)]

from which, using (14) and taking into account (30) and (31), after some calculations, we
arrive at the expressions for the coefficients C[β], β = 0, 1, . . . , N , which are given in the
statement of the theorem.

Theorem 3 is proved. �

5 Numerical results
In this section, we give some numerical results using Theorem 3.

In numerical examples,we consider the functions f1(x) = ex and f2(x) = sin x. We denote
the corresponding interpolation splines of the form (8) by S(f1; x) and S(f2; x), respectively.
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Figure 1 Graphs of absolute errors |f1(x) – S(f1; x)| for N = 10 (left) and N = 100 (right)

Figure 2 Graphs of absolute errors |f2(x) – S(f2; x)| for N = 10 (left) and N = 100 (right)

Applying S(x) with N = 10 and N = 100 and using Theorem 3 for the functions f1(x)
and f2(x), we obtain the absolute errors. The graphs of the corresponding absolute errors
are displayed in Figs. 1 and 2. We can see that by increasing the value of N the absolute
errors between interpolation splines and the given functions decrease and the order of
convergence of the interpolation formula (8) in these examples is O(h3).
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