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Abstract
This note is concerned with establishing the existence of solutions to a fractional
differential inclusion of a ψ -Caputo-type with a nonlocal integral boundary
condition. Using the concept of the endpoint theorem for ϕ-weak contractive maps,
we investigate the existence of solutions to the proposed problem. An example is
provided at the end to clarify the theoretical result.
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1 Introduction
On different time ranges, fractional calculus has had great impact due to a diversity of
applications that have contributed to several fields of technical sciences and engineering
[1–5]. One of the principal options behind the popularity of the area is that fractional-
order differentiations and integrations are more beneficial tools in expressing real-world
matters than the integer-order ones. Various studies in the literature, on distinct fractional
operators such as the classical Riemann–Liouville, Caputo, Katugamploa, Hadamard, and
Marchaud versions have shown versatility in modeling and control applications across
various disciplines. However, such forms of fractional derivatives may not be able to ex-
plain the dynamic performance accurately, hence, many authors are found to be sorting
out new fractional differentiations and integrations which have a kernel depending upon
a function and this makes the range of definition expanded; see [6–8]. Furthermore, mod-
els based on these fractional operators provide excellent results to be compared with the
integer-order differentiations [9–12].

Recently, the area of fractional-order differential inclusions has become mainly impor-
tant as these equations were found to be of high importance in modeling stochastic and op-
timal controls problems [13]. By using techniques of nonlinear analysis the authors stud-
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ied different aspects such as establishing the existence and the uniqueness of solutions,
the upper and lower solutions, and stability. We refer the reader to [14–25] for various
qualitative studies.

Details from the historical attitude and recent improvements in the area are detailed in
the monograph of Ahmad et al. [26] and the survey of Agarwal et al. [27].

In this paper, we deal with the following ψ-fractional differential inclusions:

cDσ
ψu(y) ∈ Z

(
y, u(y)

)
, y ∈ J = [1, T], 1 < σ ≤ 2, (1.1)

subject to ψ-boundary conditions of the form

u(1) =
m∑

i=0

λiI
�

ψh
(
ηi, u(ηi)

)
, δψu(T) = δψu(1) = 0, (1.2)

where cDσ
ψ is the ψ-Caputo fractional-order derivative, Z : [1, T] × R → P(R) is a mul-

tivalued map, P(R) is the family of all nonempty subsets of R, I�

ψ is the ψ-Riemann–
Liouville fractional integral of order � > 0, 0 < ηi ≤ T , δψ = 1

ψ ′(y)
d
dy , h : [1, T] × R → R is

given continuous function, and λi ∈R, i = 0, 1, 2, . . . , m, are real constants such that

–1 <

(

θ

m∑

i=0

λi
(ψ(ηi))�

Γ (� + 1)

)

≤ 0.

θ will be determined later. We establish novel existence results of solutions for the above
inclusion problem by using the endpoint theorem when the multivalued map is ϕ-weak
contractive.

The result of the present paper unifies several classes of fractional differential inclu-
sion with different boundary conditions. For example by taking ψ(y) = y in (1.1)–(1.2) the
results agree for the classical Caputo fractional inclusions [28] with a combination of clas-
sical nonlocal Riemann–Liouville fractional and Neumann boundary conditions of the
form:

u(1) =
m∑

i=0

λiI
�

1+ h
(
ηi, u(ηi)

)
, u′(T) = u′(1) = 0,

when ψ(y) = ln(y), the results agree with the Caputo–Hadamard fractional inclusions [29]
equipped with classical fractional integral boundary conditions of Hadamard type of the
form

u(1) =
m∑

i=0

λi
HI�

1+ h
(
ηi, u(ηi)

)
, δu(T) = δu(1) = 0,

while the results for generalized Caputo fractional inclusions [30] with nonlocal Katugam-
pola type integral boundary conditions

u(1) =
m∑

i=0

λi
ρI�

1+ h
(
ηi, u(ηi)

)
, δρu(T) = δρu(1) = 0,

follow by taking ψ(y) = yρ/ρ .
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The paper is organized as follows. Section 2 recalls some basic and fundamental defini-
tions and lemmas. In Sect. 3, we prove the existence of a solution to the proposed problem
(1.1)–(1.2). An example is provided to demonstrate the main results in Sect. 4.

2 Preliminary results
Let W = C([1, T],R) be the set of all continuous functions u from [1, T] into R with the
uniform norm

‖u‖ = sup
y∈[1,T]

∣∣u(y)
∣∣.

L1([1, T],R) be the Banach space of measurable functions u : [1, T] →R with the norm

‖u‖1 =
∫ T

1

∣∣u(y)
∣∣dy.

We define ACm
ψ ([1, T],R) by

ACm
ψ

(
[1, T],R

)
=

{
u : [1, T] →R;

(
δm–1
ψ u

)
(y) ∈ AC

(
[1, T],R

)
, δψ =

1
ψ ′(y)

d
dy

}
,

which is supplied with the norm described by

‖u‖Cm
ψ

=
m–1∑

j=0

∥
∥δ

j
ψu(y)

∥
∥∞,

where ψ ∈ Cm([1, T],R), with ψ ′(y) > 0 on [1, T], and

δ
j
ψ = δψδψ . . . δψ︸ ︷︷ ︸

j times

,

and AC([1, T],R) is the space of absolutely continuous functions from [1, T] into R.
Now we introduce some notations and definitions of fractional calculus with respect to

another function and give preliminary results that we will need in our proofs later.

Definition 2.1 ([28]) The ψ-fractional integration operator in the Riemann–Liouville
sense of order σ > 0 with lower limit 1 for an integrable function g is defined by

Iσ
ψg(y) = Γ (σ )–1

∫ y

1
ψ ′(ξ )

(
ψ(y) – ψ(ξ )

)σ–1g(ξ ) dξ , (2.1)

provided the integral exists.
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Definition 2.2 ([7]) The ψ-fractional differentiation operator in the Riemann–Liouville
sense of order σ > 0 of a function g ∈ ACm

ψ ([1, T],R) is defined by

Dσ
ψg(y) = Im–σ

ψ

(
δm
ψ g

)
(y) +

m–1∑

j=0

(δj
ψg)(1)

Γ (j – σ + 1)
(
ψ(y) – ψ(1)

)j–σ

= Γ (m – σ )–1
∫ y

1
ψ ′(ξ )

(
ψ(y) – ψ(ξ )

)m–σ–1
δm
ψ g(ξ ) dξ

+
m–1∑

j=0

(δj
ψg)(1)

Γ (j – σ + 1)
(
ψ(y) – ψ(1)

)j–σ , (2.2)

provided the integral exists, where m = [σ ] + 1, and Γ is the Gamma Euler function.

Definition 2.3 ([6, 7]) The ψ-Caputo differentiation operator of fractional-order σ > 0
for a given g ∈ ACm

ψ ([1, T],R) is given by

cDσ
ψg(y) = Im–σ

ψ

(
δm
ψ g

)
(y)

= Γ (m – 1)–1
∫ y

1
ψ ′(ξ )

(
ψ(y) – ψ(ξ )

)m–σ–1(
δm
ψ g

)
(ξ ) dξ , m = [σ ] + 1,

provided the integral exists. If σ = m ∈N we have

cDσ
ψg(y) =

(
δm
ψ g

)
(y).

Lemma 2.4 ([7]) For σ > 0 and a given function g ∈ ACm
ψ ([1, T],R), we have

Iσ
ψ

cDσ
ψg(y) = g(y) –

m–1∑

j=0

(δj
ψg)(1)

j!
(
ψ(y) – ψ(1)

)j. (2.3)

Particularly, for 0 < σ < 1, we obtain

Iσ
ψ

cDσ
ψg(y) = g(y) – g(1).

We will investigate the existence of solutions to the problem (1.1)–(1.2) with the help of
the following lemma.

Lemma 2.5 Let φ : [1, T] → R be a continuous function, and 1 < σ ≤ 2. Then the ψ-
fractional problem

cDσ
ψu(y) = φ(y), y ∈ [1, T], (2.4)

u(1) =
m∑

i=0

λiI
�

ψh
(
ηi, u(ηi)

)
, δψu(T) = δψu(1) = 0, (2.5)

is solvable, and its solution is given by

u(y) = Iσ
ψφ(y) +

m∑

i=0

λiI
�

ψh
(
ηi, u(ηi)

)
. (2.6)
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Proof Performing the ψ-Riemann–Liouville fractional integration Iσ
ψ to both sides of (2.4)

and making use of Lemma 2.4, we derive

u(y) = λ1 + λ2
(
ψ(y) – ψ(1)

)
+ Iσ

ψφ(y), (2.7)

where λ1, λ2 are real constants. Applying the δψ -differentiation in (2.7) the following equa-
tion is formulated:

(δψu)(y) = λ2 + Iσ–1
ψ φ(y). (2.8)

Using the boundary conditions (δψu)(T) = (δψu)(1) = 0 in (2.8), we get λ2 = 0, then using
the condition u(1) =

∑m
i=0 λiI

�

ψh(ηi, u(ηi)) in (2.7), after inserting λ2 = 0, gives us

λ1 =
m∑

i=0

λiI
�

ψh
(
ηi, u(ηi)

)
. (2.9)

Thus by substituting values of λ1 and λ2 in (2.7), we get the solution (2.6). �

3 Main results
We introduce in this section the function class Ψ of all mappings ϕ : R+ → R

+, ϕ–1(0) =
{0}, and ϕ(z) < z for all z > 0, ϕ(zn) → 0 when zn → 0

Definition 3.1 ([31]) Let W be a complete space endowed with a metric ρ . A multivalued
operator S : W → Pcl,bd(W) is said to be a ϕ-weak contraction if there exists a function
ϕ ∈ Ψ , such that

Hρ(Sz, Sw) ≤ ρ(z, w) – ϕ
(
ρ(z, w)

)

for each z, w ∈ W , where Pcl,bd(W) is a nonempty collection of all closed and bounded
subsets of W , and Hρ(·, ·) denotes for the Hausdorff metric on Pcl,bd given as

Hρ(Q, D) := max
{

sup
q∈Q

ρ(q, D), sup
d∈D

ρ(d, Q)
}

,

where ρ(Q, d) = infq∈Q ρ(q, d) and ρ(q, D) = infd∈D ρ(q, d). We call an element z ∈W a fixed
point of S, if z ∈ Sz, and an endpoint or stationary point if Sz = {z}. The set of all fixed points
of S is denoted by Fix(S), and End(S) stands for the set of all endpoints of S. We say that S
fulfills the approximate endpoint property if infz∈W supw∈Sz ρ(z, w) = 0.

Lemma 3.2 ([31]) Let W be a complete space endowed with a metric ρ , and S : W →Pcl,bd

be a multivalued ϕ-weak contractive. If S verifies the approximate endpoint property, then
S has an endpoint. Moreover, we have End(S) = Fix(S).

Definition 3.3 A function u ∈ AC2
ψ ([1, T],R) is called a solution of the inclusion problem

(1.1) if there exists a function l ∈ L1([1, T],R) with l(y) ∈ Z(y, u(y)), a.e. y ∈ [1, T], such that
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u satisfies conditions (1.2) and

u(y) = Iσ
ψ l(y) +

m∑

i=0

λiI
�

ψh
(
ηi, u(ηi)

)
, y ∈ [1, T], (3.1)

where ψ ∈ C2(J ,R) such that ψ ′ > 0 on [1, T].

We set an operator L : W →P(W) associated with the problem (1.1)–(1.2) as

L(u) :

{

f ∈W : f (y) = Iσ
ψ l(y) +

m∑

i=0

λiI
�

ψh
(
ηi, u(ηi)

)
, l ∈ SZ,u

}

, (3.2)

where SZ,u is the set of selections for Z by

SZ,u =
{

l ∈ L1([1, T],R
)
, l(y) ∈ Z

(
y, u(y)

)
, a.e. y ∈ [1, T]

}
.

Theorem 3.4 Let ϕ ∈ Ψ . Assume that the following hypotheses hold:
(H 1) Z : [1, T] ×R →Pcp(R) is a Carathéodory bounded multivalued map, where

Pcp(R) is the collection of all nonempty compact subsets of R.
(H 2) For u, ū ∈ R, we have

Hd
(
Z(y, u), Z(y, ū)

) ≤ Γ (σ + 1)
(ψ(T))σ

(∣∣u(y) – ū(y)
∣
∣ – ϕ

(∣∣u(y) – ū(y)
∣
∣)).

(H 3) There exists 0 < θ < 1, such that

∣∣h(y, u) – h(y, ū)
∣∣ ≤ θ |u – ū|.

If Z verifies the approximate endpoint property, then the inclusion problem (1.1)–(1.2) has
a solution on [1, T], provided that

–1 <

(

θ

m∑

i=0

λi
(ψ(ηi))�

Γ (� + 1)

)

≤ 0.

Proof The proof will be given in two steps, where we show that L : W → P(W) given in
(3.2) has an endpoint.

Step 1: L is closed multivalued of P(W).
Let un ∈W such that un → u, and (fn)n≥1 ∈L(u) be a sequence such that fn → f ∗ when-

ever n → +∞. Then there exists a ln ∈ SZ,un such that, for each y ∈ [1, T], we get

fn(y) = Iσ
ψ ln(y) +

m∑

i=0

λiI
�

ψh
(
ηi, un(ηi)

)
.

Since Z has compact values, the sequence (ln)n≥1 has a sub-sequence, still denoted by
(ln)n≥1, which converges strongly to some l ∈ L1([1, T],R), and hence l ∈ SZ,u. For every
ν ∈ Z(y, u(y)), we have

∣∣ln(y) – l(y)
∣∣ ≤ ∣∣ln(y) – ν

∣∣ +
∣∣ν – l(y)

∣∣,
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which implies

∣
∣ln(y) – l(y)

∣
∣ ≤ Hd

(
Z(y, un), Z(y, u)

) ≤ Γ (σ + 1)
(ψ(T))σ

(‖un – u‖ – ϕ
(‖un – u‖)).

Since ‖un – u‖ → 0 then ϕ(‖un – u‖) → 0 and h is a continuous function then, for each
y ∈ [1, T],

fn(y) → f ∗(y) = Iσ
ψ l(y) +

m∑

i=0

λiI
�

ψh
(
ηi, u(ηi)

)
.

So f ∗ ∈L and L is closed multivalued.
Step 2: L is ϕ-weak contraction multivalued, i.e. for u, ū ∈W , we show

Hρ

(
L(u),L(ū)

) ≤ ‖u – ū‖ – ϕ
(‖u – ū‖).

Let u, ū ∈ C(J ,R) and f1 ∈L(u). Then, there exists l1(y) ∈ SZ,u such that, for each y ∈ [1, T],

f1(y) = Iσ
ψ l1(y) +

m∑

i=0

λiI
�

ψh
(
ηi, u(ηi)

)
.

From (H 2) it follows that

Hd
(
Z(y, u), Z(y, ū)

) ≤ Γ (σ + 1)
(ψ(T))σ

(∣∣u(y) – ū(y)
∣
∣ – ϕ

(∣∣u(y) – ū(y)
∣
∣)).

Thus, there exists w ∈ Z(y, ū(y)) provided that

∣∣l1(y) – w
∣∣ ≤ Γ (σ + 1)

(ψ(T))σ
(∣∣u(y) – ū(y)

∣∣ – ϕ
(∣∣u(y) – ū(y)

∣∣)), y ∈ J .

Define U : [1, T] →P(R) given by

U(y) =
{

w ∈R :
∣∣l1(y) – w

∣∣ ≤ Γ (σ + 1)
(ψ(T))σ

(∣∣u(y) – ū(y)
∣∣ – ϕ

(∣∣u(y) – ū(y)
∣∣))

}
.

Since U(y)∩Z(y, ū) is measurable, then we can find a measurable selection l2(y) for U(y)∩
Z(y, ū). Thus l2(y) ∈ Z(y, ū(y)), and, for each y ∈ [1, T], we have

∣∣l1(y) – l2(y)
∣∣ ≤ Γ (σ + 1)

(ψ(T))σ
(∣∣u(y) – ū(y)

∣∣ – ϕ
(∣∣u(y) – ū(y)

∣∣)).

We define f2(y) for each y ∈ [1, T], as follows:

f2(y) = Iσ
ψ l2(y) +

m∑

i=0

λiI
�

ψh
(
ηi, ū(ηi)

)
.
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Then for y ∈ [1, T]

∣
∣f1(y) – f2(y)

∣
∣ ≤ 1

Γ (σ )

∫ y

1

∣
∣(ψ(y) – ψ(ξ )

)σ–1
ψ ′(ξ )

∣
∣
∣
∣l1(ξ ) – l2(ξ )

∣
∣dξ

+
m∑

i=0

λiI
�

ψ

∣∣h
(
ηi, u(ηi)

)
– h

(
ηi, ū(ηi)

)∣∣

≤ 1
Γ (σ )

∫ y

1

∣
∣(ψ(y) – ψ(ξ )

)σ–1
ψ ′(ξ )

∣
∣dξ

× Γ (σ + 1)
(ψ(T))σ

(∣∣u(y) – ū(y)
∣∣ – ϕ

(∣∣u(y) – ū(y)
∣∣))

+ θ

m∑

i=0

λi
(ψ(ηi))�

Γ (� + 1)
∣
∣u(ηi) – ū(ηi)

∣
∣

≤ (ψ(T))σ

Γ (σ + 1)
Γ (σ + 1)
(ψ(T))σ

(‖u – ū‖ – ϕ
(‖u – ū‖)

+ θ

m∑

i=0

λi
(ψ(ηi))�

Γ (� + 1)
‖u – ū‖

≤ ‖u – ū‖ – ϕ
(‖u – ū‖).

Therefore,

‖f1 – f2‖ ≤ ‖u – ū‖ – ϕ
(‖u – ū‖).

It follows that Hρ(L(u),L(ū)) ≤ ‖u(y) – ū(y)‖ – ϕ(‖u(y) – ū(y)‖), for all u, ū ∈ W . By hy-
pothesis, since the operator Z has an approximate endpoint property, then by Lemma 3.2
L has an endpoint u∗ ∈ W , i.e. Lu∗ = {u∗}, which is also a fixed point. Consequently, the
problem (1.1)–(1.2) has a solution u∗ and the proof is now complete. �

4 An example
Let W = C([1, e],R) be the space of all continuous functions defined on [1, e] and u ∈ W .
Consider the following fractional BVP of differential inclusion:

⎧
⎨

⎩

cDσ
ψu(y) ∈ Z(y, u(y)), y ∈ [1, e], 1 < σ ≤ 2,

u(1) = 1
4 I

1
3
ψ h( 3

4 , u( 3
4 )) – 2

3 I
1
3
ψ h( 1

4 , u( 1
4 )), δψu(e) = δψu(1) = 0,

(4.1)

where h(y, u) = u
ey(u+1) , and ψ(y) = y3. Obviously ψ is differentiable and an increasing func-

tion on [1, e] with ψ ′(y) = 3y2, which is a continuous function on [1, e]. Here Z : [1, e]×R →
P(R) is a multivalued map given by

Z
(
y, u(y)

)
=

[
0,

sin(u)
(1 + y)

]
. (4.2)
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Selecting ϕ(x) = x
2 . It is clear that the function ϕ ∈ Ψ , indeed ϕ(x) < x for all x ∈ [1, e],

ϕ–1({0}) = 0, ϕ(xn) → 0 when xn → 0

Hρ

(
Z(y,ϑ), Z(y, ϑ̄)

) ≤
∣∣
∣∣
sin(ϑ) – sin(ϑ̄)

(1 + y)

∣∣
∣∣

≤ 1
2
∣
∣ϑ(y) – ϑ̄(y)

∣
∣

<
Γ (σ + 1)

e3

(‖ϑ – ϑ̄‖ – ϕ
(‖ϑ – ϑ̄‖)).

Hence the condition (H 2) holds for ϑ , ϑ̄ ∈R a.e σ ∈ (1, 2]. On the other hand, we have

∣∣h(y,ϑ) – h(y, ϑ̄)
∣∣ ≤ 1

ey

∣
∣∣
∣

ϑ

ϑ + 1
–

ϑ̄

ϑ̄ + 1

∣
∣∣
∣

=
1
ey

|ϑ – ϑ̄ |
(ϑ + 1)(1 + ϑ̄)

≤ 1
e
|ϑ – ϑ̄ |

≤ θ |ϑ – ϑ̄ |.

Therefore condition (H 3) holds. With the given data, it is found that

(

1 + θ

m∑

i=0

λi
(ψ(ηi))�

Γ (� + 1)

)

= 1 + e
( 3√3

16Γ ( 4
3 )

–
1

6Γ ( 4
3 )

)
,

with

–1 < e
( 3√3

16Γ ( 4
3 )

–
1

6Γ ( 4
3 )

)
≈ –0.2329498 < 0.

We define an operator L : W →P(W)

L(u) =
{

g ∈W : there exists l ∈ SZ,u, g(y) = u(y), for all y ∈ [1, e]
}

,

where

u(y) = Iσ
ψ l(y) +

m∑

i=0

λiI
�

ψh
(
ηi, u(ηi)

)
.

Note that 0 is a unique endpoint of L, i.e. L(0) = {0}, which implies that supu∈L(0) ‖u‖ = 0,
thus infu∈W supg∈L(u) ‖ϑ – g‖ = 0. The operator L as a consequence has the approximate
endpoint property. Therefore all conditions of Theorem 3.4 are satisfied, then the inclu-
sion problem (4.1) has at least one solution on [1, e].

5 Conclusion
In the present work, the endpoint theorem for ϕ-weak contractive maps was used to es-
tablish the existence results of solutions for fractional differential inclusion which involves
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the ψ-Caputo fractional derivative. Systems of fractional differential inclusions with the
ψ-Caputo derivative provide more adaptable models, in the sense that by a proper choice
of the function ψ , hidden features of real-world phenomena could be extracted. An illus-
trative example is presented to point out the applicability of our main results. Our results
are not only new in the given configuration but also correspond to some new results as-
sociated with the specific choice of the function ψ involved in the given problem.
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