
Sun Advances in Difference Equations        (2020) 2020:426 
https://doi.org/10.1186/s13662-020-02812-9

R E S E A R C H Open Access

Some Hermite–Hadamard type inequalities
for generalized h-preinvex function via local
fractional integrals and their applications
Wenbing Sun1*

*Correspondence:
swb0520@163.com
1School of Science, Shaoyang
University, Shaoyang 422000, P.R.
China

Abstract
The concept of generalized h-preinvex function on real linear fractal sets Rβ

(0 < β ≤ 1) is introduced, which extends generalized preinvex, generalized s-preinvex,
generalized Godunova–Levin preinvex, and generalized P-preinvex functions. In
addition, some Hermite–Hadamard type inequalities for these classes of functions
involving local fractional integrals are established. Lastly, the upper bounds for
generalized expectation, generalized rth moment, and generalized variance of a
continuous random variable are given to illustrate the applications of the obtained
results.
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1 Introduction
We recall the well-known Hermite–Hadamard inequality for convex function.

Theorem 1 ([1], Hermite–Hadamard’s inequality) Let g : I ⊆ R → R be a convex function
and c, d ∈ I with c < d, then

g
(

c + d
2

)
≤ 1

d – c

∫ d

c
g(x) dx ≤ g(c) + g(d)

2
. (1.1)

Most of the research on this class of inequalities is related to convexity. With the im-
provement of the definition of convexity, some new results for Hermite–Hadamard’s in-
equality are obtained. We refer the readers to [2–7]. We firstly recall the following well-
known definitions of convexity.

Definition 1 ([8, 9]) Let C ⊆ Rn. The set C is said to be invex with respect to η : Rn ×Rn →
Rn if

x, y ∈ C, 0 ≤ τ ≤ 1 ⇒ y + τη(x, y) ∈ C.
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Definition 2 ([8, 9]) Let C ⊆ Rn be an invex set with respect to η : Rn × Rn → Rn. The
function g : C → R is called preinvex function if

g
(
y + τη(x, y)

) ≤ τg(x) + (1 – τ )g(y), (1.2)

where x, y ∈ C, 0 ≤ τ ≤ 1.

Definition 3 ([5]) Let h : J → R, where (0, 1) ⊆ J , be an interval in R, and let C be an invex
set with respect to η(·, ·). We say that g : C → R is an h-preinvex function with respect to
η(·, ·) if for all x, y ∈ C and τ ∈ (0, 1) we have

g
(
y + τη(x, y)

) ≤ h(τ )g(x) + h(1 – τ )g(y). (1.3)

If inequality (1.3) is reversed, then g is said to be h-preconcave with respect to η(·, ·).

Remark 1 Obviously, if h(τ ) = τ , then h-preinvex reduces to preinvex; if h(τ ) = τ s, s ∈
(0, 1), then h-preinvex reduces to s-preinvex; if h(τ ) = 1

τ
, then h-preinvex reduces to Q-

preinvex; if h(τ ) = 1, then h-preinvex reduces to P-preinvex.

In [10], Mohan and Neogy proposed the Condition C for bifunction η(·, ·).

Condition C Let I ⊂ R be an invex set, for every x, y ∈ I , τ ∈ [0, 1], bifunction η(·, ·) satis-
fies

η
(
y, y + τη(x, y)

)
= –τη(x, y),

η
(
x, y + τη(x, y)

)
= (1 – τ )η(x, y).

From Condition C, we know that the following equality holds:

η
(
y + τ2η(x, y), y + τ1η(x, y)

)
= (τ2 – τ1)η(x, y),

where x, y ∈ I , τ1, τ2 ∈ [0, 1].
Recently, Riemann–Liouville and Katugampola fractional derivatives and integrals were

widely used in various research works [3, 11–13]. Especially, in order to explain the phe-
nomenon of continuous but nowhere differentiable function, Yang [14, 15] introduced
the definition of local fractional calculus. Local fractional calculus theory is widely used
in many fields of science and physics [16–19]. Based on Yang’s theory on fractal sets, some
researchers have extended the definitions of convexity to study Hermite–Hadamard type
inequalities [19–29].

In [22] and [23], Sun introduced generalized preinvex function and generalized s-
preinvex function on fractal sets, respectively.

Definition 4 ([22]) Let C ⊆ Rn be an invex set with respect to η : Rn × Rn → Rn. The
function g : C → Rβ is called generalized preinvex function if, for every x, y ∈ C, 0 ≤ τ ≤ 1,
we have

g
(
y + τη(x, y)

) ≤ τβg(x) + (1 – τ )βg(y). (1.4)
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Definition 5 ([23]) Let C ⊆ Rn be an invex set with respect to η : Rn ×Rn → Rn. A function
g : C → Rβ is called generalized s-preinvex function if, for every x, y ∈ C, s ∈ (0, 1], 0 ≤ τ ≤
1, we have

g
(
y + τη(x, y)

) ≤ τ sβg(x) + (1 – τ )sβg(y). (1.5)

In [25], Vivas et al. proposed generalized h-convex function. Sun [26] introduced an-
other form of this definition with β-type as follows.

Definition 6 Let h : J → R be a nonnegative function, h � ≡0, and g : I → Rβ (0 < β ≤ 1)
be a function of fractal dimension β . We say that g is a generalized h-convex function on
fractal sets if g is nonnegative (g ≥ 0β ) and for all x, y ∈ I and τ ∈ (0, 1) we have

g
(
τx + (1 – τ )y

) ≤ hβ (τ )g(x) + hβ (1 – τ )g(y). (1.6)

Combining the definitions of generalized preinvex function and generalized h-convex
function, the main purpose of this paper is to introduce the concept of generalized h-
preinvex function on fractal sets, which extends generalized h-convex function, general-
ized preinvex function, and generalized s-preinvex function. And we derive the definitions
of generalized Godunova–Levin preinvex function and generalized P-preinvex function,
which are special cases of generalized h-preinvex function. Therefore, this definition is
a great generalization of convexity. Then, some generalized Hermite–Hadamard type in-
equalities for generalized h-preinvex function are established under certain conditions.
Some upper bounds for generalized expectation, generalized rth moment, and general-
ized variance of a continuous random variable are discussed, which can be obtained from
previous results in this paper.

2 Preliminaries
Using Yang’s idea [14, 15], recall Yang’s fractional sets Ωβ as follows, where the set Ω is
called base set of fractional set, and β denotes the dimension of cantor set, 0 < β ≤ 1:

The β-type set of integers Zβ is defined by

Zβ =
{

0β ,±1β ,±2β ,±3β , . . .
}

;

The β-type set of rational numbers Qβ is defined by

Qβ =
{

mβ =
(

r
s

)β

: r, s ∈ Z, s �= 0
}

;

The β-type set of irrational numbers �β is defined by

�β =
{

mβ �=
(

r
s

)β

: r, s ∈ Z, s �= 0
}

;

The β-type set of the real line numbers Rβ is defined by

Rβ = Qβ ∪ �β .
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If aβ , bβ , cβ ∈ Rβ , then
(1) aβ + bβ ∈ Rβ , aβbβ ∈ Rβ ,
(2) aβ + bβ = bβ + aβ = (a + b)β = (b + a)β ,
(3) aβ + (bβ + cβ ) = (a + b)β + cβ ,
(4) aβbβ = bβaβ = (ab)β = (ba)β ,
(5) aβ(bβcβ ) = (aβbβ )cβ ,
(6) aβ(bβ + cβ ) = aβbβ + aβcβ ,
(7) aβ + 0β = 0β + aβ = aβ and aβ1β = 1βaβ = aβ ,
(8) For each aβ ∈ Rβ , its inverse element (–a)β may be written as –aβ ; for each

bβ ∈ Rβ \ 0β , its inverse element (1/b)β may be written as 1β/bβ but not as 1/bβ [29],
(9) aβ = bβ if and only if a = b,
(10) aβ < bβ if and only if a < b.
The definitions of the local fractional derivative and local fractional integral on Rβ are

stated as follows.

Definition 7 ([14, 15]) A non-differentiable function g : R → Rβ , x → g(x) is called local
fractional continuous at x0 if, for any ε > 0, there exists δ > 0 such that

∣∣g(x) – g(x0)
∣∣ < εβ

holds for |x – x0| < δ, where ε, δ ∈ R. If g(x) is local fractional continuous on (c, d), we
denote g(x) ∈ Cβ (c, d).

Note that the functions are local fractional continuous, then the functions are also local
fractional derivable and integrable.

Definition 8 ([14, 15]) The local fractional derivative of g(x) of order β at x = x0 is defined
by

g(β)(x0) =
dβg(x)

dxβ

∣∣∣∣
x=x0

= lim
x→x0

Γ (β + 1)(g(x) – g(x0))
(x – x0)β

.

Dβ (c, d) is called β-local fractional derivative set. If there exists g((k+1)β)(x) =
(n+1) times︷ ︸︸ ︷
Dα

x · · ·Dα
x g(x) for any x ∈ I ⊆ R, then we denote g ∈ D(n+1)β(I), where n = 0, 1, 2, . . . .

Definition 9 ([14, 15]) Let g(x) ∈ Cβ [c, d]. The local fractional integral of function g(x) of
order β is defined by

cI(β)
d g(x) =

1
Γ (β + 1)

∫ d

c
g(τ )(dτ )β =

1
Γ (β + 1)

lim

t→0

N–1∑
j=0

g(τj)(
τj)β ,

where c = τ0 < τ1 < · · · < τN–1 < τN = d, [τj, τj+1] is a partition of the interval [c, d], 
τj =
τj+1 – τj, 
τ = max{
τ0,
τ1 · · ·
τN–1}.

Note that bI(β)
b g(x) = 0, and cI(β)

d g(x) = –dI(β)
c g(x) if c < d. We denote g(x) ∈ I(β)

x [c, d] if
there exists cI(β)

x g(x) for any x ∈ [c, d].
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Lemma 1 ([14, 15])
(1) Suppose that u(x) = v(β)(x) ∈ Cβ [c, d], then

cI(β)
d u(x) = v(d) – v(c).

(2) Suppose that u(x), v(x) ∈ Dα[c, d] and u(β)(x), v(β)(x) ∈ Cβ [c, d], then

cI(β)
d u(x)v(β)(x) = u(x)v(x)|dc – cI(β)

d u(β)(x)v(x).

Lemma 2 ([14, 15])

dβxsβ

dxβ
=

Γ (1 + sβ)
Γ (1 + (s – 1)β)

x(s–1)β ;

1
Γ (β + 1)

∫ d

c
xsβ(dx)β =

Γ (1 + sβ)
Γ (1 + (s + 1)β)

(
d(s+1)β – c(s+1)β)

, s > 0.

Lemma 3 ([14, 15])

cI(β)
d 1β =

(d – c)β

Γ (1 + β)
.

We recall the generalized beta function on fractal sets:

Bβ (x, y) =
1

Γ (1 + β)

∫ 1

0
τ (x–1)β(1 – τ )(y–1)β(dτ )β , x > 0, y > 0.

3 Main results
In order to establish some new Hermite–Hadamard type inequalities, we firstly introduce
the definition of generalized h-preinvex function on fractal sets. The symbol R+ denotes
an interval (0,∞) in the later sections.

Definition 10 Let h : J → R be a nonnegative mapping and hβ � ≡ 0β , where (0, 1) ⊆ J , be
an interval in R, and let C be an invex set with respect to η(·, ·). We say that g : C → Rβ

(0 < β ≤ 1) is a generalized h-preinvex function with respect to η(·, ·) if, for all x, y ∈ C and
τ ∈ (0, 1), we have

g
(
y + τη(x, y)

) ≤ hβ (τ )g(x) + hβ (1 – τ )g(y). (3.1)

If inequality (3.1) is reversed, then f is said to be generalized h-preconcave with respect
to η(·, ·).

Remark 2 Obviously, if β = 1, then generalized h-preinvex reduces to classical h-
preinvex; if hβ (τ ) = τβ , then generalized h-preinvex reduces to generalized preinvex; and
if hβ (τ ) = τ sβ , where s ∈ (0, 1), then generalized h-preinvex is just generalized s-preinvex; if
η(x, y) = x – y, then nonnegative generalized h-preinvex reduces to generalized h-convex.

If hβ (τ ) = ( 1
τ

)β and hβ (τ ) = 1β , we can derive generalized Godunova–Levin preinvex
functions and generalized P-preinvex functions on fractal sets, respectively.
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Definition 11 A function g : C → Rβ (0 < β ≤ 1) is said to be a generalized Godunova–
Levin preinvex function with respect to η(·, ·) if, for all x, y ∈ C and τ ∈ (0, 1), we have

g
(
y + τη(x, y)

) ≤ g(x)
τβ

+
g(y)

(1 – τ )β
. (3.2)

Definition 12 A function g : C → Rβ (0 < β ≤ 1) is said to be a generalized P- preinvex
function with respect to η(·, ·) if, for all x, y ∈ C and τ ∈ [0, 1], we have

g
(
y + τη(x, y)

) ≤ g(x) + g(y). (3.3)

Lemma 4 Let g be a generalized h-preinvex function with respect to η(·, ·), then for any
x ∈ [c, c + η(b, c)], we have

g
(
2c + η(b, c) – x

) ≤ [
hβ (τ ) + hβ (1 – τ )

][
g(c) + g(b)

]
– g(x). (3.4)

Proof For any x ∈ [c, c + η(b, c)], letting x = c + τη(b, c), τ ∈ [0, 1], then

g
(
2c + η(b, c) – x

)
= g

(
c + (1 – τ )η(b, c)

)
≤ hβ (τ )g(c) + hβ (1 – τ )g(b)

=
[
hβ (τ ) + hβ (1 – τ )

][
g(c) + g(b)

]
–

[
hβ (τ )g(b) + hβ (1 – τ )g(c)

]
≤ [

hβ (τ ) + hβ (1 – τ )
][

g(c) + g(b)
]

– g
(
c + τη(b, c)

)
=

[
hβ (τ ) + hβ (1 – τ )

][
g(c) + g(b)

]
– g(x). �

Theorem 2 Let g : I → Rβ
+ be a generalized h-preinvex function with c < c+η(b, c), h( 1

2 ) �= 0,
and u : [c, c + η(b, c)] → Rβ be a nonnegative, integrable function and symmetric about
c + 1

2η(b, c), gu ∈ I(β)
x [c, c + η(b, c)]. If η satisfies Condition C, then

1β

2βhβ ( 1
2 )

g
(

2c + η(b, c)
2

)
cI(β)

c+η(b,c)u(x)

≤ cI(β)
c+η(b,c)g(x)u(x)

≤ g(c) + g(b)
2β

[
hβ (τ ) + hβ (1 – τ )

]
cI(β)

c+η(b,c)u(x). (3.5)

Proof Since g is a generalized h-preinvex function on [c, c + η(b, c)] and u is nonnegative,
integrable, and symmetric about c + 1

2η(b, c), then

1β

2βhβ ( 1
2 )

g
(

2c + η(b, c)
2

)
cI(β)

c+η(b,c)u(x)

=
1β

2βhβ ( 1
2 )

1
Γ (1 + β)

∫ c+η(b,c)

c
g
(

2c + η(b, c)
2

)
u(x)(dx)β

=
1β

2βhβ ( 1
2 )

1
Γ (1 + β)

∫ c+η(b,c)

c
g
(

2c + η(b, c) – x + x
2

)
u(x)(dx)β

≤ 1β

2βhβ ( 1
2 )

1
Γ (1 + β)

∫ c+η(b,c)

c
hβ

(
1
2

)(
f
(
2c + η(b, c) – x

)
+ g(x)

)
u(x)(dx)β
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=
1β

2β

[
1

Γ (1 + β)

∫ c+η(b,c)

c
g
(
2c + η(b, c) – x

)
u(x)(dx)β

+
1

Γ (1 + β)

∫ c+η(b,c)

c
g(x)u(x)(dx)β

]

=
1β

2β

[
1

Γ (1 + β)

∫ c+η(b,c)

c
g
(
2c + η(b, c) – x

)
u
(
2c + η(b, c) – x

)
(dx)β

+
1

Γ (1 + β)

∫ c+η(b,c)

c
g(x)u(x)(dx)β

]

=
1

Γ (1 + β)

∫ c+η(b,c)

c
g(x)u(x)(dx)β = cI(β)

c+η(b,c)g(x)u(x). (3.6)

By Lemma 4, we obtain

1
Γ (1 + β)

∫ c+η(b,c)

c
g(x)u(x)(dx)β

=
1β

2β

[
1

Γ (1 + β)

∫ c+η(b,c)

c
g
(
2c + η(b, a) – x

)
u
(
2c + η(b, c) – x

)
(dx)β

+
1

Γ (1 + β)

∫ c+η(b,c)

c
g(x)u(x)(dx)β

]

=
1β

2β

[
1

Γ (1 + β)

∫ c+η(b,c)

c
f
(
2c + η(b, c) – x

)
u(x)(dx)β

+
1

Γ (1 + β)

∫ c+η(b,c)

c
g(x)u(x)(dx)β

]

≤ 1β

2β

{
1

Γ (1 + β)

∫ c+η(b,c)

c

[(
hβ (τ ) + hβ (1 – τ )

)(
g(c) + g(b)

)
– g(x)

]
u(x)(dx)β

+
1

Γ (1 + β)

∫ c+η(b,c)

c
g(x)u(x)(dx)β

}

=
1β

2β

1
Γ (1 + β)

∫ c+η(b,c)

c

[
hβ (τ ) + hβ (1 – τ )

][
g(c) + g(b)

]
u(x)(dx)β

=
[hβ (τ ) + hβ (1 – τ )][g(c) + g(b)]

2β

1
Γ (1 + β)

∫ c+η(b,c)

c
u(x)(dx)β . (3.7)

Combining (3.6) and (3.7), this completes the proof. �

Remark 3 In Theorem 2, if we take β = 1, then it reduces to Theorem 3.3 given in Ref.
[6].

Theorem 3 Let g : I → Rβ
+, ψ : I → Rβ

+ be a generalized h1-preinvex function and a gener-
alized h2-preinvex function respectively with c < c + η(b, c), gψ ∈ I(β)

x [c, b], hβ
1 hβ

2 ∈ I(β)
x [c, b],

then

1β

ηβ (b, c) cI(β)
c+η(b,c)g(x)ψ(x) ≤ M(c, b)0I(β)

1 hβ
1 (τ )hβ

2 (τ ) + N(c, b)0I(β)
1 hβ

1 (τ )hβ
2 (1 – τ ), (3.8)

where M(c, b) = g(c)ψ(c) + g(b)ψ(b) and N(c, b) = g(c)ψ(b) + g(b)ψ(c).
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Proof Since g is a nonnegative generalized h1-preinvex function and ψ is a nonnegative
generalized h2-preinvex function, for all τ ∈ [0, 1], we have

g
(
c + τη(b, c)

)
ψ

(
c + τη(b, c)

)
≤ hβ

1 (τ )hβ
2 (τ )g(b)ψ(b) + hβ

1 (τ )hβ
2 (1 – τ )g(b)ψ(c)

+ hβ
2 (τ )hβ

1 (1 – τ )g(c)ψ(b) + hβ
1 (1 – τ )hβ

2 (1 – τ )g(c)ψ(c).

Integrating both sides of the above inequality with respect to τ over [0, 1], letting c +
τη(b, c) = x, we get

1β

ηβ (b, c) cI(β)
c+η(b,c)g(x)ψ(x)

=
1

Γ (1 + β)

∫ 1

0
g
(
c + τη(b, c)

)
ψ

(
c + τη(b, c)

)
(dτ )β

≤ [
g(c)ψ(c) + g(b)ψ(b)

] 1
Γ (1 + β)

∫ 1

0
hβ

1 (t)hβ
2 (τ )(dτ )β

+
[
g(c)ψ(b) + g(b)ψ(c)

] 1
Γ (1 + β)

∫ 1

0
hβ

1 (τ )hβ
2 (1 – τ )(dτ )β

=
[
g(c)ψ(c) + g(b)ψ(b)

]
0I(β)

1 hβ
1 (τ )hβ

2 (τ ) +
[
g(c)ψ(b) + g(b)ψ(c)

]
0I(β)

1 hβ
1 (τ )hβ

2 (1 – τ ).

This completes the proof. �

Remark 4 In Theorem 3, if we take β = 1, then it reduces to Theorem 3.5 given in Ref. [6].

Corollary 1 In Theorem 3, if we take η(b, c) = b – c, then inequality (3.8) reduces to the
following inequality:

1β

(b – c)β cI(β)
b g(x)ψ(x) ≤ M(c, b)0I(β)

1 hβ
1 (τ )hβ

2 (τ ) + N(c, b)0I(β)
1 hβ

1 (τ )hβ
2 (1 – τ ). (3.9)

Remark 5 Inequality (3.9) is just the result of Theorem 9 in Ref. [26].

Corollary 2 In Corollary 1, if we take hβ
1 (τ ) = hβ

2 (τ ) = τβ , then inequality (3.9) reduces to
the following inequality for generalized convex functions:

1β

(b – c)β cI(β)
b g(x)ψ(x) ≤ M(c, b)

Γ (1 + 2β)
Γ (1 + 3β)

+ N(c, b)Bβ(2, 2), (3.10)

where Bβ (x, y) denotes the generalized gamma function on fractal sets.

Proof By hβ
1 (τ ) = hβ

2 (τ ) = τβ , we have

0I(β)
1 hβ

1 (τ )hβ
2 (τ ) =

1
Γ (1 + β)

∫ 1

0
τ 2β (dτ )β =

Γ (1 + 2β)
Γ (1 + 3β)

,

0I(β)
1 hβ

1 (τ )hβ
2 (1 – τ ) =

1
Γ (1 + β)

∫ 1

0
τβ (1 – τ )β (dτ )β = Bβ (2, 2).

This completes the proof. �
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Theorem 4 Let g : I → Rβ
+, ψ : I → Rβ

+ be a generalized h1-preinvex function and a gener-
alized h2- preinvex function respectively with c < c + η(b, c), gψ ∈ I(β)

x [c, b], hβ
1 hβ

2 ∈ I(β)
x [c, b],

h1( 1
2 ) �= 0, h2( 1

2 ) �= 0. If η satisfies Condition C, then

1β

2βhβ
1 ( 1

2 )hβ
2 ( 1

2 )Γ (1 + β)
g
(

c +
1
2
η(b, c)

)
ψ

(
c +

1
2
η(b, c)

)
–

1β

ηβ (b, c) cI(β)
c+η(b,c)g(x)ψ(x)

≤ M(c, b)0I(β)
1 hβ

1 (τ )hβ
2 (1 – τ ) + N(c, b)0I(β)

1 hβ
1 (τ )hβ

2 (τ ), (3.11)

where M(c, b) and N(c, b) are the same as Theorem 3.

Proof Since g is a nonnegative generalized h1-preinvex function and ψ is a nonnegative
generalized h2-preinvex function, for all τ ∈ [0, 1], using Condition C, we have

g
(

c +
1
2
η(b, c)

)
ψ

(
c +

1
2
η(b, c)

)

= g
(

c + (1 – τ )η(b, c) +
1
2
η
(
c + τη(b, c), c + (1 – τ )η(b, c)

))

× ψ

(
c + (1 – τ )η(b, c) +

1
2
η
(
c + τη(b, c), c + (1 – τ )η(b, c)

))

≤ hβ
1

(
1
2

)
hβ

2

(
1
2

)[
g
(
c + τη(b, c)

)
+ g

(
c + (1 – τ )η(b, c)

)]

× [
ψ

(
c + τη(b, c)

)
+ ψ

(
c + (1 – τ )η(b, c)

)]

= hβ
1

(
1
2

)
hβ

2

(
1
2

)[
g
(
c + τη(b, c)

)
ψ

(
c + τη(b, c)

)

+ g
(
c + (1 – τ )η(b, c)

)
ψ

(
c + (1 – τ )η(b, c)

)
+ g

(
c + τη(b, c)

)
ψ

(
c + (1 – τ )η(b, c)

)
+ g

(
c + (1 – τ )η(b, c)

)
ψ

(
c + τη(b, c)

)]

≤ hβ
1

(
1
2

)
hβ

2

(
1
2

)[
g
(
c + τη(b, c)

)
ψ

(
c + τη(b, c)

)

+ g
(
c + (1 – τ )η(b, c)

)
ψ

(
c + (1 – τ )η(b, c)

)]

+ hβ
1

(
1
2

)
hβ

2

(
1
2

){[
hβ

1 (τ )hβ
2 (1 – τ ) + hβ

1 (1 – τ )hβ
2 (τ )

]
M(c, b)

+
[
hβ

1 (τ )hβ
2 (τ ) + hβ

1 (1 – τ )hβ
2 (1 – τ )

]
N(c, b)

}
.

Integrating both sides of the above inequality with respect to t over [0, 1], letting c +
τη(b, c) = x, we get

g(c + 1
2η(b, c))ψ(c + 1

2η(b, c))
Γ (1 + β)

–
2βhβ

1 ( 1
2 )hβ

2 ( 1
2 )

ηβ (b, c) cI(β)
c+η(b,c)g(x)ψ(x)

≤ 2βhβ
1

(
1
2

)
hβ

2

(
1
2

)[
M(c, b)0I(β)

1 hβ
1 (τ )hβ

2 (1 – τ ) + N(c, b)0I(β)
1 hβ

1 (τ )hβ
2 (τ )

]
].

This completes the proof. �

Remark 6 In Theorem 4, if we take β = 1, then it reduces to Theorem 2.5 given in Ref. [5].
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Corollary 3 In Theorem 4, if we take η(b, c) = b – c, then inequality (3.11) reduces to the
following inequality:

1β

2βhβ
1 ( 1

2 )hβ
2 ( 1

2 )Γ (1 + β)
f
(

c + b
2

)
g
(

c + b
2

)
–

1β

(b – c)β cI(β)
b g(x)ψ(x)

≤ M(c, b)0I(β)
1 hβ

1 (τ )hβ
2 (1 – τ ) + N(c, b)0I(β)

1 hβ
1 (τ )hβ

2 (τ ). (3.12)

Corollary 4 In Theorem 4, if we take hβ
1 (t) = hβ

2 (τ ) = τβ , then inequality (3.11) reduces to
the following inequality:

2β

Γ (1 + β)
g
(

c +
1
2
η(b, c)

)
ψ

(
c +

1
2
η(b, c)

)
–

1β

ηβ (b, c) cI(β)
c+η(b,c)g(x)ψ(x)

≤ M(c, b)Bβ (2, 2) + N(c, b)
Γ (1 + 2β)
Γ (1 + 3β)

, (3.13)

where Bβ (x, y) denotes the generalized gamma function on fractal sets.

Proof By hβ
1 (t) = hβ

2 (t) = tβ , we have

0I(β)
1 hβ

1 (τ )hβ
2 (τ ) =

1
Γ (1 + β)

∫ 1

0
τ 2β (dτ )β =

Γ (1 + 2β)
Γ (1 + 3β)

.

Obviously, the result holds. �

Corollary 5 In Theorem 4, if we take hβ
1 (τ ) = τβ , hβ

2 (τ ) = τ sβ , s ∈ (0, 1], then inequality
(3.11) reduces to the following inequality:

2sβ

Γ (1 + β)
g
(

c +
1
2
η(b, c)

)
ψ

(
c +

1
2
η(b, c)

)
–

1β

ηβ (b, c) cI(β)
c+η(b,c)g(x)ψ(x)

≤ M(c, b)Bβ (2, s + 1) + N(c, b)
Γ (1 + (s + 1)β)
Γ (1 + (s + 2)β)

, (3.14)

where Bβ (x, y) denotes the generalized gamma function on fractal sets.

Proof By hβ
1 (τ ) = τβ , hβ

2 (τ ) = τ sβ , s ∈ (0, 1], we have

0I(β)
1 hβ

1 (τ )hβ
2 (1 – τ ) =

1
Γ (1 + β)

∫ 1

0
ββ (1 – τ )sβ (dτ )β = Bβ (2, s + 1),

0I(β)
1 hβ

1 (t)hβ
2 (τ ) =

1
Γ (1 + β)

∫ 1

0
τ (s+1)β(dτ )β =

Γ (1 + (s + 1)β)
Γ (1 + (s + 2)β)

.

Obviously, the result holds. �

Theorem 5 Let g : I → Rβ be a generalized h-preinvex function with c < c + η(b, c), and
ψ : I → Rβ be nonnegative, symmetric with respect to c + 1

2η(b, c), then

1β

ηβ (b, c) cI(β)
c+η(b,c)g(x)ψ(x) ≤ [

g(c) + g(b)
]

0I(β)
1 hβ (τ )ψ

(
c + τη(b, c)

)
. (3.15)
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Proof Since g is a generalized h-preinvex function and ψ is a nonnegative function, we
have

g
(
c + τη(b, c)

)
ψ

(
c + τη(b, c)

) ≤ [
hβ (1 – τ )g(c) + hβ (τ )g(b)

]
ψ

(
c + τη(b, c)

)
,

g
(
c + (1 – τ )η(b, c)

)
ψ

(
c + (1 – τ )η(b, c)

)
≤ [

hβ (τ )g(c) + hβ (1 – τ )g(b)
]
ψ

(
c + (1 – τ )η(b, c)

)
.

Adding the above two inequalities and integrating with respect to τ over [0, 1], and using
the symmetricity of the ψ , we get

1
Γ (1 + β)

∫ 1

0
g
(
c + τη(b, c)

)
ψ

(
c + τη(b, c)

)
(dτ )β

+
1

Γ (1 + β)

∫ 1

0
g
(
c + (1 – τ )η(b, c)

)
ψ

(
c + (1 – τ )η(b, c)

)
(dτ )β

≤ 1
Γ (1 + β)

∫ 1

0

{
g(c)

[
hβ (1 – τ )ψ

(
c + τη(b, c)

)
+ hβ (τ )ψ

(
c + (1 – τ )η(b, c)

)]

+ g(b)
[
hβ (τ )ψ

(
c + τη(b, c)

)
+ hβ (1 – τ )ψ

(
c + (1 – τ )η(b, c)

)]}
(dτ )β

= 2βg(c)
1

Γ (1 + β)

∫ 1

0
hβ (τ )ψ

(
c + (1 – τ )η(b, c)

)
(dτ )β

+ 2βg(b)
1

Γ (1 + β)

∫ 1

0
hβ (τ )ψ

(
c + τη(b, c)

)
(dτ )β

= 2β
[
g(c) + g(b)

] 1
Γ (1 + β)

∫ 1

0
hβ (τ )ψ

(
c + τη(b, c)

)
(dτ )τ .

Letting c + τη(b, c) = x, we have

1
Γ (1 + β)

∫ 1

0
g
(
c + τη(b, c)

)
ψ

(
c + τη(b, c)

)
(dτ )β

=
1

Γ (1 + β)

∫ 1

0
g
(
c + (1 – τ )η(b, c)

)
ψ

(
c + (1 – τ )η(b, c)

)
(dτ )β

=
1β

ηβ (b, c)
1

Γ (1 + β)

∫ c+η(b,c)

c
g(x)ψ(x)(dτ )β .

So,

1β

ηβ (b, c)
1

Γ (1 + β)

∫ c+η(b,c)

c
g(x)ψ(x)(dτ )β

=
[
g(c) + g(b)

] 1
Γ (1 + β)

∫ 1

0
hβ (τ )ψ

(
c + τη(b, c)

)
(dτ )β .

This completes the proof. �

Remark 7 In Theorem 5, if we take β = 1, then it reduces to Theorem 2.6 given in Ref. [5].

Remark 8
1. If η(b, c) = b – c, then our results reduce to some results for generalized h-convexity.
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2. If hβ (τ ) = τβ , hβ (τ ) = τ sβ , hβ (τ ) = ( 1
τ

)β , and hβ (τ ) = 1β , then our results reduce to
some results for generalized preinvex, generalized s-preinvex, generalized
Godunova–Levin preinvex, and generalized P-preinvex, respectively.

3. If η(b, c) = b – c and hβ (τ ) = τβ , hβ (τ ) = τ sβ , hβ (τ ) = ( 1
τ

)β , and hβ (τ ) = 1β , then our
results reduce to some results for generalized convex, generalized s-convex,
generalized Godunova–Levin convex, and generalized P-convex, respectively.

4 Applications for random variables
Let X be a continuous random variable having generalized probability density function ψ :
[c, b] → Rβ

+. The generalized expectation (or generalized mean) of X is defined as follows:

μβ = Eβ (X) =
1

Γ (1 + β)

∫ b

c
xβψ(x)(dx)β .

The generalized rth moment and the generalized variance of X are defined as

Er
β (X) =

1
Γ (1 + β)

∫ b

c
xrβψ(x)(dx)β , r > 0,

Varβ (X) = σ 2
β =

1
Γ (1 + β)

∫ b

c
(x – μβ )2βψ(x)(dx)β .

Proposition 1
(1) Let g(x) = xrβ , x > 0. If r ≥ 1, then g(x) is a generalized convex function (see [19]);
(2) Let g(x) = (x – a)2β , then g(x) is a generalized convex function.

Proof (2) Since g(2β)(x) = Γ (1 + 2β) > 0, from Corollary 10 in Reference [19], we know that
g(x) = (x – a)2β is a generalized convex function. �

Theorem 6 Let X be a random variable having generalized probability density function
ψ : [c, b] → Rβ

+. ψ(x) ∈ I(β)
x [c, b], c < b. Then, for x > 0, we obtain the upper bound for the

generalized expectation of a random variable X as follows:

Eβ (X) ≤ (b – c)β
[(

cβψ(c) + bβψ(b)
)Γ (1 + 2β)
Γ (1 + 3β)

+
(
cβψ(b) + bβψ(c)

)
Bβ (2, 2)

]
. (4.1)

Proof Since g(x) = xβ is a generalized convex function, choosing g(x) = xβ in (3.10), where
M(c, b) = g(c)ψ(c) + g(b)ψ(b) and N(c, b) = g(c)ψ(b) + g(b)ψ(c), we have

1β

(b – c)β
Eβ (X) =

1β

(b – c)β cI(β)
b xβψ(x) ≤ M(c, b)

Γ (1 + 2β)
Γ (1 + 3β)

+ N(c, b)Bβ(2, 2)

=
[
cβψ(c) + bβψ(b)

]Γ (1 + 2β)
Γ (1 + 3β)

+
[
cβψ(b) + bβψ(c)

]
Bβ (2, 2).

From Proposition 1, choosing g(x) = xrβ and g(x) = (x – μβ )2β in (3.10), we can obtain the
upper bounds for the generalized rth moment and the generalized variance of a random
variable X, respectively. �
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Theorem 7 Let X be a random variable having generalized probability density function
ψ : [c, b] → Rβ

+. ψ(x) ∈ I(β)
x [c, b], c < b. Then, for x > 0, r ≥ 1, we obtain the upper bound for

the generalized rth moment of a random variable X as follows:

Er
β (X) ≤ (b – c)β

[(
crβψ(c) + brβψ(b)

)Γ (1 + 2β)
Γ (1 + 3β)

+
(
crβψ(b) + brβψ(c)

)
Bβ (2, 2)

]
. (4.2)

Proof Choosing g(x) = xrβ in (3.10), the proof is similar to that of Theorem 6. �

Theorem 8 Let X be a random variable having generalized probability density function
ψ : [c, b] → Rβ

+. ψ(x) ∈ I(β)
x [c, b], c < b. The symbol μβ denotes the generalized expectation

of X.Then we obtain the upper bound for the generalized variance of a random variable X
as follows:

Varβ (X) = σ 2
β (X)

≤ (b – c)β
[(

(c – μβ )2βψ(c) + (b – μβ )2βψ(b)
)Γ (1 + 2β)
Γ (1 + 3β)

+
(
(c – μβ )2βψ(b) + (b – μβ )2βψ(c)

)
Bβ (2, 2)

]
. (4.3)

Proof Choosing g(x) = (x – μβ )2β in (3.10), the proof is similar to that of Theorem 6. �
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12. Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related

fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
13. Liu, J., Zhang, Y.: Analytical study of exact solutions of the nonlinear Korteweg–de Vries equation with space–time

fractional derivatives. Mod. Phys. Lett. B 32, 1850012 (2018)
14. Yang, X.J.: Advanced Local Fractional Calculus and Its Applications. World Science Publisher, New York (2012)
15. Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press,

Amsterdam (2016)
16. Yang, X.J., Machado, J.A.: A new fractal nonlinear Burgers’ equation arising in the acoustic signals propagation. Math.

Methods Appl. Sci. 42(18), 7539–7544 (2019)
17. Yang, X.J., Tenreiro, J.A., Baleanu, D.: On exact traveling-wave solutions for local fractional Korteweg–de Vries

equation. Chaos, Interdiscip. J. Nonlinear Sci. 26(8), 084312 (2016)
18. Yang, X.J., Gao, F., Srivastava, H.M.: A new computational approach for solving nonlinear local fractional PDEs. J.

Comput. Appl. Math. 339, 285–296 (2018)
19. Mo, H., Sui, X., Yu, D.: Generalized convex functions on fractal sets and two related inequalities. Abstr. Appl. Anal. 2014,

Article ID 636751 (2014)
20. Mo, H., Sui, X.: Generalized s-convex functions on fractal sets. Abstr. Appl. Anal. 2014, Article ID 254731 (2014).

https://doi.org/10.1155/2014/254737
21. Sun, W.: Generalized harmonically s-convex functions and Hadamard type inequalities on fractal sets. J. Jilin Univ. Sci.

56(6), 1366–1372 (2018)
22. Sun, W.: Generalized preinvex functions and related Hermite–Hadamard type integral inequalities on fractal space. J.

Zhejiang Univ. Sci. Ed. 46(5), 543–549 (2019)
23. Sun, W.: Hermite–Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their

generalization. (submitted)
24. Du, T.S., Wang, H., Khan, M.A., Zhang, Y.: Certain integral inequalities considering generalizedm-convexity on fractal

sets and their applications. Fractals 27(7), 1950117 (2019). https://doi.org/10.1142/S0218348X19501172
25. Vivas, M., Hernández, J., Merentes, N.: New Hermite–Hadamard and Jensen type inequalities for h-convex functions

on fractal sets. Rev. Colomb. Mat. 50(2), 145–164 (2016)
26. Sun, W.: Generalized h-convexity on fractal sets and some generalized Hadamard type inequalities. Fractals 28(2),

2050021 (9 pages) (2020). https://doi.org/10.1142/S0218348X20500218
27. Sarikaya, M.Z., Budak, H.: Generalized Ostrowski type inequalities for local fractional integrals. Proc. Am. Math. Soc.

145(4), 1527–1538 (2017)
28. Anastassiou, G., Kashuri, A., Liko, R.: Local fractional integrals involving generalized stronglym-convex mappings.

Arab. J. Math. 8(2), 95–107 (2019)
29. Choi, J., Set, E., Tomar, M.: Certain generalized Ostrowski type inequalities for local fractional integrals. Commun.

Korean Math. Soc. 32(3), 601–617 (2017)

https://doi.org/10.1155/2014/254737
https://doi.org/10.1142/S0218348X19501172
https://doi.org/10.1142/S0218348X20500218

	Some Hermite-Hadamard type inequalities for generalized h-preinvex function via local fractional integrals and their applications
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Applications for random variables
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


