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Abstract
This paper investigates a deterministic and stochastic SIQS epidemic model with
vertical transmission and Beddington–DeAngelis incidence. Firstly, for the
corresponding deterministic system, the global asymptotic stability of disease-free
equilibrium and the endemic equilibrium is proved through the stability theory.
Secondly, for the stochastic system, the threshold conditions which decide the
extinction or permanence of the disease are derived. By constructing suitable
Lyapunov functions, we investigate the oscillation behavior of the stochastic system
solution near the endemic equilibrium. The results of this paper show that there exists
a great difference between the deterministic and stochastic systems, which implies
that the large stochastic noise contributes to inhibiting the spread of disease. Finally,
in order to validate the theoretical results, a series of numerical simulations are
presented.
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1 Introduction
Infectious diseases are the first killer of human beings. According to World Health Statis-
tics Report 2016 published by the World Health Organization (WHO), there were 216
million cases of malaria in 2016, with more than 43,800 deaths. During the same period,
1.2 million people died of HIV-related diseases [1]. On 29 July 2019, the WHO Regional
Office for Africa issued a report that the Democratic Republic of Congo has reported 1798
deaths of Ebola haemorrhagic fever from 2687 cases between August 2018 and July 2019.
For this matter, several measures have been taken to prevent the spread of deadly infec-
tious diseases all over the world such as malaria, cholera, and plague, which led countries
to strengthen quarantine measures at their entry and exit ports, which were first taken
by Venice authorities in the fourteenth century. The personnel of foreign ships arriving
at their ports should be allowed to stay on board for 40 days. They are allowed to leave
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the ship for landing only after they have been inspected by the port authorities and no
disease has been found. The reason is that if you suffer from an infectious disease, it can
usually manifest within 40 days [2]. The original quarantine measure played a great role
in preventing the spread of infectious diseases such as plague at that time. For infectious
diseases to occur and spread in a certain population, they must have three basic elements:
the source of infection, the route of transmission, and the susceptible population. Quar-
antine of infectious sources and timely treatment of infected persons are important mea-
sures to control the spread of diseases. Quarantine can greatly reduce the probability of
contact between infective and susceptible individuals. In recent years, a large number of
epidemic models have been used in the study of disease prevention and control strategies
[3–14]. The influence of quarantine measures on the second epidemic of plague in Europe
was studied in literature [15]. Similarly, strict inspection and quarantine are also effective
measures to deal with animal and plant infectious diseases [16, 17]. In 2002, Hethcote et
al. proposed a model with quarantine [18]:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = A – uS(t) – βI(t)S(t) + γ I(t) + εQ(t),

dI(t)
dt = βI(t)S(t) – (u + α2 + δ + γ )I(t),

dQ(t)
dt = δI(t) – (u + α3 + ε)Q(t),

(1)

where S(t), I(t), Q(t) represent the susceptible individuals, the infective but not isolated
infected individuals, and the quarantined individuals, respectively. A is the recruitment
rate. u denotes the natural mortality rate. γ and ε are the rates at which individuals recover
and return to S from I and Q, respectively. δ is the rate constant for individuals leaving the
infective individuals for the quarantined ones. α2 stands for the disease-related mortality
rate of I . α3 represents the disease-related mortality rate of Q.

In the process of infectious disease modeling, infectious rate is an important indicator
to describe the speed of disease transmission. According to the characteristics of different
diseases transmission, choosing the appropriate infection rate is the basis of accurate mod-
eling. The above bilinear incidence βS(t)I(t) is used in the model in [18]. Wei et al. [19] pro-
posed an SIQS model with saturation incidence βS(t)I(t)

1+αI(t) . In reference [20], an SEIR model
with Beddington–DeAngelis incidence βS(t)I(t)

1+mS(t)+nI(t) and vertical transmission is considered.
Obviously, if m = 0, the incidence becomes to saturated incidence βS(t)I(t)

1+αI(t) . Furthermore,
when m = n = 0, the Beddington–DeAngelis incidence rate degenerates into bilinear inci-
dence rate βS(t)I(t). In real life, the route of disease transmission is complex and diverse.
During pregnancy or childbirth, the disease can be transmitted directly from the mother
to the embryo or infant, i.e., vertical transmission [21]. Motivated by the above-mentioned
work, this paper establishes the following epidemic model with vertical transmission and
Beddington–DeAngelis incidence:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – uS(t) – βI(t)S(t)

1+mS(t)+nI(t) + b(S(t) + Q(t)) + (1 – q)bI(t)

+ γ I(t) + εQ(t),
dI(t)

dt = βI(t)S(t)
1+mS(t)+nI(t) + qbI(t) – (u + α2 + δ + γ )I(t),

dQ(t)
dt = δI(t) – (u + α3 + ε)Q(t),

(2)
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where m and n denote the parameters for measuring suppression effect, respectively.
b denotes the birth rate and u > b. q represents the vertical transmission coefficient and
0 < q < 1.

It is well known that environmental noise in nature always affects biological systems to
a greater or lesser extent [22–24], so the limitation of deterministic model is inevitable. In
view of the fact that stochastic systems can better describe practical problems, a large
number of stochastic differential equation models have been applied to study various
ecosystems in recent years. For instance, the influence of white noise on the contact coef-
ficient is considered in [25–32], and the Markov chain is used in [33–37] to represent the
interference of colored noise on the system. In order to describe the dramatic changes in
natural environment such as earthquakes and floods, scholars explain these phenomena
by adding Lévy jump coupling to deterministic models [38–41].

In this paper, we assume that the contact rate is disturbed by white noise. That is β → β +
dB(t), then model (2) is transformed into the following stochastic SIQS epidemic model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (A – uS(t) – βI(t)S(t)
1+mS(t)+nI(t) + b(S(t) + Q(t)) + (1 – q)bI(t)

+ γ I(t) + εQ(t)) dt – σ I(t)S(t)
1+mS(t)+nI(t) dB(t),

dI(t) = ( βI(t)S(t)
1+mS(t)+nI(t) + qbI(t) – (u + α2 + δ + γ )I(t)) dt

+ σ I(t)S(t)
1+mS(t)+nI(t) dB(t),

dQ(t) = (δI(t) – (u + α3 + ε)Q(t)) dt,

(3)

where σ 2 is the intensity of the white noise, B(t) is the standard Brownian motion defined
on a complete probability space (Ω ,F , {F}t≥0,P).

This paper is organized as follows. We give some auxiliary results and related lemmas
in Sect. 2. We study the existence and asymptotic stability of equilibria in a deterministic
system in Sect. 3. And in Sect. 4, the threshold condition for disease extinction and perma-
nence of a stochastic system is given. In Sect. 5, the asymptotic behavior of the stochastic
system is discussed. In Sect. 6, the correctness of our conclusions are verified by numerical
simulations.

2 Preliminaries
Throughout this paper, we let R3

+ = {xi > 0, i = 1, 2, 3}. For any integrable function f on
[0, +∞), we define 〈f (t)〉 = 1

t
∫ t

0 f (π ) dπ . From system (3), we can get

d(S(t) + I(t) + Q(t))
dt

= A – (u – b)
(
S(t) + I(t) + Q(t)

)
– α2I(t) – α3Q(t).

This shows that

S(t) + I(t) + Q(t) ≤ A
u – b

+
(

S(0) + I(0) + Q(0) –
A

u – b

)

e–(u–b)t .

Now, we define

Γ =
{
(
S(t), I(t), Q(t)

) ∈ R3
+ : S(t) + I(t) + Q(t) ≤ A

u – b

}

.

Obviously, the region Γ is a positively invariant set.
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Lemma 2.1 For any initial value (S(0), I(0), Q(0)) ∈ R3
+, system (3) has a unique solution

(S(t), I(t), Q(t)) on t ≥ 0, and the solution will remain in R3
+ with probability one.

Proof The coefficients of system (3) satisfy the local Lipschitz condition, for any given ini-
tial value (S(0), I(0), Q(0)) ∈ R3

+, there is a unique local solution (S(t), I(t), Q(t)) on interval
[0, τe), where τe denotes the explosion time [42]. If we want to prove the solution is global,
we just need to prove τe = ∞ a.s. We assume that k0 > 0 such that S(0) > 1

k0
, I(0) > 1

k0
,

Q(0) > 1
k0

. Let k > k0, the stopping time is defined as

τk = inf

{

t ∈ [0, τe) : S(t) ≤ 1
k

or I(t) ≤ 1
k

or Q(t) ≤ 1
k

}

,

and we know τk is increasing as k → ∞. Let τ∞ = limk→+∞ τk , thus τ∞ ≤ τe. Therefore, we
only need to certify that τ∞ = ∞. Otherwise, there is a positive constant T > 0 and ε ∈ (0, 1)
such that P{τ∞ < ∞} > ε. Hence, there exists an integer k1 > k0 satisfying P{τk ≤ T} ≥ ε

for any positive k > k1.
Define a C2-function V1:

V1
(
S(t), I(t), Q(t)

)
= – ln

S(t)
C1

– ln
I(t)
C1

– ln
Q(t)
C1

, (4)

where C1 = max{S(0) + I(0) + Q(0), A
u–b }. Applying Itô’s formula on V1, we obtain

dV1 = LV1 dt +
σ (I(t) – S(t))

1 + mS(t) + nI(t)
dB(t), (5)

where

LV1 = –
A + bQ(t) + (1 – q)bI(t) + γ I(t) + εQ(t)

S(t)
+ u – b +

βI(t)
1 + mS(t) + nI(t)

–
βS(t)

1 + mS(t) + nI(t)
+ (u + α2 + δ + γ – qb) –

δI(t)
Q(t)

+ (u + α3 + ε)

+
σ 2(I2(t) + S2(t))

2(1 + mS(t) + nI(t))2

≤ 3u + α2 + δ + γ + α3 + ε +
βI(t)

1 + mS(t) + nI(t)
+

σ 2(I2(t) + S2(t))
2

≤ 3u + α2 + δ + γ + α3 + ε + βC1 + σ 2C1
2 := C2. (6)

The following proof process is similar to [43] and we omitted it. The proof is completed. �

3 The stability analysis of deterministic system (2)
For system (2), whether the disease can be eradicated is widely concerned. Therefore, it
is of great significance to discuss the existence and stability of the equilibrium. First, ac-
cording to the method of literature [44], we define

R0 =
Aβ

(Am + u – b)(u + α2 + δ + γ – qb)
.
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Let dS(t)
dt = 0, dI(t)

dt = 0, dQ(t)
dt = 0. We obtain two equilibria for system (2): E0 = ( A

u–b , 0, 0),
E∗ = (S∗, I∗, Q∗), where

I∗ =
A – (u–b)(u+α2+δ+γ –qb)

β–m(u+α2+δ+γ –qb)

n (u–b)(u+α2+δ+γ –qb)
β–m(u+α2+δ+γ –qb) + (u – b + α2) + u–b+α3

u+α3+ε
δ

,

S∗ =
(u + α2 + δ + γ – qb)(1 + nI∗)
β – m(u + α2 + δ + γ – qb)

,

Q∗ =
δ

u + α3 + ε
I∗.

When R0 > 1, E∗ = (S∗, I∗, Q∗) is a unique endemic equilibrium. If E0 = ( A
u–b , 0, 0) is glob-

ally asymptotically stable, the disease will become extinct. If E∗ = (S∗, I∗, Q∗) is globally
asymptotically stable, the disease will be permanent. Next, we use the eigenvalue method
to study the stability of E0 and E∗, respectively, so as to obtain the threshold condition of
whether the disease is extinct or not.

Theorem 3.1 For system (2), we come to a conclusion:
(i) If R0 < 1, then it has a disease-free equilibrium E0 = ( A

u–b , 0, 0), which is globally
asymptotically stable.

(ii) If R0 > 1, then it has an endemic equilibrium E∗ = (S∗, I∗, Q∗), which is globally
asymptotically stable.

Proof (i) The Jacobian matrix of E0 = ( A
u–b , 0, 0) is

J0 =

⎛

⎜
⎝

b – u – Aβ

Am+u–b + (1 – q)b + γ b + ε

0 Aβ

Am+u–b + qb – (u + α2 + δ + γ ) 0
0 δ –(u + α3 + ε)

⎞

⎟
⎠ .

Hence, the characteristic equation can be obtained as follows:

(λ – b + u)
[

λ –
Aβ

Am + u – b
– qb + (u + α2 + δ + γ )

]
[
λ + (u + α3 + ε)

]
= 0. (7)

The three eigenvalues are λ1 = b – u < 0, λ2 = Aβ

Am+u–b – (u + α2 + δ + γ – qb), and λ3 =
–(u + α3 + ε) < 0. Therefore, E0 = ( A

u–b , 0, 0) is locally asymptotically stable if R0 < 1.
Let V2(S(t), I(t), Q(t)) = I(t) as a Lyapunov function, we can calculate

dV2

dt
=

βI(t)S(t)
1 + mS(t) + nI(t)

+ qbI(t) – (u + α2 + δ + γ )I(t)

≤
[

Aβ

Am + u – b
– (u + α2 + δ + γ – qb)

]

I(t)

= (u + α2 + δ + γ – qb)(R0 – 1)I(t).

Hence, dV2
dt ≤ 0 when R0 < 1, and it follows that V2(S(t), I(t), Q(t)) is bounded and nonin-

creasing. By LaSalle’s invariance principle, the disease-free equilibrium E0 = ( A
u–b , 0, 0) is

globally asymptotically stable.
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(ii) The Jacobian matrix of E∗ = (S∗, I∗, Q∗) is

J∗ =

⎛

⎜
⎝

a11
∗ a12

∗ b + ε

a21
∗ a22

∗ 0
0 δ a33

∗

⎞

⎟
⎠ ,

where

a11
∗ =

–βI∗(1 + nI∗)
(1 + mS∗ + nI∗)2 + b – u = –a21

∗ + b – u < 0,

a12
∗ =

–βS∗(1 + mS∗)
(1 + mS∗ + nI∗)2 + (1 – q)b + γ = –a22

∗ – (u + α2 + δ – b) < 0,

a21
∗ =

βI∗(1 + nI∗)
(1 + mS∗ + nI∗)2 > 0,

a22
∗ =

βS∗(1 + mS∗)
(1 + mS∗ + nI∗)2 + qb – (u + α2 + δ + γ ) = –

nβS∗I∗

(1 + mS∗ + nI∗)2 < 0,

a33
∗ = –(u + α3 + ε) < 0.

With regard to E∗, we have the following characteristic equation:

λ3 + Dλ2 + Eλ + F = 0, (8)

where

D =
βI∗(1 + nI∗ + nS∗)
(1 + mS∗ + nI∗)2 + (u + α3 + ε) + (u – b) > 0,

E =
βI∗

(1 + mS∗ + nI∗)2
[
(u + α3 + ε)

(
1 + nS∗ + nI∗) – (b – u)nS∗

+ (u + α2 + δ – b)
(
1 + nI∗)] – (b – u)(u + α3 + ε)

> 0,

F =
βI∗

(1 + mS∗ + nI∗)2
[
(u + α3 + ε)(u + α2 + δ – b)

(
1 + nI∗).

+ (u – b)(u + α3 + ε)nS∗+δ(u + α3 – b)(1 + n)I∗]

> 0.

Then we get

DE – F =
[
D1E1 + (u – b)E1 + D1(u – b)(u + α3 + ε) + (u – b)(u + α3 + ε)2.

+ (u – b)2(u + α3 + ε)
]

+
βI∗

(1 + mS∗ + nI∗)2
[
δ(b + ε)

(
1 + nI∗)

+ (u + α3 + ε)2(1 + nS∗ + nI∗)]

> 0,
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where

D1 =
βI∗(1 + nI∗ + nS∗)
(1 + mS∗ + nI∗)2 ,

E1 =
βI∗

(1 + mS∗ + nI∗)2
[
(u + α3 + ε)

(
nS∗ + nI∗ + 1

)
– (b – u)nS∗

+ (u + α2 + δ – b)
(
1 + nI∗)].

Therefore, we can get E∗ is locally asymptotically stable when it exists. According to the
proof of Theorem 2 in [45], the endemic equilibrium E∗ is globally asymptotically stable.
This completes the proof of Theorem 3.1. �

4 The threshold of stochastic system (3)
In the previous section, we discussed the threshold condition of deterministic system (2).
In this section, we investigate the threshold conditions of disease extinction and persis-
tence for stochastic SIQS system (3). First, we give the following definition [25].

Definition 4.1
(i) The disease I(t) is said to be extinct if limt→+∞ I(t) = 0;

(ii) The disease I(t) is said to be permanent in mean if there is a positive constant φ

such that limt→∞ inf〈I(t)〉 ≥ φ.

Let

R̃ = R0 –
σ 2A2

2(Am + u – b)2(u + α2 + δ + γ – qb)
.

4.1 Extinction
Theorem 4.1 In system (3), let (S(t), I(t), Q(t)) be the solution for any initial value
(S(0), I(0), Q(0)) ∈ Γ . If one of the following conditions is satisfied:

(i) σ 2 > max{ β2

2(u+α2+δ+γ –qb) , β(Am+u–b)
A },

(ii) R̃ < 1 and σ 2 < β(Am+u–b)
A ,

then the infectious disease of system (3) goes to extinction a.s. Moreover, we have

lim
t→∞ S(t) =

A
u – b

a.s.,

lim
t→∞ Q(t) = 0 a.s.

Proof Let V3 = ln I(t). Applying Itô’s formula on V3, we obtain

dV3 = LV3 dt +
σS(t)

1 + mS(t) + nI(t)
dB(t), (9)

where

LV3 =
βS(t)

1 + mS(t) + nI(t)
+ qb – (u + α2 + δ + γ ) –

σ 2S2(t)
2(1 + mS(t) + nI(t))2 . (10)
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Integrating both sides of (9) from 0 to t yields

ln I(t) =
∫ t

0
LV3

(
S(ξ ), I(ξ )

)
dξ + H(t). (11)

Let H(t) = M(t) + ln I(0), where M(t) =
∫ t

0
σS(ξ )

1+mS(ξ )+nI(ξ ) dB(ξ ) is a local continuous martin-
gale with M(0) = 0. Since (S(t), I(t)) ∈ Γ , then we have limt→∞ sup M(t)

t = 0 by the strong
law of large numbers for martingales [46]. So we get limt→∞ sup H(t)

t = 0.
Case (i): Due to σ 2 > β(Am+u–b)

A , we can obtain

LV3
(
S(t), I(t)

)
=

βS(t)
1 + mS(t) + nI(t)

+ qb – (u + α2 + δ + γ )

–
σ 2S2(t)

2(1 + mS(t) + nI(t))2

= –
σ 2

2

(
S(t)

1 + mS(t) + nI(t)
–

β

σ 2

)2

+
β2

2σ 2 + qb

– (u + α2 + δ + γ )

≤ β2

2σ 2 + qb – (u + α2 + δ + γ ).

In view of (11),

ln I(t) ≤
∫ t

0

[
β2

2σ 2 + qb – (u + α2 + δ + γ )
]

dξ + H(t). (12)

Dividing both sides of (12) by t > 0, we have

ln I(t)
t

≤ β2

2σ 2 + qb – (u + α2 + δ + γ ) +
H(t)

t
. (13)

Then, taking the limit superior on both sides of (13), when σ 2 > β2

2(u+α2+δ+γ –qb) , we gain

lim
t→∞ sup

ln I(t)
t

≤ β2

2σ 2 + qb – (u + α2 + δ + γ ) < 0. (14)

That implies limt→∞ I(t) = 0 and the infectious disease goes to extinction.
Case (ii): In this case, since S ∈ Γ , we have

LV3
(
S(t), I(t)

)
= –

σ 2

2

(
S(t)

1 + mS(t) + nI(t)
–

β

σ 2

)2

+
β2

2σ 2 + qb

– (u + α2 + δ + γ )

≤ –
σ 2

2

( A
u–b

1 + m A
u–b

–
β

σ 2

)2

+
β2

2σ 2 + qb

– (u + α2 + δ + γ )

=
Aβ

(Am + u – b)
–

A2σ 2

2(Am + u – b)2 + qb

– (u + α2 + δ + γ )
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= (u + α2 + δ + γ – qb)(̃R – 1).

From (11) we obtain

ln I(t) ≤
∫ t

0
(u + α2 + δ + γ – qb)(̃R – 1) dξ + H(t). (15)

Dividing both sides of (15) by t > 0 yields

ln I(t)
t

≤ (u + α2 + δ + γ – qb)(̃R – 1) +
H(t)

t
. (16)

Taking the superior limit on both sides of (16), when R̃ < 1, we have

lim
t→∞ sup

ln I(t)
t

≤ (u + α2 + δ + γ – qb)(̃R – 1). (17)

The condition R̃ < 1 implies that limt→∞ I(t) = 0.
Next, solving the third equation of system (3), one can obtain that

Q(t) = e–(u+α3+ε)t
[

Q(0) +
∫ t

0
δI(r)e(u+α3+ε)r dr

]

.

Applying L’Hospital’s rule, we have

lim
t→∞ Q(t) = lim

t→∞
Q(0) +

∫ t
0 δI(r)e(u+α3+ε)r dr
e(u+α3+ε)t = lim

t→∞
δI(t)

u + α3 + ε
= 0 a.s.

According to system (3), we obtain

d
(
S(t) + I(t) + Q(t)

)
=

[
A – (u – b)

(
S(t) + I(t) + Q(t)

)
– α2I(t) – α3Q(t)

]
dt.

Then

S(t) + I(t) + Q(t)

= e–(u–b)t
{
[
S(0) + I(0) + Q(0)

]
+

∫ t

0

[
A – α2I(r) – α3Q(r)

]
e(u–b)r dr

}

.

Similarly, one can get that

lim
t→∞ S(t) = lim

t→∞
A – α2I(r) – α3Q(r)

u – b
=

A
u – b

a.s.

This proof is completed. �

4.2 Permanence in mean
Theorem 4.2 If R̃ > 1, then the infectious disease is permanent in mean, and

lim
t→∞ inf

〈
I(t)

〉 ≥ I∗,
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lim
t→∞ inf

〈
A

u – b
– S(t)

〉

≥
[

1 +
α2

u – b
+

δ(u + α3 – b)
(u – b)(u + α3 + ε)

]

I∗,

lim
t→∞ inf

〈
Q(t)

〉 ≥ δ

u + α3 + ε
I∗,

where

I∗ =
(Am + u – b)(u + α2 + δ + γ – qb)

β[(u – b) + α2 + δ(u+α3–b)
(u+α3+ε) ] + n(u – b)(u + α2 + δ + γ – qb)

(̃R – 1).

Proof Through system (3), we have

d
(

S(t) + I(t) +
ε + b

u + α3 + ε
Q(t)

)

dt

=
{

A – (u – b)S(t) –
[

u + α2 – b +
δ(u + α3 – b)

u + α3 + ε

]

I(t)
}

dt. (18)

Integrating from 0 to t and dividing by t on both sides of (18), one can get

Θ(t) =
S(t) – S(0)

t
+

I(t) – I(0)
t

+
ε + b

u + α3 + ε

Q(t) – Q(0)
t

= A – (u – b)
〈
S(t)

〉
–

[

u + α2 – b +
δ(u + α3 – b)

u + α3 + ε

]
〈
I(t)

〉
. (19)

Therefore, we obtain that

〈
S(t)

〉
=

A
u – b

–
[

1 +
α2

u – b
+

δ(u + α3 – b)
(u – b)(u + α3 + ε)

]
〈
I(t)

〉
–

Θ(t)
u – b

. (20)

Applying Itô’s formula, we get

d
[(

1 + m
A

u – b

)

ln I(t) + nI(t)
]

=
[ (1 + m A

u–b )βS(t)
1 + mS(t) + nI(t)

–
(

1 + m
A

u – b

)

(u + α2 + δ + γ – qb)

+
nβS(t)I(t)

1 + mS(t) + nI(t)
– nI(t)(u + α2+δ + γ – qb)

–
1
2

(1 + m A
u–b )σ 2S2(t)

(1 + mS(t) + nI(t))2

]

dt

+
[ (1 + m A

u–b )σS(t)
1 + mS(t) + nI(t)

+
nσS(t)I(t)

1 + mS(t) + nI(t)

]

dB(t)

≥
[

βS(t) –
(

1 + m
A

u – b

)

(u + α2 + δ + γ – qb)

– n(u + α2 + δ + γ – qb)I(t) –
σ 2( A

u–b )2

2(1 + m A
u–b )

]

dt

+
[ (1 + m A

u–b )σS(t)
1 + mS(t) + nI(t)

+
nσS(t)I(t)

1 + mS(t) + nI(t)

]

dB(t). (21)
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Integrating from 0 to t and dividing by t on both sides of (21), one can obtain that

(

1 + m
A

u – b

)
ln I(t) – ln I(0)

t
+ n

I(t) – I(0)
t

≥ β
〈
S(t)

〉
–

(

1 + m
A

u – b

)

(u + α2 + δ + γ – qb)

– n(u + α2 + δ + γ – qb)
〈
I(t)

〉
–

σ 2( A
u–b )2

2(1 + m A
u–b )

+
M1(t)

t

=
(

1 + m
A

u – b

)

(u + α2 + δ + γ – qb)(̃R – 1)

–
[

β +
βα2

u – b
+

βδ(u + α3 – b)
(u – b)(u + α3 + ε)

+ n(u + α2 + δ + γ – qb)
]
〈
I(t)

〉

–
βΘ(t)
u – b

+
M1(t)

t
, (22)

where

M1(t) =
∫ t

0

[ (1 + m A
u–b )σS(ξ )

1 + mS(ξ ) + nI(ξ )
+

nσS(ξ )I(ξ )
1 + mS(ξ ) + nI(ξ )

]

dB(ξ ).

Then, we can calculate from (22)

ln I(t) ≥ F(t) –
β + βα2

u–b + βδ(u+α3–b)
(u–b)(u+α3+ε) n(u + α2 + δ + γ – qb)

1 + m A
u–b

∫ t

0
I(s) ds

+
[
(u + α2 + δ + γ – qb)(̃R – 1)

]
t, (23)

where

F(t) = –
βtΘ(t)

Am + u – b
+

M1(t)
1 + m A

u–b
–

n
1 + m A

u–b

[
I(t) – I(0)

]
+ ln I(0).

Since S(t) + I(t) + Q(t) ≤ A
u–b , then limt→∞ S(t)

t = limt→∞ I(t)
t = limt→∞ Q(t)

t = 0 and
limt→∞ Θ(t) = 0. Utilizing the strong law of large numbers of martingales, we have
limt→∞ F(t)

t = 0.
Taking the inferior limit of both sides of (23) and using Lemma 2.4 in [47], we obtain

lim
t→∞ inf

〈
I(t)

〉 ≥ (1 + m A
u–b )(u + α2 + δ + γ – qb)

β + βα2
u–b + βδ(u+α3–b)

(u–b)(u+α3+ε) + n(u + α2 + δ + γ – qb)
(̃R – 1).

According to (20), one can obtain that

lim
t→∞ inf

〈
A

u – b
– S(t)

〉

≥
[

1 +
α2

u – b
+

δ(u + α3 – b)
(u – b)(u + α3 + ε)

]

I∗.

Integrating from 0 to t and dividing by t on both sides of the last equation of system (3)
yields

Q(t) – Q(0)
t

= δ
〈
I(t)

〉
– (u + α3 + ε)

〈
Q(t)

〉
.
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Therefore, we have

lim
t→∞ inf

〈
Q(t)

〉 ≥ δ

u + α3 + ε
I∗.

This finishes the proof of Theorem 4.2. �

5 Asymptotic behavior of system (3)
According to Theorem 3.1, if R0 > 1, there exists a unique endemic equilibrium E∗ of de-
terministic system (2) and it is globally asymptotically stable. However, due to the inter-
ference of white noise, there is no equilibrium for system (3). It is interesting to discuss
how the solution of stochastic system (3) oscillates near E∗. Next, we prove that when
the intensity of the white noise is small, the solution of stochastic system (3) will oscillate
slightly around E∗. That is, the infectious disease is persistent.

Let

�1 = (u – b)(1 + c1) –
c3I∗σ 2

2
,

�2 = (u + α2 – b) + c1(u + α2 + δ – b),

�3 = (u + α3 – b) + c2(u + α3 + ε).

Theorem 5.1 If the following conditions are met:
(i) R̃ > 1,

(ii) σ 2 < 2(u–b)(1+c1)
c3I∗ ,

then the solution (S(t), I(t), Q(t)) of system (3) with initial value (S(0), I(0), Q(0)) ∈ R3
+ has

the nature

lim
t→∞ sup

1
t

E
∫ t

0

[(
S – MSS∗)2 +

(
I – I∗)2 +

(
Q – Q∗)2]dξ ≤ θ

ϕ
, (24)

where

MS =
2(u – b)(1 + c1)

2(u – b)(1 + c1) – c3I∗σ 2 ,

θ =
c3I∗(u – b)(1 + c1)σ 2S∗2

2(u – b)(1 + c1) – c3I∗σ 2 ,

ϕ = min{�1,�2,�3},

and c1, c2, c3 are positive constants, we give the values in the following proof.

Proof Because of R̃ > 1, then R0 > 1, system (2) has a unique endemic equilibrium satisfy-
ing the following equation:

A = uS∗ +
βI∗S∗

1 + mS∗ + nI∗ – b
(
S∗ + Q∗) – (1 – q)bI∗ – γ I∗ – εQ∗,

βS∗

1 + mS∗ + nI∗ = u + α2 + δ + γ – qb,

δI∗ = (u + α3 + ε)Q∗.
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Let

Ṽ =
1
2
(
S – S∗ + I – I∗ + Q – Q∗)2 +

c1

2
(
S – S∗ + I – I∗)2 +

c2

2
(
Q – Q∗)2

+ c3

(

I – I∗ – I∗ ln
I
I∗

)

= Ṽ1 + c1Ṽ2 + c2Ṽ3 + c3Ṽ4, (25)

where Ṽ1 = 1
2 (S – S∗ + I – I∗ + Q – Q∗)2, Ṽ2 = 1

2 (S – S∗ + I – I∗)2, Ṽ3 = 1
2 (Q – Q∗)2, and

Ṽ4 = (I – I∗ – I∗ ln I
I∗ ). Applying Itô’s formula, we obtain

LṼ1 =
(
S – S∗ + I – I∗ + Q – Q∗)[A – (u – b)S – (u + α2 – b)I – (u + α3 – b)Q

]

= –(u – b)
(
S – S∗)2 – (u + α2 – b)

(
I – I∗)2 – (u + α3 – b)

(
Q – Q∗)2

– (2u + α2 – 2b)
(
S – S∗)(I – I∗) – (2u + α2 + α3 – 2b)

(
I – I∗)(Q – Q∗)

– (2u + α3 – 2b)
(
S – S∗)(Q – Q∗),

LṼ2 =
(
S – S∗ + I – I∗)[A – (u – b)S – (u + α2 + δ – b)I + (ε + b)Q

]

= –(u – b)
(
S – S∗)2 – (u + α2 + δ – b)

(
I – I∗)2 + (ε + b)

(
I – I∗)(Q – Q∗)

– (2u + α2 + δ – 2b)
(
S – S∗)(I – I∗) + (ε + b)

(
S – S∗)(Q – Q∗),

LṼ3 =
(
Q – Q∗)[δI – (u + α3 + ε)Q

]

= δ
(
Q – Q∗)(I – I∗) – (u + α3 + ε)

(
Q – Q∗)2,

LṼ4 =
(
I – I∗)

[
βS

(1 + mS + nI)
– (u + α2 + δ + γ – qb)

]

+
I∗σ 2S2

2(1 + mS + nI)2

=
(
I – I∗)S

(
β

1 + mS + nI
–

β

1 + mS∗ + nI∗

)

+
β

1 + mS∗ + nI∗
(
I – I∗)(S – S∗) +

I∗σ 2S2

2(1 + mS + nI)2

≤ β

1 + mS∗ + nI∗
(
I – I∗)(S – S∗) +

I∗σ 2S2

2(1 + mS + nI)2 .

Thus, we have

LṼ ≤ –(u – b)(1 + c1)
(
S – S∗)2 –

[
(u + α2 – b) + c1(u + α2 + δ – b)

](
I – I∗)2

–
[
(u + α3 – b)+c2(u + α3 + ε)

](
Q – Q∗)2 –

[
(2u + α2 – 2b)

+ c1(2u + α2 + δ – 2b)
](

S – S∗)(I – I∗) –
[
(2u + α2 + α3 – 2b) – c2δ

– c1(b + ε)
](

I – I∗)(Q – Q∗) –
[
(2u + α3 – 2b) – c1(b + ε)

](
S – S∗)(Q – Q∗)

+ c3

[
β

1 + mS∗ + nI∗
(
I – I∗)(S – S∗) +

I∗σ 2S2

2(1 + mS + nI)2

]

. (26)
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Next, we choose

c1 =
2u + α3 – 2b

ε + b
,

c2 =
α2

δ
,

c3 =
[(ε + b)(2u + α2 – 2b) + (2u + α3 – 2b)(2u + α2 + δ – 2b)](1 + mS∗ + nI∗)

β(ε + b)
,

then

LṼ ≤ –(u – b)(1 + c1)
(
S – S∗)2 –

[
(u + α3 – b)+c2(u + α3 + ε)

](
Q – Q∗)2

–
[
(u + α2 – b) + c1(u + α2 + δ – b)

](
I – I∗)2 + c3

I∗σ 2S2

2(1 + mS + nI)2

≤ –
[

(u – b)(1 + c1) –
c3I∗σ 2

2

][

S –
2(u – b)(1 + c1)

2(u – b)(1 + c1) – c3I∗σ 2 S∗
]2

–
[
(u + α2 – b)+c1(u + α2 + δ – b)

](
I – I∗)2 –

[
(u + α3 – b)

+ c2(u + α3 + ε)
](

Q – Q∗)2 +
c3I∗(u – b)(1 + c1)σ 2S∗2

2(u – b)(1 + c1) – c3I∗σ 2

= –�1

[

S –
2(u – b)(1 + c1)

2(u – b)(1 + c1) – c3I∗σ 2 S∗
]2

– �2
(
I – I∗)2

– �3
(
Q – Q∗)2 + θ . (27)

Here, �1 = (u – b)(1 + c1) – c3I∗σ 2

2 , �2 = (u + α2 – b) + c1(u + α2 + δ – b), �3 = (u + α3 – b) +
c2(u + α3 + ε), and θ = c3I∗(u–b)(1+c1)σ 2S∗2

2(u–b)(1+c1)–c3I∗σ 2 . Furthermore, we achieve that

dṼ ≤
{

–�1

[

S –
2(u – b)(1 + c1)

2(u – b)(1 + c1) – c3I∗σ 2 S∗
]2

– �2
(
I – I∗)2

– �3
(
Q – Q∗)2 + θ

}

dt +
(
I – I∗) σS

1 + mS + nI
dB(t). (28)

Integrating the two sides of (28) from 0 to t leads to

Ṽ
(
S(t), I(t), Q(t)

)
– Ṽ

(
S(0), I(0), Q(0)

)

≤
∫ t

0

{

–�1

[

S(ξ ) –
2(u – b)(1 + c1)

2(u – b)(1 + c1) – c3I∗σ 2 S∗
]2

– �2
(
I(ξ ) – I∗)2

– �3
(
Q(ξ ) – Q∗)2 + θ

}

dξ

+
∫ t

0

(
I(ξ ) – I∗) σS(ξ )

1 + mS(ξ ) + nI(ξ )
dB(ξ ), (29)
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where
∫ t

0 (I – I∗) σSI
1+mS+nI dB(ξ ) is the local continuous martingale. And now, taking expec-

tations of (29), we have

EṼ
(
S(t), I(t), Q(t)

)
– EṼ

(
S(0), I(0), Q(0)

)

≤ E
∫ t

0

{

–�1

[

S(ξ ) –
2(u – b)(1 + c1)

2(u – b)(1 + c1) – c3I∗σ 2 S∗
]2

– �2
(
I(ξ ) – I∗)2

– �3
(
Q(ξ ) – Q∗)2

}

dξ + θ t. (30)

Set ϕ = min{�1,�2,�3}, then we can obtain

lim
t→∞ sup

1
t

E
∫ t

0

[(
S – MSS∗)2 +

(
I – I∗)2 +

(
Q – Q∗)2]dξ ≤ θ

ϕ
,

where MS = 2(u–b)(1+c1)
2(u–b)(1+c1)–c3I∗σ 2 . This achieves the proof of Theorem 5.1. �

6 Conclusion and simulations
In this paper, a stochastic SIQS epidemic model with vertical transmission and Bed-
dington–DeAngelis incidence is constructed. Under the condition of ignoring random
effects, the stability of disease-free equilibrium and endemic equilibrium of the corre-
sponding deterministic system (2) is discussed. If R0 < 1, the infectious disease of system
(2) goes to extinction. If R0 > 1, a unique endemic equilibrium is globally asymptotically
stable. It indicates that the disease will prevail and persist in a population.

For stochastic system (3), we obtain threshold conditions for disease extinction and
permanence in mean. If R̃ < 1, the infectious disease of system (3) dies out. If R̃ > 1,
the infectious disease is permanent in mean and oscillates near the positive equilibrium
E∗ = (S∗, I∗, Q∗). Because of R̃ < R0, as a result, the larger environmental noise is favorable
for the control of infectious disease.

In order to verify the above theoretical results, we use Euler–Maruyama (EM) method
[48] to carry out computer simulations. In our numerical simulations, the related param-
eters of system (2) and system (3) are as follows:

u = 0.32, δ = 0.58, β = 0.3, b = 0.2,

q = 0.26, ε = 0.32, α2 = 0.12, α3 = 0.23,

γ = 0.25, m = 0.01, n = 0.5.

If we select A = 0.48, we get R0 = 0.9473 < 1 by a simple calculation. It satisfies the first
condition of Theorem 3.1, then system (2) has a disease-free equilibrium E0 = (4, 0, 0) (see
Fig. 1). On the other hand, set A = 0.72, we compute R0 = 1.3942 > 1 and gain the positive
equilibrium E∗ = (4.8492, 0.2918, 0.1945) (see Fig. 2).

The coefficient is the same as Fig. 2, and select different σ . In the first place, set σ = 0.6,
0.36 = σ 2 > max{ β2

2(u+α2+δ+γ –qb) , β(Am+u–b)
A } = max{0.078, 0.0369} = 0.078, this indicates that

the disease can die out (see Fig. 3). Secondly, we have decreased the value of σ to 0.21, we
can easily figure out R̃ = 0.8141 < 1 and 0.0441 = σ 2 < β(Am+u–b)

A = 0.053. On the basis of
Theorem 4.1, we can get the disease go extinct (see Fig. 4). In addition, we let σ = 0.055
and gain R̃ = 1.3544 > 1, which shows the disease is persistent (see Fig. 5) by Theorem 4.2.
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Figure 1 Time evolutions of deterministic system (2) with parameters u = 0.32, δ = 0.58, β = 0.3, b = 0.2,
q = 0.26, ε = 0.32, α2 = 0.12, α3 = 0.23, γ = 0.25,m = 0.01, n = 0.5, A = 0.48, where R0 = 0.9473 < 1

Figure 2 Time evolutions of deterministic system (2) with parameters u = 0.32, δ = 0.58, β = 0.3, b = 0.2,
q = 0.26, ε = 0.32, α2 = 0.12, α3 = 0.23, γ = 0.25,m = 0.01, n = 0.5, A = 0.72, where R0 = 1.3942 > 1

In order to verify Theorem 5.1, we select another set of data for numerical simulations.
We choose

u = 0.4, δ = 0.15, A = 1, b = 0.1, q = 0.3,

ε = 0.35, β = 0.5, α2 = 0.25, α3 = 0.15,

γ = 0.2, m = 0.01, n = 0.1, σ = 0.2.

From the conditions of Theorem 5.1, R̃ = 1.4482 > 1, the endemic equilibrium is E∗ =
(2.0959, 0.594, 0.099), c1 = 1.6667, c2 = 2.5, and c3 = 5.4378. Therefore, we get 0.04 = σ 2 <
2(u–b)(1+c1)

c3I∗ = 0.4954, which satisfies the second prerequisite of Theorem 5.1. We can see
that the solution in (3) is oscillates around the equilibrium of the disease (see Fig. 6).
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Figure 3 Comparison of system (2) and system (3), u = 0.32, δ = 0.58, β = 0.3, b = 0.2, q = 0.26, ε = 0.32,
α2 = 0.12, α3 = 0.23, γ = 0.25,m = 0.01, n = 0.5, A = 0.72, σ = 0.6, where R0 = 1.3942 > 1

Figure 4 Comparison of system (2) and system (3), u = 0.32, δ = 0.58, β = 0.3, b = 0.2, q = 0.26, ε = 0.32,
α2 = 0.12, α3 = 0.23, γ = 0.25,m = 0.01, n = 0.5, A = 0.72, σ = 0.21, where R0 = 1.3942 > 1, R̃ = 0.8141 < 1
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Figure 5 Comparison of system (2) and system (3), u = 0.32, δ = 0.58, β = 0.3, b = 0.2, q = 0.26, ε = 0.32,
α2 = 0.12, α3 = 0.23, γ = 0.25,m = 0.01, n = 0.5, A = 0.72, σ = 0.055, where R0 = 1.3942 > 1, R̃ = 1.3544 > 1

Figure 6 The oscillation behavior of system (3) near the endemic equilibrium point, u = 0.4, δ = 0.15, β = 0.5,
b = 0.1, q = 0.3, ε = 0.35, α2 = 0.25, α3 = 0.15, γ = 0.2,m = 0.01, n = 0.1, A = 1, σ = 0.2, where R0 = 1.6628 > 1,
R̃ = 1.4482 > 1
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