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Abstract
In this paper, we propose and study a stochastic two-species cooperation model with
functional response in a polluted environment. We first perform the survival analysis
and establish sufficient conditions for extinction, weak persistence, and stochastic
permanence. Then we further perform the survival analysis based on the temporal
average of population size and derive sufficient conditions for the strong persistence
in the mean and weak persistence in the mean. Finally, we present numerical
simulations to justify the theoretical results.
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1 Introduction
With rapid development of industries and agriculture, a mass of toxicants has been emit-
ted into the environment, such as the industrial wastewater, domestic sewage, and other
contaminants. The presence of a variety of toxicants in the environment not only seriously
threatened the survival of the exposed populations but also affected the human life style.
Therefore it is important to estimate the environmental toxicity, which requires quanti-
tative estimates for the survival risk of species in a polluted environment. This motivates
scholars to utilize the mathematical models to assess the effects of toxicants on various
ecosystems. Hallam et al. [1–3] did pioneering works. It has been a significant topic of
considerable researches, and more and more deterministic models have been proposed
and analyzed (see [4–17]). They all provide a great insight into the effects of pollutants. In
this paper, we mainly attempt to study a two-species cooperation model with functional
response. We assume that the environment is of complete spatial homogeneity and there is
no migration. Let xi(t) represent the population size (population density) of the ith species
at time t. We consider the following cooperation model in a polluted environment:

⎧
⎨

⎩

x′
1(t) = x1(t)[r1 – a1x1(t) + c2x2(t)

1+b2x2(t) ],

x′
2(t) = x2(t)[r2 – a2x2(t) + c1x1(t)

1+b1x1(t) ],
(1.1)
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where the positive coefficients r1, r2 and a1, a2 are the intrinsic growth rates and self-
inhibition rates, respectively. In the classical cooperation model the mutualism effects are
described by a bilinear function, that is, xi response to xj is assumed to be increasingly
monotonic, an inherent assumption meaning that the more xj there exist in the environ-
ment, the better off the xi. But here the term cixi(t)/(1 + bixi(t)) represents the functional
response function, and moreover, it is an increasing function with respect to xi and has a
saturation value for large enough xi. The positive coefficients cj measure the mutualism
effects of species xj on species xi, and bj, i, j = 1, 2, i �= j, are positive control constants. For
a relevant ecological model of system (1.1), we refer the readers to [18].

Now we are in the position to describe the dynamics of population in a polluted envi-
ronment. We assume that the living organisms absorb part of toxicants into their bodies,
the dynamics of the population is affected by internal toxicant, and the individuals in two
species have identical concentration of organismal toxicant at time t (see [5]). To simplify
the mathematical model, we assume that the capacity of the environment is so large that
the change of toxicant in the environment that comes from uptake and egestion by the
organisms can be neglected (see [3]). Let C0(t) represent the concentration of toxicant in
the organism at time t, and let CE(t) represent the concentration of toxicant in the envi-
ronment at time t. A coupling between species and toxicant is formulated by assuming
that the intrinsic growth rate of the ith population, ri0 – ri1C0(t), is a linear function of
concentration of toxicant present in the organism. Then the population dynamics can be
given as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′
1(t) = x1(t)[r10 – r11C0(t) – a1x1(t) + c2x2(t)

1+b2x2(t) ],

x′
2(t) = x2(t)[r20 – r21C0(t) – a2x2(t) + c1x1(t)

1+b1x1(t) ],
dC0(t)

dt = dCE(t) + η – (l1 + l2)C0(t),
dCE(t)

dt = –hCE(t) + u(t),

(1.2)

where ri0 is the intrinsic growth rate of the ith species in the absence of toxicant, ri1, i = 1, 2,
is the dose-response rate of species i to the toxicant concentration, d represents the up-
take rate of toxicant from environment per unit biomass, η represents the intake rate of
toxicant from food per unit biomass, l1 represents the organismal net ingestion rates of
toxicant, l2 represents the organismal excretion rates of toxicant, and h represents the
loss rate of toxicant from the environment due to the processes such as biological trans-
formation, chemical hydrolysis, volatilization, microbial degradation, and photosynthetic
degradation. Here u(t) represents the input rate of exogenous toxin at time t, which is a
nonnegative continuous function defined on [0,∞) with u1 := supt≥0 u(t) > 0.

Considering that the fate of young recruits after reproduction is quite sensitive to the en-
vironmental fluctuations, so the growth rate of population is inevitably affected. May and
Allen [19] have claimed that the growth rates in population systems should be fluctuating
around some average values because of the environmental fluctuations. In this sense, it is
necessary to incorporate the environmental fluctuations into our model. In practice, we
usually estimate the growth rate ri0 by an average value plus an error term; by the central
limit theorem the error term follows a normal distribution, and thus we can approximate
the error term by σiḂi(t), that is,

ri0 → ri0 + σiḂi(t), i = 1, 2,
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where Ḃi(t) represents a white noise process (i.e., Bi(t) is a standard Brownian motion), and
σ 2

i is the intensity of the white noise. According to our discussion, a stochastic two-species
cooperation model in polluted environment is derived as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1(t) = x1(t)[r10 – r11C0(t) – a1x1(t) + c2x2(t)
1+b2x2(t) ] dt + σ1x1(t) dB1(t),

dx2(t) = x2(t)[r20 – r21C0(t) – a2x2(t) + c1x1(t)
1+b1x1(t) ] dt + σ2x2(t) dB2(t),

dC0(t)
dt = dCE(t) + η – (l1 + l2)C0(t),

dCE(t)
dt = –hCE(t) + u(t).

(1.3)

The initial conditions satisfy the conditions

x1(0) > 0, x2(0) > 0, 0 ≤ C0(0) < 1, 0 ≤ CE(0) < 1.

In recent years, many interesting and important works about the stochastic model in pol-
luted environment have been reported (see [20–33]). But to the best of our knowledge,
there exist few published papers concerning system (1.3). Noting that the last two equa-
tions in system (1.3) can be explicitly solved, so we only need to consider the following
subsystem:

⎧
⎨

⎩

dx1(t) = x1(t)[r10 – r11C0(t) – a1x1(t) + c2x2(t)
1+b2x2(t) ] dt + σ1x1(t) dB1(t),

dx2(t) = x2(t)[r20 – r21C0(t) – a2x2(t) + c1x1(t)
1+b1x1(t) ] dt + σ2x2(t) dB2(t).

(1.4)

Motivated by the existing results, the rest of this paper is arranged as follows. In Sect. 2,
we introduce several commonly used basic lemmas and classical definitions. In Sect. 3, we
perform the survival analysis and establish sufficient criteria for extinction, weak persis-
tence, and stochastic permanence. In Sect. 4, we further discuss the survival analysis based
on the temporal average of population size and derive sufficient conditions for the strong
persistence in the mean and weak persistence in the mean. In Sect. 5, we present several
numerical simulations to validate our theoretical results. The limitation of the model is
also discussed in the last section.

2 Preliminaries
From now on, unless otherwise specified, we always work on the complete probability
space (Ω ,F , P) with filtration {Ft}t≥0 satisfying the usual conditions, that is, it is right
continuous, and F0 contains all P-null sets. Note that both C0(t) and CE(t) represent the
concentrations of toxicant, so to be realistic, we must have 0 ≤ C0(t) < 1 and 0 ≤ CE(t) < 1
for all t ≥ 0. In fact, we can prove that by solving the last two equations of system (1.3).

For convenience and simplicity, we introduce the following notations:

〈
f (t)

〉
� t–1

∫ t

0
f (s) ds, 〈f 〉∗ � lim inf

t→∞ t–1
∫ t

0
f (s) ds,

〈f 〉∗ � lim sup
t→∞

t–1
∫ t

0
f (s) ds, f∗ � lim inf

t→∞ f (t), f ∗ � lim sup
t→∞

f (t).

Definition 2.1 (See [34]) To state and prove our main results, we recall some classical
concepts.
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• Population xi is said to be extinct if limt→∞ xi(t) = 0, i = 1, 2, a.s.
• Population xi is said to be weakly persistent if lim supt→∞ xi(t) > 0 a.s.
• Population xi is said to be weakly persistent in the mean if lim supt→∞〈xi(t)〉 > 0 a.s.
• Population xi is said to be strongly persistent in the mean if lim inft→∞〈xi(t)〉 > 0 a.s.
• System (1.4) is said to be stochastically permanent if for every ε ∈ (0, 1), there exists a

pair of positive constants α = α(ε),β = β(ε) such that for any positive initial condition
x(0), the solution x(t) satisfies

lim inf
t→∞ P

{
xi(t) ≥ α

} ≥ 1 – ε, lim inf
t→∞ P

{
xi(t) ≤ β

} ≥ 1 – ε. (2.1)

3 Survival analysis
In this section, we first study the existence and uniqueness of a globally positive solution
for the biological significance and then perform the survival analysis of system (1.4).

Theorem 3.1 For every initial value x(0) = (x1(0), x2(0)) ∈ R2
+, system (1.4) has a unique

solution x(t), and x(t) remains in R2
+ for all t ≥ 0 with probability one.

Proof The proof of the theorem is standard. Firstly, let us consider the following stochastic
system:

⎧
⎨

⎩

dy1(t) = [r10 – 0.5σ 2
1 – r11C0(t) – a1ey1(t) – c2ey2(t)

1+b2ey2(t) ] dt + σ1 dB1(t),

dy2(t) = [r20 – 0.5σ 2
2 – r21C0(t) – a2ey2(t) – c1ey1(t)

1+b1ey1(t) ] dt + σ2 dB2(t),
(3.1)

with initial condition y1(0) = ln x1(0), y2(0) = ln x2(0). It is easy to verify that the coefficients
of system (3.1) satisfy the local Lipschitz condition, and thus system (3.1) has a unique
solution y(t) on [0, τe), where τe is the explosion time (see [35]). By applying Itô’s formula
and a simple calculation, it is easy to derive that x1(t) = ey1(t), x2(t) = ey2(t) is the unique
positive local solution to system (1.4) with initial value x(0) ∈ R2

+. To show that this solution
is global, we only need to show that τe = ∞.

Let n0 be sufficiently large such that every component of x(0) remains in the interval
[ 1

n0
, n0]. For each integer n ≥ n0, we define the stopping time

τn = inf

{

t ∈ [0, τe) : x1(t) /∈
(

1
n

, n
)

or x2(t) /∈
(

1
n

, n
)}

.

Here we set inf∅ = +∞ (∅ denotes the empty set). Obviously, τn is increasing as n → ∞.
Let τ∞ = limn→∞ τn, whence τ∞ ≤ τe almost surely; if we can show that τ∞ = ∞ almost
surely, then τe = ∞ almost surely, and the proof is completed.

Define the C2-function Ṽ (x) : R2
+ → R+ as

Ṽ (x1, x2) = x1 – 1 – ln x1 + x2 – 1 – ln x2.

The nonnegativity of this function can be seen from v – 1 – ln v ≥ 0 for v > 0. Let T > 0 be
an arbitrary constant. Then for 0 ≤ t ≤ τn ∧ T , by Itô’s formula we obtain

dṼ (x1, x2)
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=
(

1 –
1
x1

)

dx1 + 0.5
1
x2

1
(dx1)2 +

(

1 –
1
x2

)

dx1 + 0.5
1
x2

2
(dx2)2

= (x1 – 1)
[

r10 – r11C0(t) – a1x1 +
c2x2

1 + b2x2

]

dt + (x1 – 1)σ1 dB1(t) +
1
2
σ 2

1 dt

+ (x2 – 1)
[

r20 – r21C0(t) – a2x2 +
c1x1

1 + b1x1

]

dt + (x2 – 1)σ2 dB2(t) +
1
2
σ 2

2 dt

=
{

–a1x2
1 + (r10 + a1)x1 – r11C0(t)x1 +

c2x1x2

1 + b2x2
–

c2x2

1 + b2x2
+

1
2
σ 2

1 – r10

+ r11C0(t) – a2x2
2 + (r20 + a2)x2 – r21C0(t)x2 +

c1x1x2

1 + b1x1
–

c1x1

1 + b1x1
+

1
2
σ 2

2

– r20 + r21C0(t)
}

dt + (x1 – 1)σ1 dB1(t) + (x2 – 1)σ2 dB2(t)

≤
{

–a1x2
1 +

(

r10 + a1 +
c2

b2

)

x1 +
1
2
σ 2

1 + r11 – r10 – a2x2
2 +

(

r20 + a2 +
c1

b1

)

x2

+
1
2
σ 2

2 + r21 – r20

}

dt + (x1 – 1)σ1 dB1(t) + (x2 – 1)σ2 dB2(t)

= G(x1, x2) dt + (x1 – 1)σ1 dB1(t) + (x2 – 1)σ2 dB2(t), (3.2)

where

G(x1, x2) = –a1x2
1 +

(

r10 + a1 +
c2

b2

)

x1 +
1
2
σ 2

1 + r11 – r10

– a2x2
2 +

(

r20 + a2 +
c1

b1

)

x2 +
1
2
σ 2

2 + r21 – r20. (3.3)

Clearly, G(x1, x2) is upper bounded, say by M. So we have

dṼ (x1, x2) ≤Mdt + (x1 – 1)σ1 dB1(t) + (x2 – 1)σ2 dB2(t). (3.4)

Integrating both sides from 0 to τn ∧ T , we have

∫ τn∧T

0
dṼ (x1, x2) ≤

∫ τn∧T

0
Mdt +

∫ τn∧T

0
(x1 – 1)σ1 dB1(t)

+
∫ τn∧T

0
(x2 – 1)σ2 dB2(t). (3.5)

Taking the expectations on both sides yields that

E
[
Ṽ

(
x1(τn ∧ T), x2(τn ∧ T)

)] ≤ Ṽ
(
x1(0), x2(0)

)
+ ME(τn ∧ T)

≤ Ṽ
(
x1(0), x2(0)

)
+ MT . (3.6)

Let Ωn = {τn ≤ T}. For arbitrary ω ∈ Ωn, there exists some i such that xi(τn,ω) equals either
n or 1

n , and thus Ṽ (x(τn,ω)) is not less than (n – 1 – ln n) ∧ ( 1
n – 1 + ln n) � μ(n). It then

follows from (3.6) that

μ(n)P(τn ≤ T) ≤ E
[
1Ωn (ω)Ṽ

(
x1(τn,ω), x2(τn,ω)

)]
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≤ Ṽ
(
x1(0), x2(0)

)
+ MT , (3.7)

where 1Ωn is the indicator function of Ωn. Let n → ∞. Then μ(n) → ∞, and (3.7) leads
to P(τ∞ ≤ T) = 0. By the arbitrariness of T we have P(τ∞ = ∞) = 1 almost surely. This
completes the proof of Theorem 3.1. �

It is well known that the threshold is very important for assessing the risk of extinc-
tion for species exposed to toxicant from a biological point of view. In the following, we
first show that the pth moment of the solution of system (1.4) is upper bounded and then
establish the threshold between weak persistence and extinction for species xi modeled
by (1.4). To begin with, we present the fundamental assumption that ri0 > 0.5σ 2

i . Unless
otherwise stated, it is always assumed in this paper.

Theorem 3.2 For any p > 1, there exists a positive constant K = K(p) such that the solution
x(t) of system (1.4) has the property that

lim sup
t→∞

E
∣
∣x(t)

∣
∣p ≤ K . (3.8)

Proof Define V (x1, x2) = xp
1 + xp

2. By Itô’s formula, we have

dV (x1, x2)

= pxp–1
1 dx1 + 0.5p(p – 1)xp–2

1 (dx1)2 + pxp–1
2 dx2 + 0.5p(p – 1)xp–2

2 (dx2)2

= pxp
1

(

r10 – r11C0(t) – a1x1 +
c2x2

1 + b2x2

)

dt + pσ1xp
1 dB1(t) + 0.5p(p – 1)σ 2

1 xp
1 dt

+ pxp
2

(

r20 – r21C0(t) – a2x2 +
c1x1

1 + b1x1

)

dt + pσ2xp
2 dB2(t) + 0.5p(p – 1)σ 2

2 xp
2 dt

=
{

xp
1

(

1 + r10p – r11pC0(t) – a1px1 + p
c2x2

1 + b2x2
+ 0.5p(p – 1)σ 2

1

)

+ xp
2

(

1 + r20p

– r21pC0(t) – a2px2 + p
c1x1

1 + b1x1
+ 0.5p(p – 1)σ 2

2

)

– V (x1, x2)
}

dt

+ pσ1xp
1 dB1(t) + pσ2xp

2 dB2(t)

≤
{

xp
1

(

1 + r10p +
c2p
b2

+ 0.5p(p – 1)σ 2
1 – a1px1

)

+ xp
2

(

1 + r20p +
c1p
b1

+ 0.5p(p – 1)σ 2
2 – a2px2

)

– V (x1, x2)
}

dt + pσ1xp
1 dB1(t) + pσ2xp

2 dB2(t)

=
[
L(x1, x2) – V (x1, x2)

]
dt + pσ1xp

1 dB1(t) + pσ2xp
2 dB2(t), (3.9)

where

L(x1, x2) = xp
1

(

1 + r10p +
c2p
b2

+ 0.5p(p – 1)σ 2
1 – a1px1

)

+ xp
2

(

1 + r20p +
c1p
b1

+ 0.5p(p – 1)σ 2
2 – a2px2

)

. (3.10)
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Obviously, L(x1, x2) is upper bounded; we denote it by L, that is,

L�
2∑

i=1

1 + ri0p + cjp
bj

+ 0.5p(p – 1)σ 2
i

(p + 1)ai
> 0. (3.11)

Applying Itô’s formula to etV (x1, x2) yields that

d
[
etV (x1, x2)

]
= etV (x1, x2) dt + et dV (x1, x2)

≤Let dt + pσ1xp
1 dB1(t) + pσ2xp

2 dB2(t). (3.12)

Integrating from 0 to t and then taking the expectation of both sides yield that

E
[
V

(
x1(t), x2(t)

)] ≤ exp(–t)
[
V

(
x1(0), x2(0)

)
+ L

(
exp(t) – 1

)]
. (3.13)

This gives that

lim sup
t→∞

E
∣
∣x(t)

∣
∣p ≤ 2p–1 lim sup

t→∞
E
[
V

(
x1(t), x2(t)

)] ≤ 2p–1L� K(p). (3.14)

This completes the proof of Theorem 3.2. �

Theorem 3.3 If C∗
0 < (ri0 – 0.5σ 2

i )/ri1, then system (1.4) is stochastically permanent.

Proof Taking arbitrary 0 < ε < 1, we first claim that there is a constant α > 0 such that

lim inf
t→∞ P

{
xi(t) ≥ α

} ≥ 1 – ε. (3.15)

Since C∗
0 < (ri0 – 0.5σ 2

i )/ri1, we can choose a constant m > 0 such that

ri0 – 0.5σ 2
i – ri1C∗

0 – 0.5mσ 2
i > 0, i = 1, 2. (3.16)

Define

V1(x1, x2) = m–1
2∑

i=1

(
1 + x–1

i
)m, (x1, x2) ∈ R2

+. (3.17)

By Itô’s formula we derive that

dV1(x1, x2)

=
(
1 + x–1

1
)m–1[–x–2

1 dx1 + x–3
1 (dx1)2] + 0.5(m – 1)

(
1 + x–1

1
)m–2

σ 2
1 x–2

1 dt

+
(
1 + x–1

2
)m–1[–x–2

2 dx2 + x–3
2 (dx2)2] + 0.5(m – 1)

(
1 + x–1

2
)m–2

σ 2
1 x–2

2 dt

=
(
1 + x–1

1
)m–2

{
(
1 + x–1

1
)
[

–x–1
1

(

r10 – r11C0(t) – a1x1 +
c2x2

1 + b2x2

)

dt – σ1x–1
1 dB1(t)

+ σ 2
1 x–1

1 dt
]

+ 0.5(m – 1)σ 2
1 x–2

1 dt
}

+
(
1 + x–1

2
)m–2

{
(
1 + x–1

2
)
[

–x–1
2

(

r20 – r21C0(t)
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– a2x2 +
c1x1

1 + b1x1

)

dt – σ2x–1
2 dB2(t) + σ 2

2 x–1
2 dt

]

+ 0.5(m – 1)σ 2
2 x–2

2 dt
}

=
(
1 + x–1

1
)m–2

{

–x–2
1

(

r10 – r11C0(t) +
c2x2

1 + b2x2
– 0.5σ 2

1 – 0.5mσ 2
1

)

+ x–1
1

(

–r10

+ r11C0(t) –
c2x2

1 + b2x2
+ σ 2

1 + a1

)

+ a1

}

dt +
(
1 + x–1

2
)m–2

{

–x–2
2

(

r20 – r21C0(t)

+
c1x1

1 + b1x1
– 0.5σ 2

2 – 0.5mσ 2
2

)

+ x–1
2

(

–r20 + r21C0(t) –
c1x1

1 + b1x1
+ σ 2

2 + a2

)

+ a2

}

dt –
(
1 + x–1

1
)m–1

σ1x–1
1 dB1(t) –

(
1 + x–1

2
)m–1

σ2x–1
2 dB2(t)

≤ (
1 + x–1

1
)m–2{–x–2

1
(
r10 – r11C∗

0 – ε – 0.5σ 2
1 – 0.5mσ 2

1
)

+ x–1
1

(
–r10 + r11C∗

0

+ ε + σ 2
1 + a1

)
+ a1

}
dt +

(
1 + x–1

2
)m–2{–x–2

2
(
r20 – r21C∗

0 – ε – 0.5σ 2
2 – 0.5mσ 2

2
)

+ x–1
2

(
–r20 + r21C∗

0 + ε + σ 2
2 + a2

)
+ a2

}
dt –

(
1 + x–1

1
)m–1

σ1x–1
1 dB1(t)

–
(
1 + x–1

2
)m–1

σ2x–1
2 dB2(t). (3.18)

Let k be sufficiently small to satisfy

0 <
k
m

< ri0 – ri1C∗
0 – ε – 0.5σ 2

i – 0.5mσ 2
i , i = 1, 2. (3.19)

We define

V2(t, x1, x2) = ektV1(x1, x2). (3.20)

By Itô’s formula again,

dV2(x1, x2)

= kektV1 dt + ekt dV1

≤ ekt(1 + x–1
1

)m–2{km–1(1 + x–1
1

)2 – x–2
1

(
r10 – r11C∗

0 – ε – 0.5σ 2
1 – 0.5mσ 2

1
)

+ x–1
1

(
–r10 + r11C∗

0 + ε + σ 2
1 + a1

)
+ a1

}
dt + ekt(1 + x–1

2
)m–2{km–1(1 + x–1

2
)2

– x–2
2

(
r20 – r21C∗

0 – ε – 0.5σ 2
2 – 0.5mσ 2

2
)

+ x–1
2

(
–r20 + r21C∗

0 + ε + σ 2
2 + a2

)

+ a2
}

dt –
(
1 + x–1

1
)m–1

σ1x–1
1 ekt dB1(t) –

(
1 + x–1

2
)m–1

σ2x–1
2 ekt dB2(t)

= ekt(1 + x–1
1

)m–2
{

–x–2
1

(

r10 – r11C∗
0 – ε – 0.5σ 2

1 – 0.5mσ 2
1 –

k
m

)

+ x–1
1

(

–r10

+ r11C∗
0 + ε + σ 2

1 + a1 +
2k
m

)

+ a1 +
k
m

}

dt + ekt(1 + x–1
2

)m–2
{

–x–2
2

(

r20 – r21C∗
0

– ε – 0.5σ 2
2 – 0.5mσ 2

2 –
k
m

)

+ x–1
2

(

–r20 + r21C∗
0 + ε + σ 2

2 + a2 +
2k
m

)

+ a2

+
k
m

}

dt –
(
1 + x–1

1
)m–1

σ1x–1
1 ekt dB1(t) –

(
1 + x–1

2
)m–1

σ2x–1
2 ekt dB2(t)

= ektJ(x1, x2) dt –
(
1 + x–1

1
)m–1

σ1x–1
1 ekt dB1(t) –

(
1 + x–1

2
)m–1

σ2x–1
2 ekt dB2(t). (3.21)
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Clearly, J(x1, x2) is upper bounded for (x1, x2) ∈ R2
+, that is, J � supx∈R2

+
J(x1, x2) < ∞. As a

result, we have

dV2(x1, x2) ≤ J ekt dt –
(
1+x–1

1
)m–1

σ1x–1
1 ekt dB1(t)–

(
1+x–1

2
)m–1

σ2x–1
2 ekt dB2(t). (3.22)

Integrating both sides and then taking the expectations, we obtain that

E
[
V2(x1, x2)

]
= ektE

[
V1(x1, x2)

] ≤ V1
[
x1(0), x2(0)

]
+
J
k

(
ekt – 1

)
, (3.23)

that is,

lim sup
t→∞

E
[
V1(x1, x2)

] ≤ J
k

. (3.24)

On the other hand,

lim sup
t→∞

E
[
x–m

i (t)
] ≤ lim sup

t→∞
E
[(

1 +
1
xi

)m]

≤ m lim sup
t→∞

E
[
V1(x1, x2)

]

≤ mJ
k

� δ. (3.25)

For arbitrary ε ∈ (0, 1), let α = ( ε
δ
) 1

m . By Chebyshev’s inequality we have

P
{

xi(t) < α
}

= P
{

x–m
i (t) > α–m} ≤ E[x–m

i (t)]
α–m = αmE

[
x–m

i (t)
]
, (3.26)

which gives that

lim sup
t→∞

P
{

xi(t) < α
} ≤ αmδ = ε, (3.27)

that is,

lim inf
t→∞ P

{
xi(t) ≥ α

} ≥ 1 – ε. (3.28)

In the following, we prove that for arbitrary ε ∈ (0, 1), there is a constant β > 0 such that

lim inf
t→∞ P

{
xi(t) ≤ β

} ≥ 1 – ε. (3.29)

Let β = [ K
ε

]
1
p . Then by Chebyshev’s inequality and Theorem 3.2 we have

P
{

xi(t) > β
}

= P
{

xp
i (t) > βp} ≤ E[xp

i (t)]
βp , (3.30)

which implies that

lim sup
t→∞

P
{

xi(t) > β
} ≤ K

βp = ε. (3.31)
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Consequently,

lim inf
t→∞ P

{
xi(t) ≤ β

} ≥ 1 – ε. (3.32)

This completes the proof of Theorem 3.3. �

Remark 3.1 Theorem 3.3, which directly measures the population size xi(t), indicates that
the population size will neither too small nor too large with large probability when the time
is sufficiently large.

Theorem 3.4 If 〈C0〉∗ > (ri0 – 0.5σ 2
i + cj

bj
)/ri1, i, j = 1, 2, i �= j, then population xi goes to

extinction with probability one.

Proof Applying Itô’s formula yields that

d ln xi =
1
xi

dxi –
1

2x2
i

(dxi)2

=
[

ri0 – 0.5σ 2
i – ri1C0(t) – aixi +

cjxj

1 + bjxj

]

dt + σi dBi(t). (3.33)

Integrating both sides yields that

ln xi(t) – ln xi(0)
t

=
(
ri0 – 0.5σ 2

i
)

– ri1
〈
C0(t)

〉
– ai

〈
xi(t)

〉
+

〈
cjxj(t)

1 + bjxj(t)

〉

+ σi
Bi(t)

t
. (3.34)

Letting t → ∞ and applying the strong law of large numbers, we obtain that

lim sup
t→∞

ln xi(t)
t

≤ ri0 – 0.5σ 2
i +

cj

bj
– ri1〈C0〉∗ < 0. (3.35)

In other words, limt→∞ xi(t) = 0. This completes the proof of Theorem 3.4. �

Remark 3.2 Theorem 3.4 indicates the worst case that the population will go to extinction
almost surely.

Theorem 3.5 If 〈C0〉∗ < (ri0 – 0.5σ 2
i + cj

bj
)/ri1, i, j = 1, 2, i �= j, then population xi is weakly

persistent almost surely.

Proof We denote S := {ω : lim supt→∞ xi(t,ω) = 0} and assume that P(S) > 0. Then for all
ω ∈ S, we have lim supt→∞ xi(t,ω) = 0. For arbitrary small ε satisfying 0 < ε < 1, there exists
T(ω) such that

xi(t,ω) ≤ ε for t ≥ T(ω). (3.36)

It then follows that

lim sup
t→∞

ln xi(t) – ln xi(0)
t

≤ 0. (3.37)
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By the continuity of xi(t,ω) there must be a constant K̃ such that xi(t,ω) ≤ K̃ for 0 ≤ t ≤
T(ω). On the other hand,

1
t

∫ t

0
xi(s,ω) ds =

1
t

∫ T(ω)

0
xi(s,ω) ds +

1
t

∫ t

T(ω)
xi(s,ω) ds

≤ K̃
T(ω)

t
+ ε

t – T(ω)
t

(3.38)

for sufficient large t. Since ε is arbitrarily small, we obtain that

lim sup
t→∞

1
t

∫ t

0
xi(s,ω) ds ≤ 0. (3.39)

Since xi(t) > 0, we have lim inft→∞ 1
t
∫ t

0 xi(s,ω) ds ≥ 0, and thus

lim
t→∞

1
t

∫ t

0
xi(s,ω) ds = 0. (3.40)

Substituting (3.40) into (3.34) and using the strong law of large numbers, we deduce the
contradiction

lim sup
t→∞

ln xi(t) – ln xi(0)
t

≤ ri – 0.5σ 2
i – ri1〈C0〉∗ +

cj

bj
< 0. (3.41)

This completes the proof of Theorem 3.5. �

Remark 3.3 Theorem 3.5 admit the case that the population size is close to zero even if
the time is sufficiently large. In this case the survival of species can be dangerous in reality.
In addition, Theorems 3.4 and 3.5 reveal that 〈C0〉∗ = (ri0 – 0.5σ 2

i + cj
bj

)/ri1 is the threshold
between extinction and weak persistence.

4 The estimation of temporal averages
In this section, we further discuss the survival analysis of system (1.4) based on the tem-
poral average of the population size xi(t).

Theorem 4.1 The solution of system (1.4) has the property that

lim sup
t→∞

ln xi(t)
ln t

≤ 1 a.s. (4.1)

Proof By Itô’s formula,

d
(
et ln xi

)
= et ln xi dt + et d ln xi

= et
[

ln xi + ri0 – 0.5σ 2
i – ri1C0(t) – aixi +

cjxj

1 + bjxj

]

dt + σiet dBi(t). (4.2)

Integrating both sides yields that

et ln xi(t) – ln xi(0) =
∫ t

0
es

[

ln xi + ri0 – 0.5σ 2
i – ri1C0(s) – aixi +

cjxj

1 + bjxj

]

ds + N(t), (4.3)
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where N(t) =
∫ t

0 σies dBi(s). Note that N(t) is a local martingale with quadratic variation

〈N , N〉 =
∫ t

0
σ 2

i e2s ds. (4.4)

By the exponential martingale inequality we have

P
{

sup
0≤t≤γ n

[
N(t) – 0.5e–γ n〈N , N〉] > θeγ n ln n

}
≤ n–θ , (4.5)

where θ > 1, and γ > 0 is arbitrary. By the Borel–Cantelli lemma, for almost all ω ∈ Ω ,
there is a random integer n0(ω) such that for all n ≥ n0(ω) and 0 ≤ t ≤ γ n,

N(t) ≤ 0.5e–γ n〈N , N〉 + θeγ n ln n. (4.6)

Substituting (4.6) into (4.3) yields that

et ln xi(t) – ln xi(0) ≤
∫ t

0
es

[

ln xi + ri0 – 0.5σ 2
i – ri1C0(s) – aixi +

cj

bj

]

ds

+ 0.5e–γ n
∫ t

0
σ 2

i e2s ds + θeγ n ln n

=
∫ t

0
es

[

ln xi + ri0 – 0.5σ 2
i – ri1C0(s) – aixi +

cj

bj

+ 0.5σ 2
i es–γ n

]

ds + θeγ n ln n. (4.7)

Since 0 ≤ t ≤ γ n and xi(t) > 0, there is a constant 
 such that

ln xi + ri0 – 0.5σ 2
i – ri1C0(t) – aixi +

cj

bj
+ 0.5σ 2

i et–γ n ≤ 
, (4.8)

that is, for 0 ≤ t ≤ γ n, we have

et ln xi(t) – ln xi(0) ≤ 

(
et – 1

)
+ θeγ n ln n. (4.9)

Therefore, if γ (n – 1) ≤ t ≤ γ n and n ≥ n0(ω), then we obtain that

ln xi(t)
ln t

≤ e–t ln xi(0)
ln t

+

(1 – e–t)

ln t
+

θe–γ (n–1)eγ n ln n
ln t

, (4.10)

which implies that

lim sup
t→∞

ln xi(t)
ln t

≤ θeγ . (4.11)

Then letting θ → 1 and γ → 0 gives the required assertion (4.1). This completes the proof
of Theorem 4.1. �
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Theorem 4.2 Let x(t) be a solution of system (1.4). If ri0 – 0.5σ 2
i – ri1〈C0〉∗ > 0, then the

component xi(t) satisfies

lim
t→∞

ln xi(t)
t

= 0 a.s. (4.12)

Proof We first show that lim supt→∞
ln xi(t)

t ≤ 0. From Theorem 4.1 we have that

lim sup
t→∞

ln xi(t)
t

= lim sup
t→∞

ln xi(t)
ln t

lim sup
t→∞

ln t
t

≤ lim sup
t→∞

ln t
t

= 0. (4.13)

In the following, we show that lim inft→∞ ln xi(t)
t ≥ 0. Since limt→∞

∫ t
0 σi dBi(s)

t = 0 a.s., for any
ε ∈ (0, 1), there exists a positive constant T such that

∣
∣
∣
∣

∫ t

s
σi dBi(τ )

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ t

0
σi dBi(τ )

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ s

0
σi dBi(τ )

∣
∣
∣
∣ ≤ ε(t + s) a.s. (4.14)

for t > s ≥ T . From equations (3.38) and (4.14) we have

x–1
i (t) ≤ x–1

i (T) exp

{

–
(
ri0 – 0.5σ 2

i
)
(t – T) + ri1

∫ t

T
C0(s) ds –

∫ t

T
σi dBi(τ )

}

+ ai

∫ t

T
exp

{
(
ri0 – 0.5σ 2

i
)
(s – t) + ri1

∫ t

s
C0(τ ) dτ –

∫ t

s
σi dBi(τ )

}

ds

≤ x–1
i (T) exp

{
–
(
ri0 – 0.5σ 2

i – ri1〈C0〉∗ – ri1ε
)
(t – T) + ε(t + T)

}

+ ai

∫ t

T
exp

{(
ri0 – 0.5σ 2

i – ri1〈C0〉∗ – ri1ε
)
(s – t) + ε(t + s)

}
ds. (4.15)

This gives that

e–2ε(t+T)x–1
i (t) ≤ x–1

i (T) exp
{

–
(
ri0 – 0.5σ 2

i – ri1〈C0〉∗ – ri1ε
)
(t – T) – ε(t + T)

}

+ ai

∫ t

T
exp

{(
ri0 – 0.5σ 2

i – ri1〈C0〉∗ – ri1ε
)
(s – t) – ε(t – s) – 2εT

}
ds

≤ K̄ , (4.16)

that is, x–1
i (t) ≤ K̄e2ε(t+T) almost surely. Therefore we obtain that

ln x–1
i (t)
t

≤ 1
t
[
ln K̄ + 2ε(t + T)

]
a.s., (4.17)

which yields that

lim sup
t→∞

ln x–1
i (t)
t

≤ 2ε a.s. (4.18)
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In other words,

lim inf
t→∞

ln xi(t)
t

≥ –2ε a.s. (4.19)

Then from the arbitrariness of ε it follows that

lim inf
t→∞

ln xi(t)
t

≥ 0 a.s. (4.20)

This completes the proof of Theorem 4.2. �

Theorem 4.3 Let x(t) be a solution of system (1.4). If ri0 – 0.5σ 2
i – ri1〈C0〉∗ > 0, then the

component xi(t) has the following property:

lim sup
t→∞

∫ t
0 xi(s) ds

t
≤

ri0 – 0.5σ 2
i + cj

bj
– ri1〈C0〉∗

ai
a.s. (4.21)

Moreover,

lim inf
t→∞

∫ t
0 xi(s) ds

t
≥ ri0 – 0.5σ 2

i – ri1〈C0〉∗
ai

, i = 1, 2, a.s. (4.22)

that is, population xi is strongly persistent in the mean almost surely.

Proof Recalling (3.34), we obtain that

ln xi(t) – ln xi(0)
t

+ ai
〈
xi(t)

〉 ≤ (
ri0 – 0.5σ 2

i
)

– ri1
〈
C0(t)

〉
+

cj

bj
+ σi

Bi(t)
t

. (4.23)

Then from Theorem 4.2 it follows that

〈
xi(t)

〉∗ ≤
ri0 – 0.5σ 2

i + cj
bj

– ri1〈C0〉∗
ai

. (4.24)

On the other hand,

ln xi(t) – ln xi(0)
t

+ ai
〈
xi(t)

〉 ≥ (
ri0 – 0.5σ 2

i
)

– ri1〈C0〉 + σi
Bi(t)

t
. (4.25)

Similarly, we obtain that

〈
xi(t)

〉

∗ ≥ ri0 – 0.5σ 2
i – ri1〈C0〉∗
ai

. (4.26)

This completes the proof of Theorem 4.3. �

Theorem 4.4 If 〈C0〉∗ < (ri0 – 0.5σ 2
i )/ri1, then the component xi(t) satisfies

lim sup
t→∞

〈
xi(t)

〉
> 0. (4.27)

In other words, population xi is weakly persistent in the mean almost surely.
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Proof Recalling (4.25), we obtain that

lim sup
t→∞

ln xi(t) – ln xi(0)
t

+ ai
〈
xi(t)

〉∗ ≥ (
ri0 – 0.5σ 2

i
)

– ri1〈C0〉∗. (4.28)

For all ω ∈ {ω : lim supt→∞〈xi(t,ω)〉 = 0}, we have 〈xi(t,ω)〉∗ = 0. Then from Theorem 4.2
and (4.28) it follows that

0 ≥ (
ri0 – 0.5σ 2

i
)

– ri1〈C0〉∗, (4.29)

which contradicts the assumption of Theorem 4.4. So we must have lim supt→∞〈xi(t)〉 > 0.
This completes the proof of Theorem 4.4. �

5 Numerical simulations
In this section, we present several specific examples to justify our theoretical results based
on the Milstein method, which is mentioned by Higham [36]. For system (1.4), we as-
sign r10 = 1.6, r11 = 0.8, a1 = 0.5, b2 = 0.4, c2 = 0.2,σ1 = 0.6, r20 = 1.4, r21 = 0.7, a2 = 0.4, b1 =
0.5, c1 = 0.4,σ2 = 0.7, and the initial value (x1(0), x2(0)) = (0.8, 0.6) and then consider the
following discrete version:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1(k + 1) = x1(k) + x1(k)[r10 – r11C0(k�t) – a1x1(k) + c2x2(k)
1+b2x2(k) ]�t

+ σ1x1(k)
√

�tξ1(k) + 0.5σ 2
1 x1(k)[ξ 2

1 (k) – 1]�t,

x2(k + 1) = x2(k) + x2(k)[r20 – r21C0(k�t) – a2x2(k) + c1x1(k)
1+b1x1(k) ]�t

+ σ2x2(k)
√

�tξ2(k) + 0.5σ 2
2 x2(k)[ξ 2

2 (k) – 1]�t,

(5.1)

where ξ1(k) and ξ2(k) are independent standard Gaussian random variables. To re-
veal the effects of toxicant, we need to choose C0(t) = 0 for comparison with sys-
tem (5.1). By a simple calculation, r10 = 1.6 > 0.5σ 2

1 = 0.18, r20 = 1.4 > 0.5σ 2
2 = 0.245.

Then each species can live alone in a nonpolluted environment; see Fig. 1. Theo-
rem 3.1 shows that for any positive initial value, the solution of system (5.1) remains
in R2

+ almost surely. The nice property provides us a great opportunity to discuss the
survival analysis of system (5.1), and so it is the fundamental conclusion in this pa-
per.

Example 5.1 Theorem 3.3 shows that a tiny amount of toxicant cannot disrupt the
stochastic permanence; in other words, the population size will be neither too small
nor too large with large probability if the time is sufficiently large. Let C0(t) = 0.4 +
0.1 sin(t),�t = 0.01; by a simple calculation, C∗

0 = 0.5, (r10 – 0.5σ 2
1 )/r11 = 1.775, (r20 –

0.5σ 2
2 )/r21 = 1.65, that is, C∗

0 < (ri0 –0.5σ 2
i )/ri1. So population xi is stochastically permanent

by Theorem 3.3; see Fig. 2.

Example 5.2 Theorem 3.4 shows that a large amount of toxicant will force the species
incline to extinction with probability one. Let C0(t) = 3.1 + 0.1 sin(t),�t = 0.01. It is easy
to compute that 〈C0〉∗ = 3.1, (r10 – 0.5σ 2

1 + c1
b1

)/r11 = 2.4, (r20 – 0.5σ 2
2 + c2

b2
)/r21 = 2.79, that

is, 〈C0〉∗ > (ri0 – 0.5σ 2
i + cj

bj
)/ri1. So population xi goes to extinction almost surely; see

Fig. 3.
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Figure 1 Stochastic permanence of system (5.1) with C0(t) = 0,�t = 0.01

Figure 2 Stochastic permanence of system (5.1) with C0(t) = 0.4 + 0.1 sin(t),�t = 0.01

Example 5.3 Theorem 3.5 admits the case that the population size is closed to zero even
if the time is sufficiently large. Let C0(t) = 1.78 + 0.1 sin(t),�t = 0.01. Then by a straight-
forward calculation we have 〈C0〉∗ = 1.78 and 〈C0〉∗ < (ri0 – 0.5σ 2

i + cj
bj

)/ri1. By Theorem 3.5
population xi is weakly persistent almost surely; see Fig. 4.
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Figure 3 Extinction of system (5.1) with C0(t) = 3.1 + 0.1 sin(t),�t = 0.01

Figure 4 Weak persistence of system (5.1) with C0(t) = 1.78 + 0.1 sin(t),�t = 0.01

6 Discussion
In this paper, considering the fact of polluted environment, we propose and study a
stochastic two-species cooperation model with functional response. However, we only
consider the case that a coupling between species and toxicant is a linear function of con-
centration of toxicant present in the organism, that is, ri0 – ri1Hi(C0) = ri0 – ri1C0(t), where
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Hi(C0) is the dose-response function of species xi to the toxin. However, someone sug-
gested that Hi(C0) should be nonlinear in many cases, such as a sigmoid dose-response
curve (see [37, 38]). Liu and Wang [24] also introduced a more general case: Hi(C0) is
a nondecreasing continuous function of C0 with Hi(0) = 0. Clearly, our assumption is a
particular case of this generalized condition. Moreover, the exogenous toxin cannot be
continuous but rather of the impulse form, the growth rate of population is also inevitably
affected by other environment noise such as Lévy jumps, and the regime-switching is other
common random perturbation in the environment (see [39–41]). All these questions as-
sociated with the polluted environment are interesting topics to deserve further investi-
gation, and we leave them for our future works.
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