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Abstract
In this paper, a two-species competitive model with Michaelis–Menten type
harvesting in the first species is studied. We have made a detailed mathematical
analysis of the model to describe some important results that may be produced by
the interaction of biological resources. The permanence, stability, and bifurcation
(saddle-node bifurcation and transcritical bifurcation) of the model are investigated.
The results show that with the change of parameters, two species could eventually
coexist, become extinct or one species will be driven to extinction and the other
species will coexist. Moreover, by constructing the Lyapunov function, sufficient
conditions to ensure the global asymptotic stability of the positive equilibrium are
given. Our study shows that compared with linear harvesting, nonlinear harvesting
can exhibit more complex dynamic behavior. Numerical simulations are presented to
illustrate the theoretical results.
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1 Introduction
During the past decade, a competitive system has been extensively investigated by many
scholars [1–24], many excellent results concerned with the permanence, extinction, and
global attractivity of the competition system have been obtained.

Traditional two-species Lotka–Volterra competitive system is as follows:

dx1

dt
= x1(b1 – a11x1 – a12x2),

dx2

dt
= x2(b2 – a21x1 – a22x2),

(1.1)

where x1 and x2 denote the population density of the first and second species at time t,
respectively. bi, aij, i, j = 1, 2, are positive constants. System (1.1) has been investigated
in mathematical biology books [25]. Depending on the relationship of the coefficients of
system (1.1), it has the following dynamic behaviors.
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(1) If

a11

a21
>

b1

b2
>

a12

a22
,

holds, system (1.1) has a unique positive equilibrium, which is globally attractive.
(2) If

b1

b2
>

a11

a21
,

b1

b2
>

a12

a22
,

holds, then the second species will be driven to extinction, while the first species
will approach b1

a11
.

On the other hand, the study of resource-management, including fisheries, forestry, and
wildlife management, has great importance as human activity is the main cause of the
extinction of endangered species. It is necessary to harvest the population, but harvest-
ing should be regulated so that both the ecological sustainability and conservation of the
species can be implemented in a long run. Many scholars are interested in establishing ap-
propriate biological models to further understand the scientific management of renewable
resources. For example, based on model (1.1), Sharma and Samanta [26] further consid-
ered the harvesting and obtained the following model:

dx(t; p)
dt

= x(t)
[
(r1l)(1–p)(r1u)p – (b11l)(1–p)(b11u)px(t)

– (b12l)(1–p)(b12u)py(t)
]

– q1Ex(t),

dy(t; p)
dt

= y(t)
[
(r2l)(1–p)(r2u)p – (b22l)(1–p)(b22u)py(t)

– (b21l)(1–p)(b21u)px(t)
]

– q2Ey(t),

(1.2)

where p ∈ [0, 1]. Due to the difficulty in the estimation of the model parameters, the au-
thors argued that taking account of the imprecise of biological parameter values makes
some situations more realistic. They developed a method to handle imprecise parame-
ters. In addition, they discussed the existence and stability of the system equilibria, as
well as the bionomic equilibrium and optimal harvesting policy. The equilibrium solu-
tion of the control problem was given and the harvest strategy was optimized dynami-
cally.

Ecosystem with harvesting has been extensively investigated by many scholars [27–37].
May et al. [31] proposed two types of harvesting: (1) constant harvest and (2) linear har-
vest. For the first case, it is impossible to harvest a certain number of species every year.
Although this type of harvest may be relatively easy to study, it is not a reality. For the sec-
ond case, the harvesting term takes the form h(x) = qEx, obviously, when x or E tends to
infinity, h(x) tends to infinity. Clearly this contradicts the facts, because in reality there is
limited harvesting capacity or number of species, so the amount of species that can be har-
vested is limited. To overcome the drawback of the two kinds of harvesting, Clark [32] pro-
posed the Michaelis–Menten type harvesting h(x) = qEx

mE+nx when x or E tends to infinity,
h(x) tends to qE

n or qx
m . In this type of harvesting, if the number of species tends to infinity,
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the final harvest depends on the harvesting capacity, and if the harvesting capacity tends
to infinity, the final harvest depends on the number of species, which is in accordance with
the actual situation. Since such kind of harvesting is more suitable, it brings many scholars
to do works in this direction (see [33–37] and the references cited therein). For example,
Yu, Chen, and Lai [35] introduced Michaelis–Menten type harvesting into a May type
cooperative system and discussed the extinction of the first species and the global attrac-
tion of the unique positive equilibrium. Chen [36] studied the Lotka–Volterra commensal
symbiosis model with Michaelis–Menten type harvesting; the modified model takes the
following:

dx
dt

= γ1x
(

1 –
x
k1

+ α
y
k1

)
–

qEx
m1E + m2x

,

dy
dt

= γ2y
(

1 –
y
k2

)
,

(1.3)

where x and y denote the population density of the two species at time t, respectively.
q denotes the fishing coefficient of the first species and E denotes the fishing effort. r1,
r2, K1, K2, α, m1, m1 are all positive constants. The results show that the system has a
globally asymptotically stable positive equilibrium. In addition, the two species can coexist
stably when α and K2 are large enough. On the contrary, the first species will be driven to
extinction.

After that, Liu et al. [37] considered the two-species amensalism model with Michaelis–
Menten type harvesting and a cover for the first species; the modified model takes the
following:

dx
dt

= a1x – b1x2 – c1(1 – k)xy –
qE(1 – k)x

m1E + m2(1 – k)x
,

dy
dt

= a2y – b2y2.
(1.4)

Here, x and y denote the population density of the two species at time t, and k is the refuge
(0 < k < 1). When the parameters satisfy certain conditions, saddle-node bifurcation and
transcritical bifurcation will occur in the system, and the maximum threshold of species
without extinction risk under continuous fishing is obtained. Scholars’ research shows
that compared with the linear harvesting model, the Michaelis–Menten harvesting type
model can not only reflect the harvesting process more realistically, but also show richer
dynamic behavior.

Nevertheless, to the best of our knowledge, no scholars have proposed and studied the
dynamic behaviors of the two-species competitive model with Michaelis–Menten type
harvesting. So in this paper, based on model (1.1), we propose the following system:

dx
dt

= r1x
(

1 –
x
k1

)
– α1xy –

q1Ex
m1E + h1x

,

dy
dt

= r1y
(

1 –
y
k2

)
– α2xy,

(1.5)
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where r1, r2, k1, k2, α1, α2, q1, m1, h1, and E are all positive. For simplicity, we make the
following nondimensional scheme:

t̄ = r1t, x̄ =
1
k1

x, ȳ =
1
k2

y.

Dropping the bars, we have the following system:

dx
dt

= x
(

1 – x – a1y –
b1

c1 + x

)
,

dy
dt

= ρy(1 – y – a2x),
(1.6)

where a1 = α1k2
r1

, b1 = q1E
k1r1h1

, c1 = m1E
h1k1

, ρ = r2
r1

, a2 = k1α2
r2

, and the initial conditions

x(0) = x0 > 0, y(0) = y0 > 0. (1.7)

Biologically, we consider system (1.6) is defined on the set

R+
0 × R+

0 =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0
}

.

The organization of this paper is as follows. The basic properties of the model are dis-
cussed in the next section. We analyze the existence of the equilibria of the system in
Sect. 3. The local stability of the equilibria of the system are investigated in Sect. 4. We
consider the global stability of the positive equilibrium in Sect. 5. The possible bifurcation
of the system is studied in Sect. 6. Numerical simulation is presented to show the feasibil-
ity of theoretical results in Sect. 7, and a brief discussion of our results is given in the last
section.

2 Basic properties of the model
Lemma 2.1 ([38]) When a, b > 0 and dx

dt ≤ (≥)x(t)(a – bx(t)) with x(0) > 0, then

lim sup
t→+∞

x(t) ≤ a
b

(
lim inf
t→+∞ x(t) ≥ a

b

)
.

Definition 2.1 System (1.6) is said to be permanent if there exist two constants m and M
(0 < m < M) such that each positive solution (x(t, x0, y0), y(t, x0, y0)) of system (1.6) under
the initial condition (x0, y0) ∈ Int(R2

+) satisfies

min
{

lim inf
t→+∞ x(t, x0, y0), lim inf

t→+∞ y(t, x0, y0)
}

≥ m,

max
{

lim sup
t→+∞

x(t, x0, y0), lim sup
t→+∞

y(t, x0, y0)
}

≤ M.

Theorem 2.1 All solutions (x(t), y(t)) of system (1.6) are positive under initial condition
(1.7), i.e., x(t) > 0, y(t) > 0 for all t ≥ 0.

Proof Since

x(t) = x(0) exp

{∫ t

0

(
1 – x(s) – a1y(s) –

b1

c1 + x(s)

)
ds

}
> 0
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and

y(t) = y(0) exp

{∫ t

0
ρ
(
1 – y(s) – a2x(s)

)
ds

}
> 0.

So x(t) > 0, y(t) > 0 for all t ≥ 0 with initial condition (1.7).
This completes the proof. �

Theorem 2.2 All solutions (x(t), y(t)) of system (1.6) that satisfy initial condition (1.7) are
bounded, for all t ≥ 0.

Proof Based on the positivity of variable x, y, from system (1.6), we have

dx
dt

= x
(

1 – x – a1y –
b1

c1 + x

)
≤ x(1 – x). (2.1)

From Lemma 2.1, we can obtain

lim sup
t→+∞

x(t) ≤ 1. (2.2)

Meanwhile, from system (1.6), we have

dy
dt

= ρy(1 – y – a2x) ≤ ρy(1 – y). (2.3)

Again from the same Lemma 2.1, we can get

lim sup
t→+∞

y(t) ≤ 1. (2.4)

This completes the proof. �

Theorem 2.3 Assume that a1 + b1
c1

< 1, 0 < a2 < 1, system (1.6) is permanent with initial
condition (1.7).

Proof From (2.2) and (2.4), for ε > 0 small enough, there is T > 0 such that, for t > T , we
have

x(t) ≤ 1 + ε, y(t) ≤ 1 + ε.

Then from the first equation of system (1.6), one could get

dx
dt

= x
(

1 – x – a1y –
b1

c1 + x

)
≥ x

(
1 – a1(1 + ε) –

b1

c1
– x

)
.

From Lemma 2.1, when 1 – a1(1 + ε) – b1
c1

> 0, we can get

lim inf
t→+∞ x(t) ≥ 1 – a1(1 + ε) –

b1

c1
.
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Let ε → 0 in this inequality, we can obtain

lim inf
t→+∞ x(t) ≥ 1 – a1 –

b1

c1
= ω1.

In the same way, we can obtain the following results for y(t):

lim inf
t→+∞ y(t) ≥ ω2,

where ω2 = 1 – a2 > 0, i.e., 0 < a2 < 1. So we choose m = min(ω1,ω2), M = 1.
This completes the proof. �

3 The existence of equilibria
The equilibria of system (1.6) are determined by the following equations:

x
(

1 – x – a1y –
b1

c1 + x

)
= 0,

ρy(1 – y – a2x) = 0.
(3.1)

Obviously, system (1.6) always has two boundary equilibria E0(0, 0) and E1(0, 1) for all
parameters. For other possible boundary equilibria and positive equilibria, we consider
the following cases:

(i) When x �= 0, y = 0, the other boundary equilibria of system (1.6) satisfy the following
equation:

x2 – (1 – c1)x + b1 – c1 = 0. (3.2)

Let �1 denote the discriminant with express �1 in terms of b1, i.e.,

�1(b1) = (1 + c1)2 – 4b1.

If the equilibria for system (1.6) exist, then �1(b1) ≥ 0, i.e.,
(H1) b1 ≤ 1+c1

4 := b∗
1 ,

and

x21 =
1 – c1 –

√
�1(b1)

2
, x22 =

1 – c1 +
√

�1(b1)
2

.

If (1 – c1)2 = �1(b1), one could calculate that
(H2) b1 = c1.

Therefore, we can calculate that
(H3) if b1 > c1, then (1 – c1)2 > �1(b1);
(H4) if b1 < c1, then (1 – c1)2 < �1(b1).
Besides, we have c1 ≤ b∗

1 and c1 = b∗
1 if and only if c1 = 1.

From conditions (H1), (H2), (H3), and (H4), we can get that:
(1) If 0 < b1 < c1, x21 < 0, x22 > 0.
(2) If b1 = c1, when 0 < c1 < 1, x21 = 0, x22 > 0; when c1 = 1, x21 = x22 = 0; when c1 > 1,

x21 < 0, x22 = 0.
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(3) If c1 < b1 < b∗
1, when 0 < c1 < 1, x21 > 0, x22 > 0; when c1 > 1, x21 < 0, x22 < 0.

(4) If b1 = b∗
1, when 0 < c1 < 1, x23 > 0.

(5) If b1 > b∗
1, system (1.6) has no other boundary equilibria.

(ii) When x �= 0, y �= 0, the possible positive equilibria of system (1.6) are determined by
the following equation:

1 – x – a1y –
b1

c1 + x
= 0,

1 – y – a2x = 0,
(3.3)

i.e.,

Ax2 – Bx + C = 0, (3.4)

where A = a1a2 – 1, B = a1 + c1 – a1a2c1 – 1, C = c1 – a1c1 – b1.
Let the discriminant of (3.4) be denoted by �2, i.e.,

�2 = B2 – 4AC = (–c1A – a1 + 1)2 + 4b1A.

It is obvious that �2 > 0 if A > 0.
When �2 ≥ 0, the existence of positive equilibria of system (1.6), and

x31 =
B –

√
�2

2A
, x32 =

B +
√

�2

2A
. (3.5)

(6) If �2 > 0, let us discuss the following cases:
Case 1: When (a) A > 0, B > 0, C < 0 or (b) A > 0, B < 0, C < 0, then x∗ = x32 > 0, x31 < 0

and system (1.6) has only one positive equilibrium E∗(x∗, y∗) = (x∗, 1 – a2x∗) if 1
a2

> x∗.
Case 2: When (c) A < 0, B > 0, C > 0 or (d) A < 0, B < 0, C > 0, then x∗ = x31 > 0, x32 < 0

and system (1.6) has only one positive equilibrium E∗(x∗, y∗) = (x∗, 1 – a2x∗) if 1
a2

> x∗.
Case 3: When A < 0, B < 0, C < 0, then x31 > x32 > 0 and system (1.6) has two positive

equilibria:

E31(x31, y31) = (x31, 1 – a2x31)

and

E32(x32, y32) = (x32, 1 – a2x32).

Both E31 and E32 will exist if 1
a2

> max{x31, x32}.
Case 4: When A > 0, B < 0, C = 0, then x32 = 0 > x31 and system (1.6) has no positive

equilibria.
Case 5: When A < 0, B > 0, C = 0, then x31 = 0 > x32 and system (1.6) has no positive

equilibria.
Case 6: When A < 0, B < 0, C = 0, then x31 > 0 = x32 and system (1.6) has only one positive

equilibrium E31(x31, y31) = (x31, 1 – a2x31) if 1
a2

> x31.
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(7) If �2 = 0, B < 0, then x31 = x32 = x33 > 0 and system (1.6) has only one positive equi-
librium E33(x33, y33) = ( B

2A , 1 – a2
B

2A ) if 1
a2

> B
2A .

(8) If �2 < 0, then system (1.6) has no positive equilibria.
From what has been discussed above, we can get the following theorem.

Theorem 3.1 System (1.6) always has two boundary equilibria E0(0, 0) and E1(0, 1) for all
parameters. The other possible boundary equilibria and positive equilibria are as follows:

(i) For other possible boundary equilibria:
(1) If 0 < b1 < c1, system (1.6) has only one other boundary equilibrium E22(x22, 0).
(2) If b1 = c1 and 0 < c1 < 1, system (1.6) has only one other boundary equilibrium

E22(x22, 0).
(3) If c1 < b1 < b∗

1 and 0 < c1 < 1, system (1.6) has two other boundary equilibria
E21(x21, 0) and E22(x22, 0).

(4) If b1 = b∗
1 and 0 < c1 < 1, system (1.6) has only one other boundary equilibrium

E23(x23, 0).
(5) If b1 > b∗

1 , system (1.6) has no other boundary equilibria.
(ii) For positive boundary equilibria:

(6) If �2 ≥ 0, we have the following.
(a) When A > 0, B > 0, C < 0 or A > 0, B < 0, C < 0 or A < 0, B < 0, C ≥ 0 or

A < 0, B > 0, C > 0, then system (1.6) has only one positive equilibrium
E∗(x∗, y∗) if 1

a2
> x∗.

(b) When A < 0, B < 0, C < 0, then system (1.6) has two positive equilibria
E31(x31, y31) and E32(x32, y32) if 1

a2
> max{x31, x32}.

(7) If �2 = 0, then system (1.6) has only one positive equilibrium E33(x33, y33).
(8) If �2 < 0, then system (1.6) has no positive equilibria.

4 Stability of equilibria
Theorem 4.1 For the boundary equilibria E0 and E1 of system (1.6), which always exist,
we have:

(1) E0 is always unstable.
(2) For E1, we have the following results:

(a) If b1 < c1(1 – a1), E1 is a saddle;
(b) If b1 > c1(1 – a1), E1 is a stable node;
(c) If b1 < c1(1 – a1), E1 is a saddle node with a1a2 – 1 + 1–a1

c1
�= 0; E1 is a saddle with

a1a2 – 1 + 1–a1
c1

= 0.

Proof Firstly, we calculate the Jacobi matrix of system (1.6):

J(x, y) =

(
1 – 2x – a1y – b1c1

(c1+x)2 –a1x
–ρa2y ρ(–a2x – 2y + 1)

)

. (4.1)

(1) The Jacobian matrix of system (1.6) at E0 is

J(E0) =

(
1 – b1

c1
0

0 ρ

)

. (4.2)

Obviously, the eigenvalues of J(E0) are λ1 = 1 – b1
c1

and λ2 = ρ > 0, so E0 is always unstable.



Yu et al. Advances in Difference Equations        (2020) 2020:397 Page 9 of 25

(2) The Jacobian matrix of system (1.6) at E1 is given by

J(E1) =

(
1 – a1 – b1

c1
0

–ρa2 –ρ

)

. (4.3)

It is obvious that the eigenvalues of J(E1) are λ1 = 1–a1 – b1
c1

and λ2 = –ρ < 0, so the stability
of J(E1) depends on λ1. E1 is a saddle if b1 < c1(1 – a1) and a stable node if b1 > c1(1 – a1).
When b1 = c1(1 – a1), we cannot directly come to the conclusion.

Let us first move E1 to the origin by transforming (X, Y ) = (x, y – 1) and make Taylor’s
expansion around the origin, under which system (1.6) is as follows:

dX
dt

=
(

b1

c2
1

– 1
)

x2 – a1xy –
b1

c3
1

x3 +
b1

c4
1

x4,

dY
dt

= –ρa2x – ρy – ρy2 – ρa2xy.

(4.4)

Next, making the following transformation

(
X
Y

)

=

(
a2 0

–a2
2 –a2

)(
X1

Y1

)

, (4.5)

and letting τ = ρt, system (4.4) becomes

dX1

dτ
= a01X1Y1 + a02X2

1 + a03X3
1 + P1(X1, Y1),

dY1

dτ
= Y1 + b01X1Y1 + b02X2

1 + b03Y 2
1 + b04X3

1 + Q1(X1, Y1) := P(X1, Y1),
(4.6)

where

a01 = –
a1a2

ρ
, a02 =

a2(c1(a1a2 – 1) + 1 – a1)
ρc1

, a03 = –
b1a2

2

ρc3
1

,

b01 =
a2

2(a1 – ρ)
ρ

, b02 = –
a2

2(c1(a1a2 – 1) + 1 – a1)
ρc1

, b03 = a1, b04 =
b1a3

2

ρc3
1

.

And P1(X1, Y1) and Q1(X1, Y1) are power series in (X1, Y1) with terms Xi
1Y j

1 satisfying
i + j ≥ 4.

From the implicit function theorem, there exists a function Y1 = ϕ(X1) that satisfies
ϕ(0) = 0 and P(X1,ϕ(X1)) = 0. By using the second equation of system (4.6), we can ob-
tain

Y1 = ϕ(X1) = –b02X2
1 + o

(
X3

1
)
. (4.7)

Substituting (4.7) into the first equation of system (4.6),we have

dX1

dτ
= a02X2

1 –
(

a01b02 +
a2

2(1 – a1)
ρc2

1

)
X3

1 + · · · .
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By Theorem 7.1 in Chap. 2 in [39], when a02 �= 0, i.e., m = 2, E1 is a saddle node; when
a02 = 0, then we have m = 3, am = a2

2(a1–1)
ρc2

1
< 0 and E1 is a saddle.

This completes the proof. �

Theorem 4.2 Assume that other boundary equilibria E21, E22, and E23 of system (1.6) exist,
we have:

(1) E21 is always unstable.
(2) For E22, we have the following results:

(a) If 1
a2

> x22, E22 is a saddle;
(b) If 1

a2
< x22, E22 is a stable node;

(c) If 1
a2

= x22, E22 is a saddle node.
(3) If a2(c1 – 1) �= –2, E23 is a saddle node; on the contrary, E23 consists of a hyperbolic

sector and an elliptic sector.

Proof When other boundary equilibrium points exist, we have

1 – x2i – a1y2i –
b1

c1 + x2i
= 0,

here, i = 1, 2, 3.
So (4.1) can be written as

J(E2i) =

(
x2i

(c1+x2i)2 (b1 – (c1 + x2i)2) –a1x2i

0 ρ(1 – a2x2i)

)

. (4.8)

(1) It is easy to get from (4.8) that the eigenvalues of J(E21) are λ1 = x21
(c1+x21)2 (b1 – (c1 +

x21)2) and λ2 = ρ(1 – a2x21), while

λ1 =
x21

(c1 + x21)2

(
b1 – (c1 + x21)2)

=
x21

√
1(b1)(
√
1(b1) + 4b1 –

√
1(b1))
2(c1 + x21)2 > 0,

so E21 is unstable.
(2) From (4.8), one could obtain λ1 = x22

(c1+x22)2 (b1 – (c1 + x22)2) and λ2 = ρ(1 – a2x22) are
the eigenvalues of J(E22); nevertheless,

λ1 =
x22

(c1 + x22)2

(
b1 – (c1 + x22)2)

=
–x22

√
1(b1)(
√
1(b1) + 4b1 +

√
1(b1))
2(c1 + x22)2 < 0,

so the stability of J(E22) depends on λ2. If λ2 > 0, i.e., 1
a2

> x22, then E22 is a saddle; if λ2 < 0,
i.e., 1

a2
< x22, then E22 is a stable node; if λ2 = 0, i.e., 1

a2
= x22, it is difficult for us to draw the

conclusion.
Now, let us use Theorem 7.1 in Chap. 2 in [39] to determine its stability. First of all, we

make transformation (X, Y ) = (x – x22, y) to move E22 to the original, and then expand in
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power series up to the third order around the origin, which makes the system as follows:

dX
dt

= c01X – Y – a1XY + c02X2 + c03X3,

dY
dt

= –ρa2XY – ρY 2,
(4.9)

where c01 = x22( b1
(c1+x22)2 – 1), c02 = b1c1

(c1+x22)3 – 1, c03 = – b1c1
(c1+x22)4 .

Next, we make the following transformation:

(
X
Y

)

=

(
1 –1
0 –c01

)(
X2

Y2

)

, (4.10)

and let τ = c01t, system (4.9) becomes

dX2

dτ
= X2 + d01X2Y2 + d02X2

2 + d03Y 2
2 + P2(X2, Y2) := P(X2, Y2),

dY2

dτ
= e01X2Y2 + e02Y 2

2 + Q2(X2, Y2),
(4.11)

where d01 = a1c01–ρa2–2c02
c01

, d02 = c02
c01

, d03 = ρ – a1 + c02+ρa2
c01

, e01 = – ρa2
c01

, e02 = ρ( a2
c01

+ 1), and
P2(X2, Y2) and Q2(X2, Y2) are power series in (X2, Y2) with terms Xi

2Y j
2 satisfying i + j ≥ 3.

According to the implicit function theorem, there is a function X2 = ϕ(Y2) such that
ϕ(0) = 0 and P(ϕ(Y2), Y2) = 0. From the first equation of system (4.11), we have

X2 = ϕ(Y2) = –d03Y 2
2 + o

(
Y 3

2
)
. (4.12)

Substituting (4.12) into the second equation of system (4.11), we can get

dY2

dτ
= e02Y 2

2 + · · · .

By Theorem 7.1 in Chap. 2 in [39], because e02 > 0 and E22 is the saddle node.
(3) From (4.8) and x23 = 1–c1

2 , one could get the eigenvalues of J(E23) are λ1 = 0 and
λ2 = ρ(1–a2x23). In order to get the stability of E23, firstly, we make transformation (X, Y ) =
(x – x23, y23) to move E23 to the original, and then expand in power series up to the third
order around the origin, which makes the system as follows:

dX
dt

= a01Y + a02XY + a03X2 + a04X3,

dY
dt

= b01Y + b02XY + b03Y 2,
(4.13)

where a01 = a1(c1–1)
2 , a02 = –a1, a03 = c1–1

c1+1 , a04 = –4c1
(c1+1)2 , b01 = a2(c1–1)+2

2 , b02 = –a2ρ , b03 = –ρ .
Secondly, we discuss it in two cases.

Case 1: If λ2 �= 0, the stability of E23 can be proved by the same method in Theorem 4.2(2),
so E23 is a saddle node if x23 �= 1

a2
.
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Case 2: If λ2 = 0, let τ = – a1
a2

t, then system (4.13) becomes

dX
dτ

= Y + a2XY + c01X2 + c02X3 + P3(X, Y ) := P(X, Y ),

dY
dτ

= d01XY + d02Y 2 + Q3(X, Y ).
(4.14)

Here, c01 = 2
a1(c1+1) , c02 = 4a2c1

a1(c1+1)2 , d01 = ρa2
2

a1
, d02 = ρa2

a1
, and P3(X, Y ) and Q3(X, Y ) are power

series in (X, Y ) with terms XiY j satisfying i + j ≥ 3.
According to the implicit function theorem, there is a function Y = ϕ(X) such that ϕ(0) =

0 and P(X,ϕ(X)) = 0. From the first equation of system (4.14), we have

Y = ϕ(X) =
a2(c1 – 1)
a1(c1 + 1)

X2 + o
(
X3). (4.15)

Substituting (4.15) into the second equation of system (4.14),we can get

dY
dτ

=
a3

2ρ(c1 – 1)
a2

1(c1 + 1)
X3 + · · ·

and

v(X) =
a2

a1

(
2(1 – c1)

1 + c1
+ ρa2

)
X + · · · .

By Theorem 7.3 in Chap. 2 in [39], because k = 2m + 1 = 3, m = 1, ak = a3
2ρ(c1–1)
a2

1(c1+1) < 0,

N = 1, BN = a2
a1

( 2(1–c1)
1+c1

+ ρa2) > 0, λ = B2
N + 4(m + 1)a2m+1 = ( a2

a1
( 2(1–c1)

1+c1
– ρa2))2 > 0, then E23

consists of a hyperbolic sector and an elliptic sector.
This completes the proof. �

Theorem 4.3 When the positive equilibria exist, we have:
(1) E31 is a stable node.
(2) E32 is a saddle.
(3) E33 is a saddle node.

Proof Notice that when the positive equilibria exist, (4.1) can be simplified as follows:

J(E3i) =

(
x3i( b1

(c1+x3i)2 – 1) –a1x3i

–ρa2y3i –ρy3i

)

, (4.16)

where i = 1, 2, 3.
Thus,

tr J(E3i) = x3i

(
b1

(c1 + x3i)2 – 1
)

– ρy3i,

det J(E3i) = –ρx3iy3i

(
b1

(c1 + x3i)2 – 1
)

– ρa1a2x3iy3i

= –ρx3iy3i

(
b1

(c1 + x3i)2 – 1 + a1a2

)
.
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Using

1 – x3i – a1y3i –
b1

c1 + x3i
= 0

and

1 – y3i – a2x3i = 0,

we have

det J(E3i) =
–ρx3iy3i

c1 + x3i
(2Ax3i – B).

(1) According to (3.5), we get that

det J(E32) =
–ρx32y32

√
2

c1 + x32
< 0,

so E32 is a saddle.
(2) Similarly, we have

det J(E31) =
ρx31y31

√
2

c1 + x31
> 0.

Therefore, we consider the sign of tr J(E31). Let N(x) = b1
(c1+x)2 – 1, x ∈ (0, +∞), then we have

dN(x)
dx

=
–2b1

(c1 + x)3 < 0.

Note that N(x) is monotonically decreasing in the interval (0, +∞). It is clear that

0 < x32 < x33 < x31

and

N(x33) =
b1

(c1 + x33)2 – 1 = –a1a2 < 0.

So we can obtain N(x31) < 0, and it is easy to calculate that

tr J(E31) = x31N(x31) – ρy31 < 0.

The above analysis shows that E31 is a stable node.
(3) From x33 = B

2A , we can get

det J(E33) =
–ρx33y33

c1 + x33

(
2A ∗ B

2A
– B

)
= 0,

tr J(E33) = x33

(
b1

(c1 + x33)2 – 1
)

– ρy33

= –a1a2x33 – ρy33 < 0,
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Figure 1 E31(x31, y31) is a stable node, E32(x32, y32) is
a saddle, and the red line is the separatrix

Figure 2 E31(x31, y31) is a stable node, E32(x32, y32) is
a saddle, and the red line is the separatrix. Figure 2 is
an enlarged version of Fig. 1

so the eigenvalues of J(E33) are λ1 < 0 and λ2 = 0, we use the same method as Theo-
rem 4.2(2) and easily get E33 is a saddle node.

In order to verify the above results, let a1 = 0.4, a2 = 2, b1 = 1.51, c1 = 2.5, ρ = 1. By simple
computation, we have A < 0, B < 0, C < 0, and �2 > 0, E31(0.3618, 0.27639) is a stable node,
E32(0.138197, 0.72361) is a saddle. From Fig. 1, it is easy to get the red line that divides the
first quadrant into two parts, recorded as I (left one) and II (right one). Assume that the
initial conditions are located in region I, all the solutions tend to E1(0, 1) which is a stable
manifold and E32(0.138197, 0.72361) is an unstable manifold. From the biological point of
view, when the initial values are located in region I, the first species will be driven to ex-
tinction. On the contrary, assume that the initial conditions are located in region II, all the
solutions tend to E31(0.3618, 0.27639) which is a stable manifold, E32(0.138197, 0.72361)
and E22(0.49599, 0) are unstable manifolds. From the biological point of view, when the
initial values are located in region II, two species can always coexist. This is the bistable
phenomenon which is shown in Figs. 1 and 2.

This completes the proof. �

Theorem 4.4 For the unique positive equilibrium that exists for system (1.6), our results
are as follows:

(1) When A > 0, B > 0, C < 0 or A > 0, B < 0, C < 0 or A < 0, B < 0, C ≥ 0, E∗ is a saddle;
(2) When A < 0, B > 0, C > 0, E∗ is a stable node.
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Proof Through the discussion in Theorem 4.3, we can get

det J
(
E∗) =

–ρx∗y∗

c1 + x∗
(
2Ax∗ – B

)
,

tr J
(
E∗) = x∗

(
b1

(c1 + x∗)2 – 1
)

– ρy∗

=
x∗

c1 + x∗
(
(A – 1)x∗ – (B + a1a2c1)

)
– ρy∗.

In order to analyze the stability of E∗, let us consider the functions

f (x) = 2Ax – B

and

g(x) = (A – 1)x – (B + a1a2c1).

Next let us discuss them in different cases:
Case 1: When A > 0, B > 0, C < 0 or A > 0, B < 0, C < 0, note that x∗ = x32 > B

2A , thus it is
easy for us to get f (x∗) > 0, i.e., det J(E∗) < 0, so E∗ is a saddle.

Case 2: When A < 0, B < 0, C ≥ 0, we have x∗ = x31 < B
2A , which gives f (x∗) > 0, i.e.,

det J(E∗) < 0, so E∗ is a saddle.
Case 3: When A < 0, B > 0, C > 0, we have x∗ = x31 > 0, which implies that f (x∗) < 0,

g(x∗) < 0, i.e., det J(E∗) > 0, tr J(E∗) < 0, so E∗ is a stable node.
In order to verify the above results, let a1 = 0.6, a2 = 2, b1 = 0.42, c1 = 0.4, ρ = 1. By

simple computation, we have A > 0, B < 0, C < 0. E∗(x∗, y∗) and E21(0.03542, 0) are saddle,
E1(0, 1) and E22(0.56458, 0) are stable nodes. From Fig. 3, it is easy to get the red line that
divides the first quadrant into two parts, recorded as I (left one) and II (right one). Assume
that the initial conditions are located in region I, all the solutions tend to E1(0, 1) which
is a stable manifold, E∗(x∗, y∗) and E21(0.03542, 0) are unstable manifolds. From the bio-
logical point of view, when the initial values are located in region I, the first species will
be driven to extinction. On the contrary, assume that the initial conditions are located in
region II, all the solutions tend to E22(0.56458, 0) which is a stable manifold, E∗(x∗, y∗) and
E21(0.03542, 0) are unstable manifolds. From the biological point of view, when the initial

Figure 3 E∗(x∗ , y∗) is a saddle, the red line is the
separatrix
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values are located in region II, the second species will be driven to extinction. This is the
bistable phenomenon which is shown in Fig. 3.

This completes the proof. �

5 Global stability of equilibrium
Theorem 5.1 When E∗ is locally stable, which is globally asymptotically stable.

Proof We will adapt the idea of Yu [40] to prove Theorem 5.1. More precisely, we will
consider a Lyapunov function

V (x, y) =
(
c1 + x∗)

(
x – x∗ – x∗ ln

x
x∗

)
+ ρa2

(
y – y∗ – y∗ ln

y
y∗

)
.

It is easy to see that the function V (x, y) is zero at the equilibrium E∗(x∗, y∗), which is
positive everywhere in the first quadrant except at E∗. Then the time derivative of V (x, y)
along the trajectories of (1.6) is

D+V (t) =
(
c1 + x∗)x – x∗

x

(
x
(

1 – x – a1y –
b1

c1 + x

))

+ ρa2
y – y∗

y
(
ρy(1 – y – a2x)

)

=
(
c1 + x∗)(x – x∗)

(
x∗ + a1y∗ +

b1

c1 + x∗ – x – a1y –
b1

c1 + x

)

+ ρ2a2
(
y – y∗)(y∗ + a2x∗ – y – a2x

)

=
(
x – x∗)2

(
b1

c1 + x
–

(
c1 + x∗)

)
– ρ2a2

(
y – y∗)2

–
(
a1

(
c1 + x∗) + ρa2

2
)(

x – x∗)(y – y∗)

<
(
x – x∗)2

(
b1

c1
– c1

)
– ρ2a2

(
y – y∗)2.

Note that B > 0, C > 0 when E∗ exists, and we have b1
c1

< 1 – a1 < c1(1 – a1a2), i.e.,
b1
c1

– c1 < 0, so one could obtain D+V (t) < 0 strictly for all x, y > 0 except the equilibrium
E∗(x∗, y∗), where D+V (t) = 0. Hence, V (x, y) satisfies Lyapunov’s asymptotic stability theo-
rem, then the equilibrium E∗(x∗, y∗) of system (1.6) is globally asymptotically stable. From
the biological point of view, two species can always coexist (see Fig. 4).

This completes the proof. �

6 Bifurcation analysis
In this section, we are interested in studying the various possible bifurcations of system
(1.6). From Theorem 3.1, we know that system (1.6) may undergo saddle-node bifurcation
at E23 and E23, respectively, and transcritical bifurcation around the equilibria E0 and E1,
which is a very interesting phenomenon.

6.1 Saddle-node bifurcation
From Theorem 3.1, it is easy to find that when c1 < b1 < b∗

1 and 0 < c1 < 1 the system has
two different boundary equilibria, which may coincide if b1 = b∗

1 and 0 < c1 < 1 or which
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Figure 4 E∗(x∗ , y∗) is globally asymptotically stable

Figure 5 Dynamics behaviors of system (1.6)

may disappear if b1 > b∗
1. The emergence or appearance of the equilibria is due to the

saddle-node bifurcation at E23 (see Fig. 5 and Fig. 6).

Theorem 6.1 System (1.6) undergoes a saddle-node bifurcation around E23 when b1 =
b1SN = (1+c1)2

4 and 0 < c1 < 1, where b1 is the bifurcation parameter.



Yu et al. Advances in Difference Equations        (2020) 2020:397 Page 18 of 25

Figure 6 Dynamics behaviors of system (1.6)

Proof By the proof of Theorem 4.2, we have an eigenvalue of J(E23) that is zero, named
λ1. Let V1 and W1 represent the eigenvectors of λ1 for the matrices J(E23) and J(E23)T ,
respectively. After simple calculation, we have

V1 =

(
V11

V12

)

=

(
1
0

)

; W1 =

(
W11

W12

)

=

(
1

a1(1–c1)
ρ(a2(c1–1)+2)

)

.

Moreover,

Fb1 (E23; b1SN ) =

(
–x

c1+x
0

)

x=x23

=

(
c1–1
c1+1
0

)

,

D2F(E23; b1SN )(V1, V1) =

⎛

⎝
∂2F1
∂x2 V 2

11 + 2 ∂2F1
∂x ∂y V11V12 + ∂2F1

∂2y V 2
12

∂2F2
∂x2 V 2

11 + 2 ∂2F2
∂x ∂y V11V12 + ∂2F2

∂2y V 2
12

⎞

⎠

(E23;b1SN )

=

(
2b1c1

(c1+x23)3 – 2
0

)

.
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Figure 7 Dynamics behaviors of system (1.6)

Clearly, we can get that V1 and W1 satisfy

W T
1 Fb1 (E23; b1SN ) =

c1 – 1
c1 + 1

�= 0,

W T
1

[
D2F(E23; b1SN )(V1, V1)

]
=

2(c1 – 1)
c1 + 1

�= 0.

This implies that when b1 = b1SN , the saddle-node bifurcation occurs at E23.
This completes the proof. �

Similarly, the conditions for the existence of positive equilibria of system (1.6) are given
in Theorem 3.1, and we could find that when �2 > 0, A < 0, B < 0, C < 0, the system has two
different positive equilibria, which may coincide if �2 = 0 and A < 0, B < 0 or which may
disappear if �2 < 0. The emergence or appearance of the equilibria is due to the saddle-
node bifurcation at E33 (see Fig. 5 (a) and Fig. 7).

Theorem 6.2 System (1.6) undergoes a saddle-node bifurcation around E33 when b1 = ˜b1SN

and A < 0, B < 0, where b1 is the bifurcation parameter.

Proof By the proof of Theorem 4.3, we know that an eigenvalue of J(E23) is zero, named
λ1. Let V2 and W2 represent the eigenvectors of λ1 for the matrices J(E33) and J(E33)T ,
respectively. After simple calculation, we have

V2 =

(
V21

V22

)

=

(
1

–a2

)

; W2 =

(
W21

W22

)

=

(
1

–a1x33
ρy33

)

.

Moreover,

Fb1 (E33; b1SN ) =

(
–x

c1+x
0

)

x=x33

=

(
–x33

c1+x33

0

)

,



Yu et al. Advances in Difference Equations        (2020) 2020:397 Page 20 of 25

D2F(E33; b1SN )(V2, V2) =

⎛

⎝
∂2F1
∂x2 V 2

21 + 2 ∂2F1
∂x ∂y V21V22 + ∂2F1

∂2y V 2
22

∂2F2
∂x2 V 2

21 + 2 ∂2F2
∂x ∂y V21V22 + ∂2F2

∂2y V 2
22

⎞

⎠

(E33;b1SN )

=

(
2( b1c1

(c1+x33)3 + a1a2 – 1)
0

)

.

So, we can obtain V2 and W2 satisfy

W T
2 Fb1 (E33; b1SN ) =

–x33

c1 + x33
�= 0,

W T
2

[
D2F(E33; b1SN )(V2, V2)

]
=

AB
2(a1 – 1) – B

�= 0,

which means that when b1 = b1SN , the saddle-node bifurcation occurs at E33.
This completes the proof. �

6.2 Transcritical bifurcation
Through the discussion of Theorem 3.1, we find an interesting phenomenon: when b1 = c1,
E21 will coincide with E0 if 0 < c1 < 1; E22 will coincide with E0 if c1 > 1. Therefore, the
emergence of this phenomenon is owing to the transcritical bifurcation at E0 (see Fig. 8).
Then we obtain the following.

Theorem 6.3 System (1.6) undergoes a transcritical bifurcation around E0 with b1 as a
bifurcation parameter, when b1 = b1SN = c1.

Proof Here, we use Sotomayor’s theorem to verify the transversality conditions for trans-
critical bifurcation. The Jacobian matrix of system (1.6) evaluated at the point E0 is given
by (3.2). Obviously, the eigenvalue λ1 = 0 of J(E0) if b1 = c1. Let V3 and W3 be the eigen-
vectors of J(E0) and J(E0)T corresponding to λ1 = 0, respectively. Then we can obtain

V3 =

(
V31

V32

)

=

(
1
0

)

, W3 =

(
W31

W32

)

=

(
–1
0

)

.

Furthermore,

Fb1 (E0; b1TC) =

(
–x

c1+x
0

)

x=x0

=

(
0
0

)

,

DFb1 (E0; b1TC)V3 =

(
–c1

(c1+x)2 0
0 0

)(
1
0

)

(E0;b1TC )

=

(
– 1

c1

0

)

,

D2F(E0; b1TC)(V3, V3) =

⎛

⎝
∂2F1
∂x2 V 2

31 + 2 ∂2F1
∂x ∂y V31V32 + ∂2F1

∂2y V 2
32

∂2F2
∂x2 V 2

31 + 2 ∂2F2
∂x ∂y V31V32 + ∂2F2

∂2y V 2
32

⎞

⎠

(E0;b1TC )

=

(
2( 1

c1
– 1)

0

)

.
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Figure 8 The phase portraits of transcritical bifurcation of system (1.6) around E0

Thus, we have

W T
3 Fb1 (E0; b1TC) = 0,

W T
3

[
DFb1 (E0; b1TC)V3

]
=

1
c1

�= 0,

W T
3

[
D2F(E0; b1TC)(V3, V3)

]
= 2

(
1 –

1
c1

)
�= 0.

So from Sotomayor’s theorem system (1.6) undergoes a transcritical bifurcation at E0.
This completes the proof. �

In the same way, for the positive equilibria of system (1.6), when b1 = c1(1–a1) and A < 0,
E32 will coincide with E1 if B > 0; E31 will coincide with E1 if B < 0. Hence, the appearance
of this phenomenon is owing to the transcritical bifurcation at E1 (see Fig. 9). Then we can
get the following.

Theorem 6.4 System (1.6) undergoes a transcritical bifurcation around E1 with b1 as a
bifurcation parameter, when b1 = b1SN = c1(1 – a1) and A < 0.
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Figure 9 The phase portraits of transcritical bifurcation of system (1.6) around E1

Proof Here, we use Sotomayor’s theorem to verify the transversality conditions for tran-
scritical bifurcation. The Jacobian matrix of system (1.6) evaluated at the point E1 is
given by (3.2). Clearly, the eigenvalue λ1 = 0 of J(E1) if b1 = c1(1 – a1). Let V4 and W4

be the eigenvectors of J(E1) and J(E1)T corresponding to λ1 = 0, respectively. Then we can
get

V4 =

(
V41

V42

)

=

(
1

–a2

)

, W4 =

(
W41

W42

)

=

(
1
0

)

.

Furthermore,

Fb1 (E1; b1TC) =

(
–x

c1+x
0

)

x=x1

=

(
0
0

)

,

DFb1 (E1; b1TC)V4 =

(
–c1

(c1+x)2 0
0 0

)(
1

–a2

)

(E1;b1TC )

=

(
– 1

c1

0

)

,
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D2F(E1; b1TC)(V4, V4) =

⎛

⎝
∂2F1
∂x2 V 2

41 + 2 ∂2F1
∂x ∂y V41V42 + ∂2F1

∂2y V 2
42

∂2F2
∂x2 V 2

41 + 2 ∂2F2
∂x ∂y V41V42 + ∂2F2

∂2y V 2
42

⎞

⎠

(E1;b1TC )

=

(
– 2B

c1

0

)

.

Thus, we have

W T
4 Fb1 (E1; b1TC) = 0,

W T
4

[
DFb1 (E1; b1TC)V4

]
= –

1
c1

�= 0,

W T
4

[
D2F(E1; b1TC)(V4, V4)

]
= –

2B
c1

�= 0.

So from Sotomayor’s theorem system (1.6) undergoes a transcritical bifurcation at E1.
This completes the proof. �

7 Numeric simulations
Now, let us give the following examples to illustrate the main results.

Example 7.1 Let a1 = 0.6, a2 = 1, b1 = 0.4, c1 = 1.2, ρ = 1, then we have E∗ is globally
asymptotically stable (Fig. 4).

Example 7.2 Let a1 = 0.5, c1 = 0.5, ρ = 1, by simple computation, we have:
(1) For a2 = 1, b1 = 0.6, we get b∗

1 = 0.375 < b1, �2 = –0.6375 < 0, and the system has no
other boundary equilibria and positive equilibria.

(2) For a2 = 3, we get E23 is a saddle.
(3) For a2 = 4, we get E23 consists of a hyperbolic sector and an elliptic sector.
Figure 5 shows the above results.

Example 7.3 Let a1 = 2, a2 = 2.5, c1 = 0.5, ρ = 1, by simple computation, we have 1
a2

= 0.4,
(1) For b1 = 0.55, we get x22 = 0.3618 < 1

a2
and E22 is a saddle, E21 is unstable.

(2) For b1 = 0.54, we get x22 = 0.4 = 1
a2

and E22 is a saddle node, E21 is unstable.
(3) For b1 = 0.52, we get x22 = 0.4562 > 1

a2
and E22 is a stable node, E21 is unstable.

Figure 6 shows the above results.

Example 7.4 Let a1 = 0.4, a2 = 2, c1 = 2.5, ρ = 1, we have:
(1) For b1 = 1.5125, we get �2 = 0 and the unique positive equilibrium E33 is a saddle

node.
(2) For b1 = 1.51, we get �2 > 0 and E31 is a stable node, E32 is a saddle.
Figure 7 shows the above results.

Example 7.5 Let a1 = 2, a2 = 2, ρ = 1, by simple computation, we have:
(1) For b1 = 0.4, c1 = 0.4, we get E21 coincides with E0.
(2) For b1 = 1, c1 = 1, we get both E21 and E22 coincide with E0.
(3) For b1 = 1.5, c1 = 1.5, we get E22 coincides with E0.
Figure 8 shows that system (1.6) undergoes transcritical bifurcation at E0.
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Example 7.6 Let a1 = 0.4, a2 = 2, ρ = 1, by simple computation, we have:
(1) For c1 = 2.8, we get b1 = 1.68 and E32 coincide with E1.
(2) For c1 = 3, we get b1 = 1.8 and both E31 and E32 coincide with E1.
(3) For c1 = 4, we get b1 = 2.4 and E31 coincides with E1.
Figure 9 shows that system (1.6) undergoes transcritical bifurcation at E1.

8 Conclusion
In this paper, we have considered a two-species competitive system with Michaelis–
Menten type harvesting. The model shows rich dynamic behaviors. We have studied the
permanence condition of the system, and by analyzing the stability of the system equilib-
ria, we obtained that the system cannot collapse for any parameter value as the origin is
always unstable. In addition, from the global asymptotic stability of the positive equilib-
rium, it can be seen that two species can coexist stably under appropriate conditions. We
also get that there are two different cases of bistability in the system: on the one hand, a
boundary equilibrium and a positive equilibrium are globally asymptotically stable; on the
other hand, the two boundary equilibria are globally asymptotically stable.

Qualitative analysis indicates that Michaelis–Menten type harvesting plays an impor-
tant role in the dynamic behaviors and bifurcations of the system. Firstly, the parame-
ters b1 and c1 of the Michaelis–Menten type harvesting term will affect the number and
stability of the system equilibria, compared with system (1.1), the boundary equilibria
and positive equilibria of system (1.6) are both increased. Secondly, from the Michaelis–
Menten type harvesting term h(x) = b1x

c1+x , we know that system (1.6) is supplementary to
system (1.1). Because system (1.6) becomes unharvested situation if b1 = 0, system (1.6)
becomes constant harvested situation if c1 = 0. Thirdly, we give a strict proof of the bi-
furcation of system (1.6) by Sotomayor’s theorem, which has important ecological signif-
icance. Through saddle-node bifurcation and transcritical bifurcation, one could obtain
the maximum threshold without extinction risk of species in continuous harvest. This
provides important reference for decision makers to make reasonable strategies to ensure
the sustainable development of ecosystem and maximize economic benefits.
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