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Abstract
This paper proposes and analyzes a CTL-mediated HIV infection model. The model
describes the interaction between healthy CD4+T cells, silent infected cells, active
infected cells, free HIV particles, and cytotoxic T lymphocytes (CTLs). The healthy
CD4+T cells can be infected when contacted by one of the following: (i) free HIV
particles, (ii) silent infected cells, and (iii) active infected cells. The incidence rates of
the healthy CD4+T cells with free HIV particles, silent infected cells, and active infected
cells are given by general functions. Moreover, the production/proliferation and
removal/death rates of all compartments are represented by general functions. The
model is an improvement of the existing HIV infection models which have neglected
the incidence between the silent infected cells and healthy CD4+T cells. We first show
that the model is well posed. The proposed model has three equilibria and their
existence is governed by derived two threshold parameters: the basic HIV
reproduction number �0 and the HIV-specific CTL-mediated immunity reproduction
number �1. Under a set of conditions on the general functions and the parameters
�0 and �1, we have proven the global asymptotic stability of all equilibria by using
Lyapunov method. We have illustrated the theoretical results via numerical
simulations. We have studied the effect of cell-to-cell (CTC) transmission on the
dynamical behavior of the system. We have shown that inclusion of CTC transmission
decreases the concentration of healthy CD4+T cells and increases the concentrations
of infected cells and free HIV particles.

Keywords: HIV infection; Cell-to-cell spread; Global stability; Silent infected cells;
CTL-mediated immune response; Lyapunov function

1 Introduction
Acquired immunodeficiency syndrome (AIDS) is one of the fatal human diseases which
is caused by human immunodeficiency virus (HIV). HIV infects the healthy (uninfected)
CD4+T cells which play a crucial role in the immune system. HIV-specific cytotoxic T
lymphocytes (CTLs) kill the HIV-infected cells. On the other side, B cells generate spe-
cific antibodies which in turn neutralize the viruses. Therefore, the HIV infection can be
controlled for long period up to 10 years [1]. However, during this period of time the con-
centration of healthy CD4+T cells declines. When the concentration of the CD4+T cells
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reaches below 200 cells/mm3, the patient is said to have progressed to AIDS. During the
last decades, mathematical modeling of a within-host HIV infection has witnessed a sig-
nificant development. Moreover, mathematical analysis of the HIV dynamics models has
also become one of the most important and fundamental approaches for understanding
the within-host HIV dynamics [2–11]. Nowak and Bangham [2] introduced an HIV in-
fection model which describes the interaction between healthy CD4+T cells (S), active
HIV-infected cells (I), free HIV particles (V ), and HIV-specific CTLs (C):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṡ = ρ – αS – ηSV ,

İ = ηSV – aI – μCI,

V̇ = bI – εV ,

Ċ = σCI – πC.

(1)

The healthy CD4+T cells are generated at specific constant rate ρ and die at rate αS. The
term ηSV refers to the rate at which new infectious appears by virus-cell contact between
free HIV particles and healthy CD4+T cells. The active HIV-infected cells die at rate aI .
The term μCI is the killing rate of active HIV-infected cells due to their HIV-specific CTL-
mediated immunity. The free HIV particles are generated at rate bI and cleared from the
plasma at rate εV . The proliferation rate of the effective HIV-specific CTLs is given by
σCI . The term πC represents the decay rate of the CTLs. HIV infection models with
CTL-mediated immune response have been investigated in many papers (see e.g. [2, 12–
16]).

Model (1) has been formulated based on the assumption that HIV can only spread by
virus-to-cell (VTC) transmission. However, several works have reported that there is an-
other mode of transmission called cell-to-cell (CTC) where HIV can be transmitted di-
rectly from an infected cell to a healthy CD4+T cell through the formation of virological
synapses (see e.g. [17–20]). Sourisseau et al. [21] showed that CTC transmission plays an
efficient role in the HIV replication. Sigal et al. [22] demonstrated the importance of CTC
transmission in the HIV infection process during the antiviral treatment. Iwami et al. [19]
showed that more than 50% of HIV infections are due to CTC transmission. The effects of
both VTC and CTC transmissions on the virus dynamics have been addressed in several
works (see e.g. [23–29]. Moreover, virus dynamics models with CTL-mediated immunity
and both VTC and CTC transmissions have been investigated in [30, 31].

It is known that current anti-retroviral drugs can suppress HIV replication to a low level
but cannot enucleate HIV from the body. One of the main reasons of this fact is the pres-
ence of silent (latent) CD4+T infected cells where the HIV provirus can reside [32, 33].
Silent HIV-infected cells live long, but they can be activated to produce new HIV particles
[34]. Silent HIV-infected cells have been included in the virus dynamics models with both
VTC and CTC transmissions in [35–39]. In a recent interesting discovery [40], it has been
shown that both silent and active infected cells can infect the healthy CD4+T cells through
CTC mechanism. In the literature, the viral infection models with CTC transmission and
silent infected cells have assumed that the CTC transmission only occurs due to the active
infected cells. In a very recent work, Wang et al. [41] formulated a viral infection model
by assuming that both silent and active infected cells can participate in CTC infection.
However, in [41], the immune response has not been considered.
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In the present paper, we first formulate an HIV infection model with CTL-mediated
immune response and both VTC and CTC transmissions. The CTC transmission is due
to the contact of healthy CD4+T cells with silent or active HIV-infected cells. The in-
cidence rates of the healthy CD4+T cells with free HIV particles, silent HIV-infected
cells, and active HIV-infected cells are given by general functions. Moreover, the produc-
tion/proliferation and removal/death rates of all compartments are represented by general
functions. We show that the model is well posed by establishing that the solutions of the
model are nonnegative and bounded. We derive two threshold parameters which deter-
mine the existence and stability of the three equilibria. Global stability of all equilibria is
proven by formulating Lyapunov functions and utilizing LaSalle’s invariance principle. We
perform some numerical simulations to illustrate the strength of our theoretical results.

2 Model formulation
We formulate an HIV infection model by assuming that the HIV virions can replicate by
two mechanisms, VTC and CTC transmissions. The CTC infection has two sources: (i) the
contact between healthy CD4+T cells and silent HIV-infected cells and (ii) the contact
between healthy CD4+T cells and active HIV-infected cells. Under these assumptions we
propose a model that contains five compartments: healthy CD4+T cells (S), silent HIV-
infected cells (L), active HIV-infected cells (I), free HIV particles (V ), and HIV-specific
CTLs (C).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = �(S) – ℵ1(S, V ) – ℵ2(S, L) – ℵ3(S, I),

L̇ = ℵ1(S, V ) + ℵ2(S, L) + ℵ3(S, I) – (λ + γ )J1(L),

İ = λJ1(L) – aJ2(I) – μJ4(C)J2(I),

V̇ = bJ2(I) – εJ3(V ),

Ċ = σJ4(C)J2(I) – πJ4(C).

(2)

Here, (S, L, I, V , C) = (S(t), L(t), I(t), V (t), C(t)), where t is the time. Function �(S) refers to
the intrinsic growth rate of healthy CD4+T cells accounting for both production and natu-
ral mortality. The model assumes nonlinear general forms of virus-cell, silent cell-cell, and
active cell-cell incidence rates of infection as ℵ1(S, V ), ℵ2(S, L), and ℵ3(S, I), respectively.
The terms λJ1(L) and γJ1(L) are the rates of silent HIV-infected cells that become active
and the natural death of the silent HIV-infected cells, respectively. The term μJ4(C)J2(I)
is the killing rate of active HIV-infected cells due to their specific CTL-mediated immunity.
The proliferation and death rates for effective HIV-specific CTLs are given by σJ4(C)J2(I)
and πJ4(C), respectively. The free HIV particles are generated at rate bJ2(I) and die at
rate εJ3(V ). All parameters and their definitions are summarized in Table 1. The func-
tions �, ℵi, i = 1, 2, 3, and Jk , k = 1, 2, 3, 4, are continuously differentiable and satisfy the
following conditions [42–44].

Condition (H1)
(i) There exists S0 such that �(S0) = 0 and �(S) > 0 for S ∈ [0, S0);

(ii) �′(S) < 0 for all S > 0;
(iii) There are ρ > 0 and α0 > 0 such that �(S) ≤ ρ – α0S for S ≥ 0.
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Table 1 Parameters of model (2) and their interpretations

Symbol Biological meaning

γ Death rate constant of silent HIV-infected cells
a Death rate constant of active HIV-infected cells
μ Killing rate constant of active HIV-infected cells due to their specific

CTL-mediated immunity
λ Transmission rate constant of silent HIV-infected cells that become active

HIV-infected cells
b Generation rate constant of new HIV particles
ε Death rate constant of free HIV particles
σ Proliferation rate constant of HIV-specific CTLs
π Decay rate constant of HIV-specific CTLs

Condition (H2)
(i) ℵi(S, U) > 0 and ℵi(0, U) = ℵi(S, 0) = 0 for all S > 0, U > 0, i = 1, 2, 3;

(ii) ∂ℵi(S,U)
∂S > 0, ∂ℵi(S,U)

∂U > 0, and ∂ℵi(S,U)
∂U |U=0 > 0 for all S > 0, U > 0, i = 1, 2, 3;

(iii) d
dS ( ∂ℵi(S,U)

∂U |U=0) > 0 for all S > 0, i = 1, 2, 3.

Condition (H3)
(i) Jk(x) > 0 for all x > 0, Jk(0) = 0, k = 1, 2, 3, 4;

(ii) J ′
k (x) > 0 for all x > 0, k = 1, 2, 3, 4. Further, J ′

k (0) > 0, k = 1, 2, 3;
(iii) There are αk > 0 such that Jk(x) ≥ αkx for all x ≥ 0, k = 1, 2, 3, 4.

Condition (H4) ∂
∂V ( ℵ1(S,V )

J3(V ) ) ≤ 0, ∂
∂L ( ℵ2(S,L)

J1(L) ) ≤ 0, and ∂
∂I ( ℵ3(S,I)

J2(I) ) ≤ 0 for allS, L, I , V > 0.

3 Well-posedness of solutions
Let Ωj > 0, j = 1, 2, 3, and define

Θ =
{

(S, L, I, V , C) ∈R
5
≥0 : 0 ≤ S(t), L(t), I(t) ≤ Ω1, 0 ≤ V (t) ≤ Ω2, 0 ≤ C(t) ≤ Ω3

}
. (3)

Proposition 1 Suppose that Conditions (H1)–(H3) are satisfied. Then the compact set Θ

is positively invariant for system (2).

Proof We have

Ṡ|S=0 = �(0) > 0,

L̇|L=0 = ℵ1(S, V ) + ℵ3(S, I) ≥ 0 for all S, V , I ≥ 0,

İ|I=0 = λJ1(L) ≥ 0 for all L ≥ 0,

V̇ |V =0 = bJ2(I) ≥ 0 for all I ≥ 0,

Ċ|C=0 = 0.

This ensures that (S(t), L(t), I(t), V (t), C(t)) ∈ R
5≥0 for all t ≥ 0 when (S(0), L(0), I(0), V (0),

C(0)) ∈R
5≥0. To show the boundedness of all state variables, we let

Ψ = S + L + I +
a

2b
V +

μ

σ
C.



Elaiw and AlShamrani Advances in Difference Equations        (2020) 2020:355 Page 5 of 25

Then

Ψ̇ = �(S) – γJ1(L) –
a
2
J2(I) –

aε

2b
J3(V ) –

μπ

σ
J4(C)

≤ ρ – α0S – γα1L –
aα2

2
I –

aεα3

2b
V –

μπα4

σ
C

≤ ρ – φ

(

S + L + I +
a

2b
V +

μ

σ
C

)

= ρ – φΨ ,

where φ = min{α0,γα1, aα2
2 , εα3,πα4}. Hence, 0 ≤ Ψ (t) ≤ Ω1 if Ψ (0) ≤ Ω1 for t ≥ 0, where

Ω1 = ρ

φ
. Since S, L, I , V , and C are all nonnegative, then 0 ≤ S(t), L(t), I(t) ≤ Ω1, 0 ≤ V (t) ≤

Ω2, and 0 ≤ C(t) ≤ Ω3 if S(0) + L(0) + I(0) + a
2b V (0) + μ

σ
C(0) ≤ Ω1, where Ω2 = 2bΩ1

a and
Ω3 = σΩ1

μ
. �

4 Equilibria
In this section, we study the equilibria of the model and derive the conditions for their
existence. Model (2) always admits an infection-free equilibrium Ð0 = (S0, 0, 0, 0, 0), where
�(S0) = 0. This case describes the situation of healthy state where the HIV infection is
absent. The other equilibria can be computed by letting the right-hand side of system (2)
be equal to zero as follows:

0 = �(S) – ℵ1(S, V ) – ℵ2(S, L) – ℵ3(S, I), (4)

0 = ℵ1(S, V ) + ℵ2(S, L) + ℵ3(S, I) – (λ + γ )J1(L), (5)

0 = λJ1(L) – aJ2(I) – μJ4(C)J2(I), (6)

0 = bJ2(I) – εJ3(V ), (7)

0 =
(
σJ2(I) – π

)
J4(C). (8)

From Eq. (8) we have two possibilities:
(i) J4(C) = 0, which leads to C1 = 0. From Eqs. (4)–(7), we get

�(S) = ℵ1(S, V ) + ℵ2(S, L) + ℵ3(S, I) = (λ + γ )J1(L)

=
a(λ + γ )

λ
J2(I) =

aε(λ + γ )
bλ

J3(V ). (9)

Condition (H3) implies that J –1
k exists, is continuous and strictly increasing. From Eq. (9),

we obtain

L = f1(S), I = f2(S), V = f3(S), (10)

where

f1(S) = J –1
1

( �(S)
λ + γ

)

, f2(S) = J –1
2

(
λ�(S)

a(λ + γ )

)

, f3(S) = J –1
3

(
bλ�(S)

aε(λ + γ )

)

.

Obviously, from Condition (H1), fi(S) > 0 for all S ∈ [0, S0) and fi(S0) = 0, i = 1, 2, 3. Let us
define

F1(S) = ℵ1
(
S, f3(S)

)
+ ℵ2

(
S, f1(S)

)
+ ℵ3

(
S, f2(S)

)
–

aε(λ + γ )
bλ

J3
(
f3(S)

)
.
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Then from Conditions (H1)–(H3), we have

F1(0) = –
aε(λ + γ )

bλ
J3

(
f3(0)

)
< 0, F1(S0) = 0.

Moreover,

F ′
1(S) =

∂ℵ1

∂S
+ f ′

3(S)
∂ℵ1

∂V
+

∂ℵ2

∂S
+ f ′

1(S)
∂ℵ2

∂L
+

∂ℵ3

∂S
+ f ′

2(S)
∂ℵ3

∂I

–
aε(λ + γ )

bλ
J ′

3
(
f3(S)

)
f ′
3(S),

F ′
1(S0) =

∂ℵ1(S0, 0)
∂S

+ f ′
3(S0)

∂ℵ1(S0, 0)
∂V

+
∂ℵ2(S0, 0)

∂S
+ f ′

1(S0)
∂ℵ2(S0, 0)

∂L

+
∂ℵ3(S0, 0)

∂S
+ f ′

2(S0)
∂ℵ3(S0, 0)

∂I
–

aε(λ + γ )
bλ

J ′
3(0)f ′

3(S0).

Condition (H2) implies that ∂ℵi(S0,0)
∂S = 0, i = 1, 2, 3. Also, from Condition (H3), we have

J ′
3(0) > 0, then

F ′
1(S0) =

aε(λ + γ )
bλ

J ′
3(0)f ′

3(S0)
[

bλ∂ℵ1(S0, 0)/∂V
aε(λ + γ )J ′

3(0)

+
bλf ′

1(S0)∂ℵ2(S0, 0)/∂L
aε(λ + γ )J ′

3(0)f ′
3(S0)

+
bλf ′

2(S0)∂ℵ3(S0, 0)/∂I
aε(λ + γ )J ′

3(0)f ′
3(S0)

– 1
]

.

From Eqs. (9) and (10), we obtain

F ′
1(S0) = �′(S0)

[
bλ∂ℵ1(S0, 0)/∂V
aε(λ + γ )J ′

3(0)
+

∂ℵ2(S0, 0)/∂L
(λ + γ )J ′

1(0)
+

λ∂ℵ3(S0, 0)/∂I
a(λ + γ )J ′

2(0)
– 1

]

.

From Condition (H1), we have �′(S0) < 0. Therefore, if bλ∂ℵ1(S0,0)/∂V
aε(λ+γ )J ′

3(0) + ∂ℵ2(S0,0)/∂L
(λ+γ )J ′

1(0) +
λ∂ℵ3(S0,0)/∂I
a(λ+γ )J ′

2(0) > 1, then F ′
1(S0) < 0 and there exists S1 ∈ (0, S0) such that F1(S1) = 0. From

Eq. (10) and Condition (H3), we have

L1 = J –1
1

(�(S1)
λ + γ

)

> 0, I1 = J –1
2

(
λ�(S1)

a(λ + γ )

)

> 0, V1 = J –1
3

(
bλ�(S1)
aε(λ + γ )

)

> 0.

It follows that Ð1 = (S1, L1, I1, V1, 0) exists when

bλ∂ℵ1(S0, 0)/∂V
aε(λ + γ )J ′

3(0)
+

∂ℵ2(S0, 0)/∂L
(λ + γ )J ′

1(0)
+

λ∂ℵ3(S0, 0)/∂I
a(λ + γ )J ′

2(0)
> 1.

At the equilibrium Ð1 the chronic HIV infection persists, while the CTL-mediated im-
mune response is unstimulated. In order to state the threshold dynamics of infection-free
equilibrium, it is necessary to define the basic HIV reproduction number �0 of the model.
If the antiviral drugs are taken into account in that HIV dynamics model, then �0 can
be used to determine the minimum drug efficacy which stabilizes the system around the
infection-free equilibrium and clears the viruses from the body. The basic HIV repro-
duction number of model (2) can be calculated by different methods such as (i) the next-
generation matrix method of van den Driessche and Watmough [45], (ii) local stability of
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the infection-free equilibrium, and (iii) the existence of the chronic HIV infection equi-
librium with inactive CTL-mediated immune response. In the present paper we derive �0

by method (iii) as follows:

�0 = �01 + �02 + �03,

where

�01 =
bλ

aε(λ + γ )J ′
3(0)

∂ℵ1(S0, 0)
∂V

,

�02 =
1

(λ + γ )J ′
1(0)

∂ℵ2(S0, 0)
∂L

,

�03 =
λ

a(λ + γ )J ′
2(0)

∂ℵ3(S0, 0)
∂I

.

The parameter �0 determines whether or not the infection will be chronic. In fact, �01

measures the average number of secondary HIV-infected cells caused by an existing free
HIV particle due to VTC transmission, while �02 and �03 measure the average numbers
of secondary HIV-infected cells caused by living silent and active HIV-infected cell, re-
spectively, due to CTC transmission. Thus, Ð1 = (S1, L1, I1, V1, 0) exists when �0 > 1. We
call Ð1 chronic HIV infection equilibrium with inactive CTL-mediated immune response.

(ii) J2(I) = π
σ

, which leads to I2 = J –1
2 ( π

σ
). From Eqs. (4)–(6) we get

�(S) = ℵ1(S, V ) + ℵ2(S, L) + ℵ3(S, I) = (λ + γ )J1(L) =
λ + γ

λ

(
a + μJ4(C)

)
J2(I). (11)

According to Condition (H3) and from Eq. (7), we have

V2 = J –1
3

(
bJ2(I2)

ε

)

= J –1
3

(
bπ

εσ

)

> 0.

From Eq. (11), we get

L = J –1
1

( �(S)
λ + γ

)

= f4(S). (12)

Obviously, from Condition (H1) we have f4(S) > 0 for all S ∈ [0, S0) and f4(S0) = 0. Let
V = V2 and I = I2, and using Eq. (12) in Eq. (4), define

F2(S) = �(S) – ℵ1(S, V2) – ℵ2
(
S, f4(S)

)
– ℵ3(S, I2) = 0.

Conditions (H1) and (H2) imply that F2(0) = �(0) > 0 and F2(S0) = –[ℵ1(S0, V2) +
ℵ2(S0, I2)] < 0. Thus, there exists S2 ∈ (0, S0) such that F2(S2) = 0. From Eq. (12) and Con-
dition (H3), we obtain

L2 = J –1
1

(�(S2)
λ + γ

)

> 0.



Elaiw and AlShamrani Advances in Difference Equations        (2020) 2020:355 Page 8 of 25

Further, from Eq. (11), we have

C2 = J –1
4

(
a
μ

[
σλ{ℵ1(S2, V2) + ℵ2(S2, L2) + ℵ3(S2, I2)}

aπ (λ + γ )
– 1

])

.

Clearly, C2 > 0 when σλ[ℵ1(S2,V2)+ℵ2(S2,L2)+ℵ3(S2,I2)]
aπ (λ+γ ) > 1. Now we define the HIV-specific CTL-

mediated immunity reproduction number as follows:

�1 =
σλ[ℵ1(S2, V2) + ℵ2(S2, L2) + ℵ3(S2, I2)]

aπ (λ + γ )

=
λ[ℵ1(S2, V2) + ℵ2(S2, L2) + ℵ3(S2, I2)]

a(λ + γ )J2(I2)

=
bλℵ1(S2, V2)

aε(λ + γ )J3(V2)
+

λℵ2(S2, L2)
a(λ + γ )J2(I2)

+
λℵ3(S2, I2)

a(λ + γ )J2(I2)
.

Thus, C2 = J –1
4 ( a

μ
(�1 –1)). The parameter �1 determines whether or not the HIV-specific

CTL-mediated immune response is stimulated. Therefore, Ð2 = (S2, L2, I2, V2, C2) exists
when �1 > 1. We call Ð2 chronic HIV infection equilibrium with active CTL-mediated
immune response.

From the above discussion we have the following result.

Lemma 1 Suppose that Conditions (H1)–(H3) hold true, then there exist two positive
threshold parameters �0 and �1 such that

(i) if �0 ≤ 1, then there exists only one equilibrium Ð0;
(ii) if �1 ≤ 1 < �0, then there exist only two equilibria Ð0 and Ð1; and

(iii) if �1 > 1, then there exist three equilibria Ð0, Ð1, and Ð2.

5 Global stability analysis
In this section, we prove the global asymptotic stability of all equilibria by constructing
Lyapunov functional following the method presented in [46–49]. Define

�1(S) = lim
V→0+

ℵ1(S, V )
J3(V )

, �2(S) = lim
L→0+

ℵ2(S, L)
J1(L)

, �3(S) = lim
I→0+

ℵ3(S, I)
J2(I)

. (13)

From Conditions (H2) and (H3), we obtain

�1(S) =
1

J ′
3(0)

∂ℵ1(S, 0)
∂V

> 0,

�2(S) =
1

J ′
1(0)

∂ℵ2(S, 0)
∂L

> 0,

�3(S) =
1

J ′
2(0)

∂ℵ3(S, 0)
∂I

> 0 for any S > 0.

Moreover,

�
′
i(S) > 0, i = 1, 2, 3. (14)
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Therefore, the parameter �0 can be rewritten as

�0 =
bλ�1(S0)
aε(λ + γ )

+
�2(S0)
λ + γ

+
λ�3(S0)
a(λ + γ )

.

To investigate the next theorem, we need the following condition [50].

Condition (H5)
(i) The supremum of �2(S)

�1(S) is achieved at S = S0 for all S ∈ (0, S0];
(ii) The supremum of �3(S)

�1(S) is achieved at S = S0 for all S ∈ (0, S0].

Theorem 1 Let �0 ≤ 1 and Conditions (H1)–(H5) be satisfied, then Ð0 is globally asymp-
totically stable (G.A.S.).

Proof Construct a Lyapunov functional candidate:

Φ0(S, L, I, V , C) = S – S0 –
∫ S

S0

�1(S0)
�1(θ )

dθ + L +
b�1(S0) + ε�3(S0)

aε
I

+
�1(S0)

ε
V +

μ(b�1(S0) + ε�3(S0))
σaε

C.

We note that Φ0(S, L, I, V , C) > 0 for all S, L, I, V , C > 0, and Φ0(S0, 0, 0, 0, 0) = 0. We calcu-
late dΦ0

dt along the solutions of model (2) as follows:

dΦ0

dt
=

(

1 –
�1(S0)
�1(S)

)
(
�(S) – ℵ1(S, V ) – ℵ2(S, L) – ℵ3(S, I)

)
+ ℵ1(S, V ) + ℵ2(S, L)

+ ℵ3(S, I) – (λ + γ )J1(L)

+
b�1(S0) + ε�3(S0)

aε

(
λJ1(L) – aJ2(I) – μJ4(C)J2(I)

)

+
�1(S0)

ε

(
bJ2(I) – εJ3(V )

)
+

μ(b�1(S0) + ε�3(S0))
σaε

(
σJ4(C)J2(I) – πJ4(C)

)

= �(S)
(

1 –
�1(S0)
�1(S)

)

+ ℵ1(S, V )
�1(S0)
�1(S)

+ ℵ2(S, L)
�1(S0)
�1(S)

+ ℵ3(S, I)
�1(S0)
�1(S)

– (λ + γ )J1(L) +
λ(b�1(S0) + ε�3(S0))

aε
J1(L) – �3(S0)J2(I) – �1(S0)J3(V )

–
μπ (b�1(S0) + ε�3(S0))

σaε
J4(C). (15)

From Condition (H4) and Eq. (13), we get

ℵ1(S, V )
J3(V )

≤ lim
V→0+

ℵ1(S, V )
J3(V )

= �1(S),

ℵ2(S, L)
J1(L)

≤ lim
L→0+

ℵ2(S, L)
J1(L)

= �2(S),

ℵ3(S, I)
J2(I)

≤ lim
I→0+

ℵ3(S, I)
J2(I)

= �3(S).
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Then we obtain

ℵ1(S, V ) ≤ �1(S)J3(V ), ℵ2(S, L) ≤ �2(S)J1(L), ℵ3(S, I) ≤ �3(S)J2(I).

Therefore, Eq. (15) will become

dΦ0

dt
≤ �(S)

(

1 –
�1(S0)
�1(S)

)

+
�1(S0)�2(S)

�1(S)
J1(L) +

�1(S0)�3(S)
�1(S)

J2(I)

– (λ + γ )J1(L) +
λ(b�1(S0) + ε�3(S0))

aε
J1(L) – �3(S0)J2(I)

–
μπ (b�1(S0) + ε�3(S0))

σaε
J4(C)

= �(S)
(

1 –
�1(S0)
�1(S)

)

+
[
�1(S0)�3(S)

�1(S)
– �3(S0)

]

J2(I)

+ (λ + γ )
[
�1(S0)�2(S)
(λ + γ )�1(S)

+
λ(b�1(S0) + ε�3(S0))

aε(λ + γ )
– 1

]

J1(L)

–
μπ (b�1(S0) + ε�3(S0))

σaε
J4(C). (16)

Condition (H5) implies that

�1(S0)�2(S)
�1(S)

≤ �1(S0)
�2(S0)
�1(S0)

= �2(S0),

�1(S0)�3(S)
�1(S)

≤ �1(S0)
�3(S0)
�1(S0)

= �3(S0) for 0 < S ≤ S0.
(17)

Substituting inequality (17) into Eq. (16) and using �(S0) = 0, we get

dΦ0

dt
≤ (

�(S) – �(S0)
)
(

1 –
�1(S0)
�1(S)

)

+ (λ + γ )
[

λb�1(S0)
aε(λ + γ )

+
�2(S0)
λ + γ

+
λ�3(S0)
a(λ + γ )

– 1
]

J1(L)

–
μπ (b�1(S0) + ε�3(S0))

σaε
J4(C)

=
(
�(S) – �(S0)

)
(

1 –
�1(S0)
�1(S)

)

+ (λ + γ )(�0 – 1)J1(L)

–
μπ (b�1(S0) + ε�3(S0))

σaε
J4(C).

Conditions (H1), (H2) and Eq. (14) provide that �(S) is a strictly decreasing function of S,
while �1(S) is a strictly increasing function of S. Then

(
�(S) – �(S0)

)
(

1 –
�1(S0)
�1(S)

)

≤ 0.

Therefore, dΦ0
dt ≤ 0 for all S, L, I, V , C > 0 with equality holding when S = S0 and L = C = 0.

Let Υ0 = {(S, L, I, V , C) : dΦ0
dt = 0} and Υ ′

0 be the largest invariant subset of Υ0. Therefore, the
solutions of system (2) converge to Υ ′

0 [51]. The set Υ ′
0 is invariant and contains elements
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which satisfy S(t) = S0 and L(t) = C(t) = 0. Then Ṡ(t) = 0 and L̇(t) = Ċ(t) = 0. From the third
and fourth equations of system (2), we have

İ = –aJ2(I), (18)

V̇ = bJ2(I) – εJ3(V ). (19)

Let us define a Lyapunov function as follows:

Φ̃0 = I +
a

2b
V .

Therefore, the time derivative of Φ̃0 along the solutions of system (18)–(19) can be calcu-
lated as follows:

dΦ̃0

dt
= –

a
2

(

J2(I) +
ε

b
J3(V )

)

≤ 0.

Utilizing Condition (H3) it is clear that dΦ̃0
dt = 0 if and only if I(t) = V (t) = 0 for all t. Let

Υ ′′
0 = {(S, L, I, V , C) ∈ Υ ′

0 : dΦ̃0
dt = 0}. Then Υ ′′

0 = {(S, L, I, V , C) ∈ Υ ′
0 : S = S0, L = I = V = C =

0} = {Ð0}. Hence, all solution trajectories approach Ð0, and this means that Ð0 is G.A.S.
[51]. �

Remark 1 From Conditions (H2) and (H4), we get

(ℵ1(S, V ) – ℵ1(S, Vi)
)
(ℵ1(S, V )

J3(V )
–

ℵ1(S, Vi)
J3(Vi)

)

≤ 0, S, V , Vi > 0, i = 1, 2,

which leads to

(

1 –
ℵ1(S, Vi)
ℵ1(S, V )

)( ℵ1(S, V )
ℵ1(S, Vi)

–
J3(V )
J3(Vi)

)

≤ 0, S, V , Vi > 0, i = 1, 2. (20)

Define the following functions [50]:

GL
i (S, L) =

ℵ2(S, L)
ℵ1(S, Vi)

, GI
i (S, I) =

ℵ3(S, I)
ℵ1(S, Vi)

, i = 1, 2. (21)

We state the following condition:

Condition (H6)

(i)
(
GL

i (S, L) – GL
i (Si, Li)

)
(GL

i (S, L)
J1(L)

–
GL

i (Si, Li)
J1(Li)

)

≤ 0,

(ii)
(
GI

i (S, I) – GI
i (Si, Ii)

)
(GI

i (S, I)
J2(I)

–
GI

i (Si, Ii)
J2(Ii)

)

≤ 0,

for all L, Li, I , Ii > 0, i = 1, 2, S ∈ (0, S0).



Elaiw and AlShamrani Advances in Difference Equations        (2020) 2020:355 Page 12 of 25

Remark 2 From Condition (H6), we get

(

1 –
GL

i (Si, Li)
GL

i (S, L)

)( GL
i (S, L)

GL
i (Si, Li)

–
J1(L)
J1(Li)

)

≤ 0, S ∈ (0, S0), L, Li, > 0,

(

1 –
GI

i (Si, Ii)
GI

i (S, I)

)( GI
i (S, I)

GI
i (Si, Ii)

–
J2(I)
J2(Ii)

)

≤ 0, S ∈ (0, S0), I, Ii > 0.
(22)

Theorem 2 Suppose that �1 ≤ 1 < �0 and Conditions (H1)–(H4) and (H6) hold true, then
Ð1 is G.A.S.

Proof Define Φ1(S, L, I, V , C) as follows:

Φ1 = S – S1 –
∫ S

S1

ℵ1(S1, V1)
ℵ1(κ, V1)

dκ + L – L1 –
∫ L

L1

J1(L1)
J1(κ)

dκ

+
bJ2(I1)ℵ1(S1, V1) + εJ3(V1)ℵ3(S1, I1)

aεJ2(I1)J3(V1)

(

I – I1 –
∫ I

I1

J2(I)
J2(κ)

dκ
)

+
ℵ1(S1, V1)
εJ3(V1)

(

V – V1 –
∫ V

V1

J3(V1)
J3(κ)

dκ
)

+
μ[bJ2(I1)ℵ1(S1, V1) + εJ3(V1)ℵ3(S1, I1)]

σaεJ2(I1)J3(V1)
C.

Calculate dΦ1
dt as follows:

dΦ1

dt
=

(

1 –
ℵ1(S1, V1)
ℵ1(S, V1)

)
(
�(S) – ℵ1(S, V ) – ℵ2(S, L) – ℵ3(S, I)

)

+
(

1 –
J1(L1)
J1(L)

)
(ℵ1(S, V ) + ℵ2(S, L) + ℵ3(S, I) – (λ + γ )J1(L)

)

+
bJ2(I1)ℵ1(S1, V1) + εJ3(V1)ℵ3(S1, I1)

aεJ2(I1)J3(V1)

(

1 –
J2(I1)
J2(I)

)
(
λJ1(L) – aJ2(I)

– μJ4(C)J2(I)
)

+
ℵ1(S1, V1)
εJ3(V1)

(

1 –
J3(V1)
J3(V )

)
(
bJ2(I) – εJ3(V )

)

+
μ[bJ2(I1)ℵ1(S1, V1) + εJ3(V1)ℵ3(S1, I1)]

σaεJ2(I1)J3(V1)
(
σJ4(C)J2(I) – πJ4(C)

)
. (23)

Collecting terms of Eq. (23) and using the following equilibrium conditions for Ð1

�(S1) = ℵ1(S1, V1) + ℵ2(S1, L1) + ℵ3(S1, I1) = (λ + γ )J1(L1),

λJ1(L1)
a

= J2(I1), J3(V1) =
bJ2(I1)

ε
,

we get

ℵ1(S1, V1) + ℵ3(S1, I1) =
bJ2(I1)ℵ1(S1, V1) + εJ3(V1)ℵ3(S1, I1)

εJ2(I1)J3(V1)
J2(I1)

=
λ[bJ2(I1)ℵ1(S1, V1) + εJ3(V1)ℵ3(S1, I1)]

aεJ2(I1)J3(V1)
J1(L1).
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Further, we obtain

dΦ1

dt
=

(
�(S) – �(S1)

)
(

1 –
ℵ1(S1, V1)
ℵ1(S, V1)

)

+
(ℵ1(S1, V1) + ℵ2(S1, L1) + ℵ3(S1, I1)

)

×
(

1 –
ℵ1(S1, V1)
ℵ1(S, V1)

)

+ ℵ1(S1, V1)
ℵ1(S, V )
ℵ1(S, V1)

+ ℵ2(S1, L1)
ℵ2(S, L)ℵ1(S1, V1)
ℵ2(S1, L1)ℵ1(S, V1)

+ ℵ3(S1, I1)
ℵ3(S, I)ℵ1(S1, V1)
ℵ3(S1, I1)ℵ1(S, V1)

– ℵ2(S1, L1)
J1(L)
J1(L1)

– ℵ1(S1, V1)
ℵ1(S, V )J1(L1)
ℵ1(S1, V1)J1(L)

– ℵ2(S1, L1)
ℵ2(S, L)J1(L1)
ℵ2(S1, L1)J1(L)

– ℵ3(S1, I1)
ℵ3(S, I)J1(L1)
ℵ3(S1, I1)J1(L)

+ ℵ1(S1, V1) + ℵ2(S1, L1) + ℵ3(S1, I1) – ℵ3(S1, I1)
J2(I)
J2(I1)

– ℵ1(S1, V1)
J1(L)J2(I1)
J1(L1)J2(I)

– ℵ3(S1, I1)
J1(L)J2(I1)
J1(L1)J2(I)

+ ℵ1(S1, V1)

+ ℵ3(S1, I1) – ℵ1(S1, V1)
J3(V )
J3(V1)

– ℵ1(S1, V1)
J2(I)J3(V1)
J2(I1)J3(V )

+ ℵ1(S1, V1)

+
μ[bJ2(I1)ℵ1(S1, V1) + εJ3(V1)ℵ3(S1, I1)]

aεJ2(I1)J3(V1)

(

J2(I1) –
π

σ

)

J4(C). (24)

Rearranging Eq. (24), we have

dΦ1

dt
=

(
�(S) – �(S1)

)
(

1 –
ℵ1(S1, V1)
ℵ1(S, V1)

)

+ ℵ1(S1, V1)
[

5 –
ℵ1(S1, V1)
ℵ1(S, V1)

–
ℵ1(S, V )J1(L1)
ℵ1(S1, V1)J1(L)

–
J1(L)J2(I1)
J1(L1)J2(I)

–
J2(I)J3(V1)
J2(I1)J3(V )

–
ℵ1(S, V1)J3(V )
ℵ1(S, V )J3(V1)

]

+ ℵ2(S1, L1)
[

3 –
ℵ1(S1, V1)
ℵ1(S, V1)

–
ℵ2(S, L)J1(L1)
ℵ2(S1, L1)J1(L)

–
ℵ1(S, V1)ℵ2(S1, L1)J1(L)
ℵ1(S1, V1)ℵ2(S, L)J1(L1)

]

+ ℵ3(S1, I1)
[

4 –
ℵ1(S1, V1)
ℵ1(S, V1)

–
ℵ3(S, I)J1(L1)
ℵ3(S1, I1)J1(L)

–
J1(L)J2(I1)
J1(L1)J2(I)

–
ℵ1(S, V1)ℵ3(S1, I1)J2(I)
ℵ1(S1, V1)ℵ3(S, I)J2(I1)

]

+ ℵ1(S1, V1)
[ ℵ1(S, V )
ℵ1(S, V1)

–
J3(V )
J3(V1)

– 1 +
ℵ1(S, V1)J3(V )
ℵ1(S, V )J3(V1)

]

+ ℵ2(S1, L1)
[ ℵ2(S, L)ℵ1(S1, V1)

ℵ2(S1, L1)ℵ1(S, V1)
–

J1(L)
J1(L1)

– 1 +
ℵ1(S, V1)ℵ2(S1, L1)J1(L)
ℵ1(S1, V1)ℵ2(S, L)J1(L1)

]

+ ℵ3(S1, I1)
[ ℵ3(S, I)ℵ1(S1, V1)

ℵ3(S1, I1)ℵ1(S, V1)
–

J2(I)
J2(I1)

– 1 +
ℵ1(S, V1)ℵ3(S1, I1)J2(I)
ℵ1(S1, V1)ℵ3(S, I)J2(I1)

]

+
μ[bJ2(I1)ℵ1(S1, V1) + εJ3(V1)ℵ3(S1, I1)]

aεJ2(I1)J3(V1)
(
J2(I1) – J2(I2)

)
J4(C).

Using the definition of GU
1 (S, U) given in (21), we obtain

ℵ2(S, L)ℵ1(S1, V1)
ℵ2(S1, L1)ℵ1(S, V1)

–
J1(L)
J1(L1)

– 1 +
ℵ1(S, V1)ℵ2(S1, L1)J1(L)
ℵ1(S1, V1)ℵ2(S, L)J1(L1)

=
GL

1 (S, L)
GL

1 (S1, L1)
–

J1(L)
J1(L1)

– 1 +
J1(L)GL

1 (S1, L1)
J1(L1)GL

1 (S, L)
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and

ℵ3(S, I)ℵ1(S1, V1)
ℵ3(S1, I1)ℵ1(S, V1)

–
J2(I)
J2(I1)

– 1 +
ℵ1(S, V1)ℵ3(S1, I1)J2(I)
ℵ1(S1, V1)ℵ3(S, I)J2(I1)

=
GI

1(S, I)
GI

1(S1, I1)
–

J2(I)
J2(I1)

– 1 +
J2(I)GI

1(S1, I1)
J2(I1)GI

1(S, I)
.

Then

dΦ1

dt
=

(
�(S) – �(S1)

)
(

1 –
ℵ1(S1, V1)
ℵ1(S, V1)

)

+ ℵ1(S1, V1)
[

5 –
ℵ1(S1, V1)
ℵ1(S, V1)

–
ℵ1(S, V )J1(L1)
ℵ1(S1, V1)J1(L)

–
J1(L)J2(I1)
J1(L1)J2(I)

–
J2(I)J3(V1)
J2(I1)J3(V )

–
ℵ1(S, V1)J3(V )
ℵ1(S, V )J3(V1)

]

+ ℵ2(S1, L1)
[

3 –
ℵ1(S1, V1)
ℵ1(S, V1)

–
ℵ2(S, L)J1(L1)
ℵ2(S1, L1)J1(L)

–
ℵ1(S, V1)ℵ2(S1, L1)J1(L)
ℵ1(S1, V1)ℵ2(S, L)J1(L1)

]

+ ℵ3(S1, I1)
[

4 –
ℵ1(S1, V1)
ℵ1(S, V1)

–
ℵ3(S, I)J1(L1)
ℵ3(S1, I1)J1(L)

–
J1(L)J2(I1)
J1(L1)J2(I)

–
ℵ1(S, V1)ℵ3(S1, I1)J2(I)
ℵ1(S1, V1)ℵ3(S, I)J2(I1)

]

+ ℵ1(S1, V1)
(

1 –
ℵ1(S, V1)
ℵ1(S, V )

)( ℵ1(S, V )
ℵ1(S, V1)

–
J3(V )
J3(V1)

)

+ ℵ2(S1, L1)
(

1 –
GL

1 (S1, L1)
GL

1 (S, L)

)( GL
1 (S, L)

GL
1 (S1, L1)

–
J1(L)
J1(L1)

)

+ ℵ3(S1, I1)
(

1 –
GI

1(S1, I1)
GI

1(S, I)

)( GI
1(S, I)

GI
1(S1, I1)

–
J2(I)
J2(I1)

)

+
μ[bJ2(I1)ℵ1(S1, V1) + εJ3(V1)ℵ3(S1, I1)]

aεJ2(I1)J3(V1)
(
J2(I1) – J2(I2)

)
J4(C). (25)

The arithmetic–geometric mean inequality ( 1
n
∑n

i=1 χi ≥ n
√∏n

i=1 χi) implies that

ℵ1(S1, V1)
ℵ1(S, V1)

+
ℵ1(S, V )J1(L1)
ℵ1(S1, V1)J1(L)

+
J1(L)J2(I1)
J1(L1)J2(I)

+
J2(I)J3(V1)
J2(I1)J3(V )

+
ℵ1(S, V1)J3(V )
ℵ1(S, V )J3(V1)

≥ 5,

ℵ1(S1, V1)
ℵ1(S, V1)

+
ℵ3(S, I)J1(L1)
ℵ3(S1, I1)J1(L)

+
J1(L)J2(I1)
J1(L1)J2(I)

+
ℵ1(S, V1)ℵ3(S1, I1)J2(I)
ℵ1(S1, V1)ℵ3(S, I)J2(I1)

≥ 4,

ℵ1(S1, V1)
ℵ1(S, V1)

+
ℵ2(S, L)J1(L1)
ℵ2(S1, L1)J1(L)

+
ℵ1(S, V1)ℵ2(S1, L1)J1(L)
ℵ1(S1, V1)ℵ2(S, L)J1(L1)

≥ 3.

We have C2 = J –1
4 ( a

μ
(�1 – 1)) ≤ 0 when �1 ≤ 1. It follows that Ċ(t) = σ (J2(I) – π

σ
)J4(C) =

σ (J2(I(t))–J2(I2))J4(C(t)) ≤ 0 for all C > 0, which implies that J2(I1) ≤ J2(I2). Moreover,
since Φ1 is always positive and approaches its global minimum at Ð1, then from Eq. (25)
we have dΦ1

dt ≤ 0 for all S, L, I, V , C > 0 with equality holding when S = S1, L = L1, I = I1,
V = V1, and C = 0. Let Υ ′

1 be the largest invariant subset of Υ1 = {(S, L, I, V , C) : dΦ1
dt = 0}.

It can be seen that Υ ′
1 = {Ð1} and Ð1 is G.A.S. using LaSalle’s invariance principle. �

Theorem 3 Let �1 > 1 and Conditions (H1)–(H4) and (H6) be satisfied, then Ð2 is G.A.S.
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Proof Define a function Φ2(S, L, I, V , C) as follows:

Φ2 = S – S2 –
∫ S

S2

ℵ1(S2, V2)
ℵ1(κ, V2)

dκ + L – L2 –
∫ L

L2

J1(L2)
J1(κ)

dκ

+
bJ2(I2)ℵ1(S2, V2) + εJ3(V2)ℵ3(S2, I2)

ε(a + μJ4(C2))J2(I2)J3(V2)

(

I – I2 –
∫ I

I2

J2(I)
J2(κ)

dκ
)

+
ℵ1(S2, V2)
εJ3(V2)

(

V – V2 –
∫ V

V2

J3(V2)
J3(κ)

dκ
)

+
μ[bJ2(I2)ℵ1(S2, V2) + εJ3(V2)ℵ3(S2, I2)]

σε(a + μJ4(C2))J2(I2)J3(V2)

(

C – C2 –
∫ C

C2

J4(C2)
J4(κ)

dκ
)

.

We calculate dΦ2
dt as follows:

dΦ2

dt
=

(

1 –
ℵ1(S2, V2)
ℵ1(S, V2)

)
(
�(S) – ℵ1(S, V ) – ℵ2(S, L) – ℵ3(S, I)

)

+
(

1 –
J1(L2)
J1(L)

)
(ℵ1(S, V ) + ℵ2(S, L) + ℵ3(S, I) – (λ + γ )J1(L)

)

+
bJ2(I2)ℵ1(S2, V2) + εJ3(V2)ℵ3(S2, I2)

ε(a + μJ4(C2))J2(I2)J3(V2)

(

1 –
J2(I2)
J2(I)

)

× (
λJ1(L) – aJ2(I) – μJ4(C)J2(I)

)
+

ℵ1(S2, V2)
εJ3(V2)

(

1 –
J3(V2)
J3(V )

)

× (
bJ2(I) – εJ3(V )

)
+

μ[bJ2(I2)ℵ1(S2, V2) + εJ3(V2)ℵ3(S2, I2)]
σε(a + μJ4(C2))J2(I2)J3(V2)

×
(

1 –
J4(C2)
J4(C)

)
(
σJ4(C)J2(I) – πJ4(C)

)
. (26)

Collecting the terms of Eq. (26) and using the equilibrium conditions for Ð2

�(S2) = ℵ1(S2, V2) + ℵ2(S2, L2) + ℵ3(S2, I2) = (λ + γ )J1(L2),

λJ1(L2) =
(
a + μJ4(C2)

)
J2(I2), J2(I2) =

π

σ
, J3(V2) =

bJ2(I2)
ε

,

we obtain

ℵ1(S2, V2) + ℵ3(S2, I2) =
bJ2(I2)ℵ1(S2, V2) + εJ3(V2)ℵ3(S2, I2)

εJ2(I2)J3(V2)
J2(I2)

=
λ[bJ2(I2)ℵ1(S2, V2) + εJ3(V2)ℵ3(S2, I2)]

ε(a + μJ4(C2))J2(I2)J3(V2)
J1(L2).

In addition, we get

dΦ2

dt
=

(
�(S) – �(S2)

)
(

1 –
ℵ1(S2, V2)
ℵ1(S, V2)

)

+
(ℵ1(S2, V2) + ℵ2(S2, L2) + ℵ3(S2, I2)

)

×
(

1 –
ℵ1(S2, V2)
ℵ1(S, V2)

)

+ ℵ1(S2, V2)
ℵ1(S, V )
ℵ1(S, V2)

+ ℵ2(S2, L2)
ℵ2(S, L)ℵ1(S2, V2)
ℵ2(S2, L2)ℵ1(S, V2)

+ ℵ3(S2, I2)
ℵ3(S, I)ℵ1(S2, V2)
ℵ3(S2, I2)ℵ1(S, V2)

– ℵ2(S2, L2)
J1(L)
J1(L2)

– ℵ1(S2, V2)
ℵ1(S, V )J1(L2)
ℵ1(S2, V2)J1(L)
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– ℵ2(S2, L2)
ℵ2(S, L)J1(L2)
ℵ2(S2, L2)J1(L)

– ℵ3(S2, I2)
ℵ3(S, I)J1(L2)
ℵ3(S2, I2)J1(L)

+ ℵ1(S2, V2) + ℵ2(S2, L2) + ℵ3(S2, I2) – ℵ3(S2, I2)
J2(I)
J2(I2)

– ℵ1(S2, V2)
J1(L)J2(I2)
J1(L2)J2(I)

– ℵ3(S2, I2)
J1(L)J2(I2)
J1(L2)J2(I)

+ ℵ1(S2, V2) + ℵ3(S2, I2)

– ℵ1(S2, V2)
J3(V )
J3(V2)

– ℵ1(S2, V2)
J2(I)J3(V2)
J2(I2)J3(V )

+ ℵ1(S2, V2). (27)

Rearranging Eq. (27), we obtain

dΦ2

dt
=

(
�(S) – �(S2)

)
(

1 –
ℵ1(S2, V2)
ℵ1(S, V2)

)

+ ℵ1(S2, V2)
[

5 –
ℵ1(S2, V2)
ℵ1(S, V2)

–
ℵ1(S, V )J1(L2)
ℵ1(S2, V2)J1(L)

–
J1(L)J2(I2)
J1(L2)J2(I)

–
J2(I)J3(V2)
J2(I2)J3(V )

–
ℵ1(S, V2)J3(V )
ℵ1(S, V )J3(V2)

]

+ ℵ2(S2, L2)
[

3 –
ℵ1(S2, V2)
ℵ1(S, V2)

–
ℵ2(S, L)J1(L2)
ℵ2(S2, L2)J1(L)

–
ℵ1(S, V2)ℵ2(S2, L2)J1(L)
ℵ1(S2, V2)ℵ2(S, L)J1(L2)

]

+ ℵ3(S2, I2)
[

4 –
ℵ1(S2, V2)
ℵ1(S, V2)

–
ℵ3(S, I)J1(L2)
ℵ3(S2, I2)J1(L)

–
J1(L)J2(I2)
J1(L2)J2(I)

–
ℵ1(S, V2)ℵ3(S2, I2)J2(I)
ℵ1(S2, V2)ℵ3(S, I)J2(I2)

]

+ ℵ1(S2, V2)
[ ℵ1(S, V )
ℵ1(S, V2)

–
J3(V )
J3(V2)

– 1 +
ℵ1(S, V2)J3(V )
ℵ1(S, V )J3(V2)

]

+ ℵ2(S2, L2)
[ ℵ2(S, L)ℵ1(S2, V2)

ℵ2(S2, L2)ℵ1(S, V2)
–

J1(L)
J1(L2)

– 1 +
ℵ1(S, V2)ℵ2(S2, L2)J1(L)
ℵ1(S2, V2)ℵ2(S, L)J1(L2)

]

+ ℵ3(S2, I2)
[ ℵ3(S, I)ℵ1(S2, V2)

ℵ3(S2, I2)ℵ1(S, V2)
–

J2(I)
J2(I2)

– 1 +
ℵ1(S, V2)ℵ3(S2, I2)J2(I)
ℵ1(S2, V2)ℵ3(S, I)J2(I2)

]

.

Using the definition of GU
2 (S, U) given in (21), we obtain

ℵ2(S, L)ℵ1(S2, V2)
ℵ2(S2, L2)ℵ1(S, V2)

–
J1(L)
J1(L2)

– 1 +
ℵ1(S, V2)ℵ2(S2, L2)J1(L)
ℵ1(S2, V2)ℵ2(S, L)J1(L2)

=
GL

2 (S, L)
GL

2 (S2, L2)
–

J1(L)
J1(L2)

– 1 +
J1(L)GL

2 (S2, L2)
J1(L2)GL

2 (S, L)

and

ℵ3(S, I)ℵ1(S2, V2)
ℵ3(S2, I2)ℵ1(S, V2)

–
J2(I)
J2(I2)

– 1 +
ℵ1(S, V2)ℵ3(S2, I2)J2(I)
ℵ1(S2, V2)ℵ3(S, I)J2(I2)

=
GI

2(S, I)
GI

2(S2, I2)
–

J2(I)
J2(I2)

– 1 +
J2(I)GI

2(S2, I2)
J2(I2)GI

2(S, I)
.

Then

dΦ2

dt
=

(
�(S) – �(S2)

)
(

1 –
ℵ1(S2, V2)
ℵ1(S, V2)

)

+ ℵ1(S2, V2)
[

5 –
ℵ1(S2, V2)
ℵ1(S, V2)

–
ℵ1(S, V )J1(L2)
ℵ1(S2, V2)J1(L)

–
J1(L)J2(I2)
J1(L2)J2(I)

–
J2(I)J3(V2)
J2(I2)J3(V )

–
ℵ1(S, V2)J3(V )
ℵ1(S, V )J3(V2)

]



Elaiw and AlShamrani Advances in Difference Equations        (2020) 2020:355 Page 17 of 25

+ ℵ2(S2, L2)
[

3 –
ℵ1(S2, V2)
ℵ1(S, V2)

–
ℵ2(S, L)J1(L2)
ℵ2(S2, L2)J1(L)

–
ℵ1(S, V2)ℵ2(S2, L2)J1(L)
ℵ1(S2, V2)ℵ2(S, L)J1(L2)

]

+ ℵ3(S2, I2)
[

4 –
ℵ1(S2, V2)
ℵ1(S, V2)

–
ℵ3(S, I)J1(L2)
ℵ3(S2, I2)J1(L)

–
J1(L)J2(I2)
J1(L2)J2(I)

–
ℵ1(S, V2)ℵ3(S2, I2)J2(I)
ℵ1(S2, V2)ℵ3(S, I)J2(I2)

]

+ ℵ1(S2, V2)
(

1 –
ℵ1(S, V2)
ℵ1(S, V )

)( ℵ1(S, V )
ℵ1(S, V2)

–
J3(V )
J3(V2)

)

+ ℵ2(S2, L2)
(

1 –
GL

2 (S2, L2)
GL

2 (S, L)

)( GL
2 (S, L)

GL
2 (S2, L2)

–
J1(L)
J1(L2)

)

+ ℵ3(S2, I2)
(

1 –
GI

2(S2, I2)
GI

2(S, I)

)( GI
2(S, I)

GI
2(S2, I2)

–
J2(I)
J2(I2)

)

.

Hence, if �1 > 1, then dΦ2
dt ≤ 0 for all S, L, I, V , C > 0 and dΦ2

dt = 0 when S = S2, L = L2, I = I2,
and V = V2. Define Υ2 = {(S, L, I, V , C) : dΦ2

dt = 0} and Υ ′
2 is the largest invariant subset of

Υ2. The solutions of system (2) converge to Υ ′
2 which contains elements with S(t) = S2,

L(t) = L2, I(t) = I2, V (t) = V2. Then İ(t) = 0 and from the third equation of system (2),
we have 0 = İ(t) = λJ1(L2) – aJ2(I2) – μJ4(C(t))J2(I2), which gives C(t) = C2 for all t.
Therefore, Υ ′

2 = {Ð2}. Applying LaSalle’s invariance principle, we get that Ð2 is G.A.S. �

6 Example and numerical simulations
In this section, we consider the following illustrative example:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = ρ – αS + ζS(1 – S
Smax

) – Sn

1+δSn ( η1V
1+β1V + η2L

1+β2L + η3I
1+β3I ),

L̇(t) = Sn

1+δSn ( η1V
1+β1V + η2L

1+β2L + η3I
1+β3I ) – (λ + γ )L,

İ(t) = λL – aI – μCI,

V̇ (t) = bI – εV ,

Ċ(t) = σCI – πC.

(28)

This example is a special case of system (2) which considers the following forms:
• The intrinsic growth rate of healthy CD4+T cells

�(S) = ρ – αS + ζS
(

1 –
S

Smax

)

.

Here, we consider another source for producing healthy CD4+T cells that is the
proliferation of existing healthy cells in the body [4]. The maximum proliferation rate
of healthy CD4+T cells is given by ζ > 0. It is well known that there is a maximum
level of healthy CD4+T cell concentration in the body which is described by the
parameter Smax > 0. If the concentration reaches Smax, it should decrease. We assume
that ζ < α [52]. It is clear that �(0) = ρ > 0 and �(S0) = 0, where

S0 =
Smax

2ζ

(

ζ – α +

√

(ζ – α)2 +
4ρζ

Smax

)

.



Elaiw and AlShamrani Advances in Difference Equations        (2020) 2020:355 Page 18 of 25

In addition, we have

�′(S) = ζ – α –
2ζS
Smax

< 0. (29)

Clearly, �(S) > 0 whereas �′(S) < 0 for all S ∈ [0, S0). Hence, Condition (H1) holds
true.

• The virus-cell, silent cell-cell, and active cell-cell incidence rates of infection are,
respectively, given by

ℵ1(S, V ) =
η1SnV

(1 + δSn)(1 + β1V )
,

ℵ2(S, L) =
η2SnL

(1 + δSn)(1 + β2L)
,

ℵ3(S, I) =
η3SnI

(1 + δSn)(1 + β3I)
.

The parameters ηi > 0, i = 1, 2, 3, account for the infection rate constants. Parameters
n, δ, βi, i = 1, 2, 3, are positive constants. It is clear that

ℵ1(S, V ) > 0, ℵ2(S, L) > 0, ℵ3(S, I) > 0 for all S, L, I, V > 0,

ℵ1(0, V ) = ℵ2(0, L) = ℵ3(0, I) = 0 for all L, I, V > 0,

ℵ1(S, 0) = ℵ2(S, 0) = ℵ3(S, 0) = 0 for all S > 0.

Further, we have

∂ℵ1(S, V )
∂S

=
nη1Sn–1V

(1 + δSn)2(1 + β1V )
> 0,

∂ℵ2(S, L)
∂S

=
nη2Sn–1L

(1 + δSn)2(1 + β2L)
> 0,

∂ℵ3(S, I)
∂S

=
nη3Sn–1I

(1 + δSn)2(1 + β3I)
> 0,

∂ℵ1(S, V )
∂V

=
η1Sn

(1 + δSn)(1 + β1V )2 > 0,

∂ℵ2(S, L)
∂L

=
η2Sn

(1 + δSn)(1 + β2L)2 > 0,
∂ℵ3(S, I)

∂I
=

η3Sn

(1 + δSn)(1 + β3I)2 > 0,

∂ℵ1(S, 0)
∂V

=
η1Sn

1 + δSn > 0,
∂ℵ2(S, 0)

∂L
=

η2Sn

1 + δSn > 0,
∂ℵ3(S, 0)

∂I
=

η3Sn

1 + δSn > 0,

for all S, L, I, V > 0. Furthermore, we have

d
dS

(
∂ℵ1(S, 0)

∂V

)

=
nη1Sn–1

(1 + δSn)2 > 0,

d
dS

(
∂ℵ2(S, 0)

∂L

)

=
nη2Sn–1

(1 + δSn)2 > 0,

d
dS

(
∂ℵ3(S, 0)

∂I

)

=
nη3Sn–1

(1 + δSn)2 > 0 for all S > 0.

All the above discussion ensures that Condition (H2) is confirmed.
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• The natural death rate of the silent/active HIV-infected cells, HIV particles, and
HIV-specific CTLs

Jk(x) = x, k = 1, 2, 3, 4.

Obviously, Condition (H3) is valid.
In addition, we have

∂

∂V

(ℵ1(S, V )
J3(V )

)

=
∂

∂V

(
η1Sn

(1 + δSn)(1 + β1V )

)

= –
η1β1Sn

(1 + β1V )2(1 + δSn)
< 0,

∂

∂L

(ℵ2(S, L)
J1(L)

)

=
∂

∂L

(
η2Sn

(1 + δSn)(1 + β2L)

)

= –
η2β2Sn

(1 + β2L)2(1 + δSn)
< 0,

∂

∂I

(ℵ3(S, I)
J2(I)

)

=
∂

∂I

(
η3Sn

(1 + δSn)(1 + β3I)

)

= –
η3β3Sn

(1 + β3I)2(1 + δSn)
< 0,

for all S, L, I, V > 0. Therefore, Condition (H4) is also verified. On the other hand, we have
J ′

k (x) = 1, and then

�1(S) =
∂ℵ1(S, 0)

∂V
=

η1Sn

1 + δSn ,

�2(S) =
∂ℵ2(S, 0)

∂L
=

η2Sn

1 + δSn ,

�3(S) =
∂ℵ3(S, 0)

∂L
=

η3Sn

1 + δSn .

Clearly, �2(S)
�1(S) = η2

η1
and �3(S)

�1(S) = η3
η1

, hence Condition (H5) is satisfied. In addition,

GL
i (S, L) =

ℵ2(S, L)
ℵ1(S, Vi)

=
η2(1 + β1Vi)L
η1(1 + β2L)Vi

, GL
i (Si, Li) =

ℵ2(Si, Li)
ℵ1(Si, Vi)

=
η2(1 + β1Vi)Li

η1(1 + β2Li)Vi
,

GI
i (S, I) =

ℵ3(S, I)
ℵ1(S, Vi)

=
η3(1 + β1Vi)I
η1(1 + β3I)Vi

, GI
i (Si, Ii) =

ℵ3(Si, Ii)
ℵ1(Si, Vi)

=
η3(1 + β1Vi)Ii

η1(1 + β3Ii)Vi
,

and

(
GL

i (S, L) – GL
i (Si, Li)

)
(GL

i (S, L)
L

–
GL

i (Si, Li)
Li

)

= –
β2η

2
2(1 + β1Vi)2(L – Li)2

η2
1V 2

1 (1 + β2Li)2(1 + β2L)2 ≤ 0,

(
GI

i (S, I) – GI
i (Si, Ii)

)
(GI

i (S, I)
I

–
GI

i (Si, Ii)
Ii

)

= –
β3η

2
3(1 + β1Vi)2(I – Ii)2

η2
1V 2

1 (1 + β3Ii)2(1 + β3I)2 ≤ 0,

for all L, I > 0, S ∈ (0, S0), where i = 1, 2. Hence, Condition (H6) is ensured. Consequently,
the validity of Conditions (H1)–(H6) guarantees that the global stability results demon-
strated in Theorems 1–3 are valid for this example. Thus, the threshold parameters for
system (28) are given by

�0 =
Sn

0[bλη1 + ε(aη2 + λη3)]
aε(λ + γ )(1 + δSn

0)
,

�1 =
σλSn

2
aπ (λ + γ )(1 + δSn

2 )

(
bπη1

εσ + bπβ1
+

η2L2

1 + β2L2
+

πη3

σ + πβ3

)

.
(30)
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Table 2 Some values of the parameters of model (28)

Parameter Value Parameter Value Parameter Value

ρ 10 η2 Varied μ 0.2
α 0.01 η3 Varied ε 2
ζ 0.005 a 0.5 β1 0.1
Smax 1200 γ 0.2 β2 0.2
δ 0.7 λ 0.2 β3 0.3
n 2 b 5 σ Varied
η1 Varied π 0.1 � 0.3

To solve system (28) numerically, we fix the values of some parameters (see Table 2) and
the others will be varied.

6.1 Stability of the equilibria
In this subsection, we consider the following initial condition for model (28):

IV-1: (S(0), L(0), I(0), V (0), C(0)) = (930, 2, 0.6, 1.6, 0.4).
Choose the values of parameters η1, η2, η3, and σ as follows.
Stability of Ð0: η1 = 0.03, η2 = 0.01, η3 = 0.02, and σ = 0.03. For this set of parameters,

we have �0 = 0.17 < 1. Figure 1 displays that the trajectories initiating with IV-1 reach the
equilibrium Ð0 = (1061.32, 0, 0, 0, 0). This shows that Ð0 is G.A.S. according to Theorem 1.
In this case, the HIV particles will be cleared from the body.

Stability of Ð1: η1 = 0.3, η2 = 0.1, η3 = 0.2, and σ = 0.03. With such a choice, we
get �1 = 0.85 < 1 < 1.71 = �0. It is clear that the equilibrium point Ð1 exists with
Ð1 = (878.74, 5.97, 2.39, 5.97, 0). Figure 1 displays that the trajectories initiating with IV-
1 tend to Ð1. Therefore, the numerical results support Theorem 2. This case represents
the persistence of the HIV infection but with unstimulated CTL-mediated immune re-
sponse.

Stability of Ð2: η1 = 0.3, η2 = 0.1, η3 = 0.2, and σ = 0.1. Then we calculate �1 = 1.37 > 1.
In Fig. 1, we show that Ð2 = (959.47, 3.42, 1, 2.5, 0.92) exists and it is G.A.S., and this agrees
with Theorem 3. Hence, a chronic HIV infection with CTL-mediated immune response
is attained.

6.2 Effect of CTC transmission
In this subsection, we investigate the influence of different modes of transmission on the
HIV dynamics (28). We use the parameters given in Table 2 and choose the value σ = 0.1
with the following initial condition:

IV-2: (S(0), L(0), I(0), V (0), C(0)) = (1000, 1.5, 0.5, 1.2, 0.2).
We choose four sets of parameters η1, η2, and η3 and investigate the following illustrative

cases:
Case (1): HIV dynamics with VTC, silent HIV-infected CTC, and active HIV-infected

CTC transmissions: Here, we consider the parameters η1 = 0.3, η2 = 0.1, and η3 = 0.2.
Figure 2 and Table 3 show that the solutions of the system approach the equilibrium Ð2 =
(959.47, 3.42, 1, 2.5, 0.92).

Case (2): HIV dynamics with both VTC and active HIV-infected CTC transmis-
sions: In this case, we select the values η1 = 0.3, η2 = 0, and η3 = 0.2. From Fig. 2 and
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Figure 1 The behavior of solution trajectories of system (28)

Table 3, we observe that the solution trajectories converge to the equilibrium Ð2 =
(981.63, 2.69, 1, 2.5, 0.19).

Case (3): HIV dynamics with only VTC transmission: Here, we consider the values η1 =
0.3, η2 = η3 = 0. Figure 2 and Table 3 display that the solution trajectories approach the
equilibrium Ð1 = (1040.56, 0.71, 0.29, 0.71, 0).

Case (4): HIV dynamics with only VTC transmission: In this situation, we pick the pa-
rameters η1 = 0.1, η2 = η3 = 0. It is clear from Fig. 2 and Table 3 that the solution trajecto-
ries reach the equilibrium Ð0 = (1061.32, 0, 0, 0, 0).

From the above discussion, we note that the presence of silent HIV-infected CTC and/or
active HIV-infected CTC transmissions increases the infection rate. As a result, the con-
centration of healthy CD4+T cells is decreased, while the concentrations of silent/active
HIV-infected cells, free HIV particles, and HIV-specific CTLs are increased as shown in
Fig. 2 and Table 3.
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Figure 2 The evolution of HIV dynamics (28) under different modes of transmission

Table 3 Effect of the infection parameters ηi , i = 1, 2, 3, on HIV dynamics (28)

η1 η2 η3 The equilibrium point

0.1 0 0 Ð0 = (1061.32, 0, 0, 0, 0)
0.2 0 0 Ð0 = (1061.32, 0, 0, 0, 0)
0.3 0 0 Ð1 = (1040.56, 0.71, 0.29, 0.71, 0)
0.3 0 0.1 Ð1 = (999.65, 2.10, 0.84, 2.10, 0)
0.3 0 0.2 Ð2 = (981.63, 2.69, 1, 2.5, 0.19)
0.3 0.01 0.2 Ð2 = (979.70, 2.76, 1, 2.5, 0.26)
0.3 0.1 0.2 Ð2 = (959.47, 3.42, 1, 2.5, 0.92)
0.7 0.3 0.5 Ð2 = (743.87, 9.94, 1, 2.5, 7.44)

7 Conclusion
In this paper, we developed and analyzed a general HIV dynamics model with CTL im-
mune response. We incorporated two modes of transmission, VTC and CTC. The CTC
infection is due to (i) the contact between healthy CD4+T cells and silent HIV-infected
cells, and (ii) the contact between healthy CD4+T cells and active HIV-infected cells.
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The incidence rates between the healthy CD4+T cells and free HIV particles, silent in-
fected cells, and active infected cells were given by general functions. Further, the pro-
duction/proliferation as well as removal/death rates of all compartments were given by
general nonlinear functions. We proved that the solutions of the model are nonnegative
and bounded. We showed that the model has three possible equilibria: the infection-free
equilibrium Ð0, the chronic HIV infection equilibrium with inactive CTL-mediated im-
mune response Ð1, and the chronic HIV infection equilibrium with active CTL-mediated
immune response Ð2. The existence and global stability of the three equilibria were gov-
erned by two threshold parameters, �0 (the basic HIV reproduction number) and �1 (the
HIV specific CTL-mediated immunity reproduction number). The global asymptotic sta-
bility of Ð0, Ð1, and Ð2 was investigated by constructing Lyapunov functionals and utiliz-
ing LaSalle’s invariance principle. We performed numerical simulations to illustrate the
theoretical results. We showed that the inclusion of CTC transmission decreases the con-
centration of healthy CD4+T cells and increases the concentrations of infected cells and
free HIV particles. We observed that the inclusion of silent HIV-infected CTC and active
HIV-infected CTC transmissions into the HIV infection model increases the basic repro-
duction number �0, since �0 = �01 +�02 +�03 > �01. Therefore, neglecting the CTC trans-
mission will lead to under-evaluated basic HIV reproduction number. We mention that
our model can be extended to take into account time delay [53–56], reaction–diffusion
[57, 58], and stochastic interactions [59].
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