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1 Introduction
In this study, we investigate the oscillatory behavior of solutions of the odd-order delay
differential equation (DDE)

(r@)(x"@)") + g2 (o (1)) = 0, (1.1)

where t > ty, n € Z* is odd, « is a ratio of odd positive integers, r € C*([£y, 00), (0, 00)),
r'(t) >0, poolt to) = ftg rYe(s)ds — oo as t — 00, g € C([ty,00),[0,00)), o € C([to, 00),
R), o(¢) < t, and lim;_, o, 6 (£) = 00.

Definition 1 Let x € C/V([¢,,00)), £, > £, and r(x" D) € C1([¢,, 00)). The function x is

called a solution of (1.1) on [t,, 00) if x satisfies (1.1) for all ¢ in [£, 00).

Definition 2 A nontrivial solution x of (1.1) is said to be oscillatory if there exists a se-
quence of zeros {£,}°, (i.e., x(¢,) = 0) of x such that lim,,_,  t, = 00; otherwise, it is said to

be nonoscillatory.

Although differential equations of even-order have been studied extensively, the study
of qualitative behavior of odd-order differential equations has received considerably less
attention in the literature, especially the third-order DDEs. However, certain results for

third-order equations have been known for a long time and have some applications in
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mathematical modeling in biology and physics, see [17, 23, 25]. As a matter of fact, equa-
tion (1.1) under study is a so-called odd-order half-linear DDE, which has numerous ap-
plications in the research area of porous medium, see [13].

Different techniques have been used in studying the asymptotic behavior of DDEs. The
articles [1, 3-9, 14—16, 27] were concerned with (in the canonical case and noncanonical
case) the oscillation and asymptotic behavior of equation (1.1) and its special cases.

Based on creating comparison theorems that compare the odd-order DDEs with one
or a couple of first-order DDEs, Agarwal et al. [1], Baculikova and Dzurina [3, 4] and
Chatzarakis et al. [8] studied the oscillatory and asymptotic behavior of special cases of
the third-order DDE

(a@®)((bO*'(0)))*) +q@)f (x(o () =0,

where a,b € C!([ty, ), (0,00)). By using the integral averaging technique, Bohner et al.
[6] and Moaaz et al. [20] studied the asymptotic behavior of DDE with damping

(@@ (O ®)")) +pOF )" + a@)f (x(0 ©)) =0,

where o > 1 and p € C([t, 00), [0,00)). On the other hand, [5] used the Riccati transfor-

mation to study the asymptotic properties of the odd-order advanced equation
(rOE"D0)") + g (g®) =0,

where g(t) > t. The results concerned with the asymptotic properties and oscillation of the
higher-order neutral DDEs were presented in [11, 18, 19, 21, 22, 26].

In this paper, by using an iterative method, we create sharper estimates for increasing
and decreasing positive solutions of (1.1). Thus, we create sharper criteria for oscillation
of (1.1). Moreover, iterative technique allows us to test the oscillation, even when the re-
lated results fail to apply. The results reported in this paper generalize, complement, and
improve those in [7-9, 14-16, 27]. To show the importance of our results, we provide an

example.

Remark 1.1 We restrict our discussion to those solutions x of (1.1) which satisfy sup{|x(¢)| :
t> T} >0 forevery T € [t,00).

Remark 1.2 All functional inequalities and properties, such as increasing, decreasing, pos-
itive, and so on, are assumed to hold eventually, that is, they are satisfied for all ¢ large

enough.

2 Main results
Lemma 2.1 ([2, Lemma 2.2.3]) Let F € C"([t,0),(0,00)), F* V()F" () < 0 for t > tr,
and lim;_, o, F(t) # 0. Then, for every § € (0, 1), there exists ts € [tp,00) such that

F(t) > " HEV @) forallt € [ts,00).

é
(n-1)
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Lemma 2.2 ([5, Lemma 2]) If« is a positive solution of (1.1), then all derivatives x©(t),1 <

k < n -1, are of constant signs, r(t)(x""V(t))* is nonincreasing, and x satisfies either
K@B>0,  &'(@®)>0, " V@>0, (<0 (2.1)
or
-1)"x" >0, m=1.2,...,n (2.2)

Definition 3 The set of all positive solutions of (1.1) with property (2.1) or (2.2) is denoted
by X; or X}, respectively.

Lemma 2.3 Assume that x € X} . Then

x(0(®) = ni(o())x" (o (1)), (2.3)
where
e 80 n-1
ﬂo(t) A (I’l _ 1)' ’

and

S too 1 ‘1 . Ve
Nke1(8) = (n_lz)!rl/a(t) /;1 5" 2(@ exP(/s M‘](u)nk (U(u)) d”)) ds

forall §x € (0,1) and k=0,1,....

Proof Let x € X]. Then there exists ¢; > £, such that x(¢) > 0 and x(o (£)) > 0 for all £ > ¢;.

Next, we will prove (2.3) using induction. For k = 0, using Lemma 2.1, we see that

x(o(t)) =

Now, we assume that x(o (£)) > (o (£))x" V(o (¢)) for k > 0. Since " < 0 and o (¢) < £, we
have that

x(0(8)) = (o (8)x" D (e). (2.4)
Then, from (1.1) and (2.4), we get
(r&) (=" 2())*) + qt)ng (o (1)) (" V()" < 0. (2.5)

If we set w:= r(£)(x""D(£))?, then (2.5) becomes

W(O) < a0 (o (0wl
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Applying the Gronwall inequality, we find

WQ)vaﬂeXP(/1;éﬁqonniﬁwundu>

or

1 t 1 1/a
£ (s) > rl/"‘(t)x(”’l)(t)(@ eXp(/s @4(14)771? (0 () d”)) : (26)

Using Lemma 2.1 with F := %" > 0, we see that

Sktn_z

( 2)‘x(”_l)(t) for all 8; € (0,1).
n—2)!

x(t) >

By integrating this inequality from #; to ¢ and taking into account (2.6), we see that

Sk /t -2, (n-1)
x(t) > s"x" T (s) ds
0= 25 ©

5 ¢ 1 tq 1/a
zx‘"‘”(t)rkz)!r”“(t) ftl s""2<@ exp(/s @q(u)nfj (o(w) du)) ds

> i (D270 (@).

Therefore, we have that

(0 (8)) = i (0 (0) 2"V (0 (2)).
The proof is complete. d
Lemma 2.4 Assume that x € X},. Then

x(u) = r" @D W) g (v, w), (2.7)
where

14
MMHWM%=/‘MA%9$
u

and

1/

v 1 14 a
Wir1,0(v, 1) ::/M VIT(S)CXP<_/S q(u)u,,nfz(u,a(u)) du) ds
fork=0,1,...,n-3,and1=0,1,2,....

Proof Let x € X},. Then there exists t; > t; such that x(¢£) > 0 and x(o (t)) > 0 for all £ > ¢;.
Next, we will prove (2.7) using induction. For [ = 0, since (r(z""~V))’ < 0, we get that

()2 (s) ds

_x(n_z)(u) > x(n—Z)(V) _x(n—z)(u) = /V rlia (S)
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> "D )poo(v, ). (2.8)

Integrating (2.8) from u to v, we have

") <"V ) = 2" w) = r "D W) o (v, w). (2.9)
Integrating (2.9) n — 3 times from « to v, we get

() = r"* "D W) o2 (v, ).
Now, we assume that x(z) > '/ (V)x"V (V) y,_o (v, ) for I > 0. Thus, we find

H(o () = MOV (O a0 (1),
which, with (1.1), gives

(r@&) (=" D)) + q@)r@©) (" V()" 1, (£ 0 (@) < 0. (2.10)
If we set ¥ := r(£)(x"V(£))*, then (2.10) becomes

¥ (t) < —q(Ou, o (60 ) (E).

Applying the Gronwall inequality, we find

Y(s) > y(v) exp</ gy, (u,cr(u)) du)

or

(n-1) v (n-1) 1 ! He
XV (s) > rt* (v)x (v)(@ exp(/s g, (u, 0 () du)) .

Thus, from (2.8), we see that

1/

a2 w) = ) () / E O </ a0 0) d”) &

> " D )0, ).
Integrating this inequality 7 — 2 times from u to v, we get
() = "D W) o (v ).
Thus, the proof is complete. O

Theorem 2.1 Assume that x is a positive solution of (1.1) and ny is defined as in Lemma 2.3.
If the delay differential equation

/ 1 o _
w(t) + mq(t)nk (a(t))w(o(t)) =0 (2.11)

is oscillatory for some & € (0,1) and some k € N, then X} is empty.



Moaaz Advances in Difference Equations (2020) 2020:357 Page 6 of 10

Proof Assume to the contrary that x € X;. Then there exists ¢; > £, such that x(¢) > 0 and
x(o(t)) >0 for all £ > ¢;. From Lemma 2.3, we have that (2.3) holds. Combining (1.1) and
(2.3), we obtain

(r@&) (=" 2())*) + qt)ng (o (0)) (" (o (1)))* < 0. (2.12)

If we set w := r(x"1), then (2.12) becomes

/ 1 o
W)+ Ly 1O (c@)w(o@®) <o.

In view of 24, Theorem 1], we have that (2.11) also has a positive solution, a contradiction.
Thus, the proof is complete. O

Corollary 2.1 Assume that x is a positive solution of (1.1) and ni is defined as in

Lemma 2.3. If
Y L | " 1
lltrgégf/g(t) mq(u)nk (a(u)) du > S (2.13)

for some 8 € (0,1) and some k € N, then X is empty.

Proof In view of [12, Theorem 2], condition (2.13) guarantees that the delay equation
(2.11) is oscillatory. O

Theorem 2.2 Assume that x is a positive solution of (1.1), o'(t) > 0, and v is defined as
in Lemma 2.4. If

lim sup /t q(u)ug, o (a(t), o(u)) du>1 (2.14)

t—00 (t)

for some | € N, then X}, is empty.

Proof Assume to the contrary that x € X}. Then there exists £; > £, such that x(¢) > 0 and
x(o(2)) >0 for all £ > ;. From Lemma 2.4, we have that (2.7) holds. Integrating (1.1) from
o (t) to t, we obtain

o o t
r(a®) (=" (e®))" - r@ ") = f q(u)x* (o (u)) du,

o(t)

and so

t

r(o(t)) (x(”_l) (O'(t)))a > / q(u)x® (a(u)) du. (2.15)

o(t)

Using (2.7) with u = o (4) and v = o (£), we get that

(o @) = r (o )= (0 (8) in-a (0 (2), 0 (w)),
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with (2.15), gives

/ a0 (0,000 du <1,

which contradicts condition (2.14). This completes the proof. O

Theorem 2.3 Assume that x is a positive solution of (1.1) and i is defined as in
Lemma 2.4. If there exists a function 0 € C([ty, 00), (0,00)) satisfying 0(t) < t and o (t) < 0(t)
such that the delay differential equation

¢'() +q(O)ug, (00,0 0)e(6() =0 (2.16)
is oscillatory for some | € N, then X}, is empty.

Proof Assume to the contrary that x € X};. Then there exists t; > £, such that x(t) > 0
and x(o(¢)) > 0 for all £ > ¢;. From Lemma 2.4, we have that (2.7) holds. Using (2.7) with
u=o(t) and v = 0(¢), we get that

x(o (@) = r(6(0)x" D (6(8)) -2 (6(8), 5 (1))
Thus, from (1.1), we obtain
(r@®) (" D)%) + g1, (00, o () r(6()) (=" (0(6)))* < 0. (2.17)

If we set ¢ := r(x""), then (2.17) becomes

@' () +q(t)uf,_, (0(0),0 (1)@ (6()) <O.

In view of [24, Theorem 1], we have that (2.16) also has a positive solution, a contradiction.
Thus, the proof is complete. 0

Theorem 2.4 Assume that x is a positive solution of (1.1), (71(t))' > 0 and ;x is defined
as in Lemma 2.4. If there exists a function v € C([ty, 00),(0,00)) satisfying v (t) > t and
o (0(t)) < t such that the delay differential equation

9@+ (07 @) g6 O) 1l (90, ) (0 (9(1))) = 0 (2.18)
is oscillatory for some | € N, then X}, is empty.

Proof Assume to the contrary that x € X},. Then there exists t; > £, such that x() > 0 and
x(o (t)) > 0 for all £ > t;. From Lemma 2.4, we have that (2.7) holds. From (1.1), we get

(r(e71®) (" V(7)) + (671 ®) q(c 7 ®)a%(t) = 0. (2.19)
Using (2.7) with u = ¢ and v = ¥(¢), we have

x(8) = r (9(0))x" D (9 () stz (9 (0), ),
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which with (2.19) gives

0= (r(o7' @) (=" (o7 ®)))
+ (071 ®) q(o71O) 1 (9, ) r(9®) ("D (9 (1)) (2.20)

If we set (t) := r(x""1)*(571(¢)), then (2.20) becomes
o)+ (710) q(cO) s, (90, £) (o (9(0)) < 0.

In view of [24, Theorem 1], we have that (2.18) also has a positive solution, a contradiction.
Thus, the proof is complete. 0

Applying a well-known criterion [12, Theorem 2] for delay equations (2.16) and (2.18)
to be oscillatory, we obtain the following two corollaries.

Corollary 2.2 Assume that x is a positive solution of (1.1) and i is defined as in
Lemma 2.4. If there exists a function 0 € C([ty, 00), (0, 00)) satisfying 0(t) < t and o (t) < 0(t)
such that

liminf/; g, s (Q(u),o(u)) du > % (2.21)

for some | € N, then X}, is empty.

Corollary 2.3 Assume that x is a positive solution of (1.1), (6 "1(2))’ > 0 and . is defined
as in Lemma 2.4. If there exists a function ¥ € C([ty, 00),(0,00)) satisfying v (t) > t and
o (9 (¢)) < t such that

liminf/t (0’1(u))/q(o’l(Lt)),u‘;fn_2 (z?(u), u) du > % (2.22)

=0 Jow ()

for some | € N, then X}, is empty.

Theorem 2.5 Assume that ni and (i are defined as in Lemmas 2.3 and 2.4, respectively.
Then every solution of (1.1) is oscillatory if one of the following conditions is satisfied for
some 8y € (0,1) and some k,l € N:
(a) There exists a function 0 € C([ty,00), (0,00)) satisfying 0(t) < t and o (t) < 0(t) such
that the delay differential equations (2.11) and (2.16) are oscillatory;
(b) There exists a function ¥ € C([ty, 00), (0, 00)) satisfying ¥(t) > t, (c71(t)) > 0 and
o (0(2)) < t such that the delay differential equations (2.11) and (2.18) are oscillatory.

Corollary 2.4 Assume that ni and jvx are defined as in Lemmas 2.3 and 2.4, respectively.
Then every solution of (1.1) is oscillatory if one of the following conditions is satisfied for
some 8 € (0,1) and some k,l € N:

(a) Conditions (2.13) and (2.14) hold,

(b) Conditions (2.13) and (2.21) hold,

(c) Conditions (2.13) and (2.22) hold.
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Remark 2.1 The article [10] was concerned with the oscillation of equations (2.11), (2.16),
and (2.18). Thus, one can obtain a number of oscillation criteria for (1.1) by using related
results reported in [10].

Example 2.1 Consider the third-order differential equation

x”+%ﬂmﬁm, (2.23)

where £ > 1, go > 0, and X € (0,2/3). It is easy to verify that no(¢) := %")\21&2, ooV, 1) =v—u,

IU/O,I(VI I/l) = %(V - l/l)2,

1= v
vin —
u

mio(v,u) =qo

and

p11(v,u) = qo(l _}L)2V<V— u(l +In K))
2 U

Thus, by choosing k=0, /=1 and 0(t) := %)\t, conditions (2.13) and (2.21) reduce to

1 2
gor?In— > = (2.24)
A e

and

3 1 3 2 1
;=2 -1)*(=-In= )In—>—, 2.25
Gogt A=\ g I JIngr > (2.25)
respectively. Using Corollary 2.4(b), we see that every solution of (2.23) is oscillatory if
(2.24) and (2.25) hold.

Remark 2.2 Apparently, Corollary 2.4(a) and Theorem 2 in [8] are the same for #n = 3.
Consider a particular case of (2.23), namely x” + got~3x(0.5¢) = 0. By using the results in
Example 2.1, this equation is oscillatory if go > 16.988.
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