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Abstract
The objective of this study is to establish new sufficient criteria for oscillation of
solutions of odd-order nonlinear delay differential equations. Based on creating
comparison theorems that compare the odd-order equation with a couple of
first-order equations, we improve and complement a number of related ones in the
literature. To show the importance of our results, we provide an example.
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1 Introduction
In this study, we investigate the oscillatory behavior of solutions of the odd-order delay
differential equation (DDE)

(
r(t)

(
x(n–1)(t)

)α)′ + q(t)xα
(
σ (t)

)
= 0, (1.1)

where t ≥ t0, n ∈ Z
+ is odd, α is a ratio of odd positive integers, r ∈ C1([t0,∞), (0,∞)),

r′(t) ≥ 0, μ0,0(t, t0) :=
∫ t

t0
r–1/α(s) ds → ∞ as t → ∞, q ∈ C([t0,∞), [0,∞)), σ ∈ C([t0,∞),

R), σ (t) < t, and limt→∞ σ (t) = ∞.

Definition 1 Let x ∈ C(n–1)([tx,∞)), tx ≥ t0, and r(x(n–1))α ∈ C1([tx,∞)). The function x is
called a solution of (1.1) on [tx,∞) if x satisfies (1.1) for all t in [tx,∞).

Definition 2 A nontrivial solution x of (1.1) is said to be oscillatory if there exists a se-
quence of zeros {tn}∞n=0 (i.e., x(tn) = 0) of x such that limn→∞ tn = ∞; otherwise, it is said to
be nonoscillatory.

Although differential equations of even-order have been studied extensively, the study
of qualitative behavior of odd-order differential equations has received considerably less
attention in the literature, especially the third-order DDEs. However, certain results for
third-order equations have been known for a long time and have some applications in
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mathematical modeling in biology and physics, see [17, 23, 25]. As a matter of fact, equa-
tion (1.1) under study is a so-called odd-order half-linear DDE, which has numerous ap-
plications in the research area of porous medium, see [13].

Different techniques have been used in studying the asymptotic behavior of DDEs. The
articles [1, 3–9, 14–16, 27] were concerned with (in the canonical case and noncanonical
case) the oscillation and asymptotic behavior of equation (1.1) and its special cases.

Based on creating comparison theorems that compare the odd-order DDEs with one
or a couple of first-order DDEs, Agarwal et al. [1], Baculikova and Dzurina [3, 4] and
Chatzarakis et al. [8] studied the oscillatory and asymptotic behavior of special cases of
the third-order DDE

(
a(t)

((
b(t)x′(t)

)′)α)′ + q(t)f
(
x
(
σ (t)

))
= 0,

where a, b ∈ C1([t0,∞), (0,∞)). By using the integral averaging technique, Bohner et al.
[6] and Moaaz et al. [20] studied the asymptotic behavior of DDE with damping

(
a(t)

(
b(t)

(
x′(t)

)α)′)′ + p(t)
(
x′(t)

)α + q(t)f
(
x
(
σ (t)

))
= 0,

where α ≥ 1 and p ∈ C([t0,∞), [0,∞)). On the other hand, [5] used the Riccati transfor-
mation to study the asymptotic properties of the odd-order advanced equation

(
r(t)

(
x(n–1)(t)

)α)′ + q(t)xα
(
g(t)

)
= 0,

where g(t) > t. The results concerned with the asymptotic properties and oscillation of the
higher-order neutral DDEs were presented in [11, 18, 19, 21, 22, 26].

In this paper, by using an iterative method, we create sharper estimates for increasing
and decreasing positive solutions of (1.1). Thus, we create sharper criteria for oscillation
of (1.1). Moreover, iterative technique allows us to test the oscillation, even when the re-
lated results fail to apply. The results reported in this paper generalize, complement, and
improve those in [7–9, 14–16, 27]. To show the importance of our results, we provide an
example.

Remark 1.1 We restrict our discussion to those solutions x of (1.1) which satisfy sup{|x(t)| :
t ≥ T} > 0 for every T ∈ [t0,∞).

Remark 1.2 All functional inequalities and properties, such as increasing, decreasing, pos-
itive, and so on, are assumed to hold eventually, that is, they are satisfied for all t large
enough.

2 Main results
Lemma 2.1 ([2, Lemma 2.2.3]) Let F ∈ Cn([t0,∞), (0,∞)), F (n–1)(t)F (n)(t) ≤ 0 for t ≥ tF ,
and limt→∞ F(t) �= 0. Then, for every δ ∈ (0, 1), there exists tδ ∈ [tF ,∞) such that

F(t) ≥ δ

(n – 1)!
tn–1∣∣F (n–1)(t)

∣∣ for all t ∈ [tδ ,∞).
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Lemma 2.2 ([5, Lemma 2]) If x is a positive solution of (1.1), then all derivatives x(k)(t), 1 ≤
k ≤ n – 1, are of constant signs, r(t)(x(n–1)(t))α is nonincreasing, and x satisfies either

x′(t) > 0, x′′(t) > 0, x(n–1)(t) > 0, x(n)(t) < 0 (2.1)

or

(–1)mx(m) > 0, m = 1, 2, . . . , n. (2.2)

Definition 3 The set of all positive solutions of (1.1) with property (2.1) or (2.2) is denoted
by X+

I or X+
D, respectively.

Lemma 2.3 Assume that x ∈ X+
I . Then

x
(
σ (t)

) ≥ ηk
(
σ (t)

)
x(n–1)(σ (t)

)
, (2.3)

where

η0(t) :=
δ0

(n – 1)!
tn–1,

and

ηk+1(t) :=
δk

(n – 2)!
r1/α(t)

∫ t

t1

sn–2
(

1
r(s)

exp

(∫ t

s

1
r(u)

q(u)ηα
k
(
σ (u)

)
du

))1/α

ds

for all δk ∈ (0, 1) and k = 0, 1, . . . .

Proof Let x ∈ X+
I . Then there exists t1 ≥ t0 such that x(t) > 0 and x(σ (t)) > 0 for all t ≥ t1.

Next, we will prove (2.3) using induction. For k = 0, using Lemma 2.1, we see that

x
(
σ (t)

) ≥ δ0

(n – 1)!
σ n–1(t)x(n–1)(σ (t)

) ≥ η0
(
σ (t)

)
x(n–1)(σ (t)

)
.

Now, we assume that x(σ (t)) ≥ ηk(σ (t))x(n–1)(σ (t)) for k > 0. Since x(n) < 0 and σ (t) < t, we
have that

x
(
σ (t)

) ≥ ηk
(
σ (t)

)
x(n–1)(t). (2.4)

Then, from (1.1) and (2.4), we get

(
r(t)

(
x(n–1)(t)

)α)′ + q(t)ηα
k
(
σ (t)

)(
x(n–1)(t)

)α ≤ 0. (2.5)

If we set w := r(t)(x(n–1)(t))α , then (2.5) becomes

w′(t) ≤ –
1

r(t)
q(t)ηα

k
(
σ (t)

)
w(t).
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Applying the Grönwall inequality, we find

w(s) ≥ w(t) exp

(∫ t

s

1
r(u)

q(u)ηα
k
(
σ (u)

)
du

)

or

x(n–1)(s) ≥ r1/α(t)x(n–1)(t)
(

1
r(s)

exp

(∫ t

s

1
r(u)

q(u)ηα
k
(
σ (u)

)
du

))1/α

. (2.6)

Using Lemma 2.1 with F := x′ > 0, we see that

x′(t) ≥ δktn–2

(n – 2)!
x(n–1)(t) for all δk ∈ (0, 1).

By integrating this inequality from t1 to t and taking into account (2.6), we see that

x(t) ≥ δk

(n – 2)!

∫ t

t1

sn–2x(n–1)(s) ds

≥ x(n–1)(t)
δk

(n – 2)!
r1/α(t)

∫ t

t1

sn–2
(

1
r(s)

exp

(∫ t

s

1
r(u)

q(u)ηα
k
(
σ (u)

)
du

))1/α

ds

≥ ηk+1(t)x(n–1)(t).

Therefore, we have that

x
(
σ (t)

) ≥ ηk+1
(
σ (t)

)
x(n–1)(σ (t)

)
.

The proof is complete. �

Lemma 2.4 Assume that x ∈ X+
D. Then

x(u) ≥ r1/α(v)x(n–1)(v)μl,n–2(v, u), (2.7)

where

μl,k+1(v, u) :=
∫ v

u
μl,k(v, s) ds

and

μl+1,0(v, u) :=
∫ v

u

1
r1/α(s)

exp

(∫ v

s
q(u)μα

l,n–2
(
u,σ (u)

)
du

)1/α

ds

for k = 0, 1, . . . , n – 3, and l = 0, 1, 2, . . . .

Proof Let x ∈ X+
D. Then there exists t1 ≥ t0 such that x(t) > 0 and x(σ (t)) > 0 for all t ≥ t1.

Next, we will prove (2.7) using induction. For l = 0, since (r(z(n–1)))′ ≤ 0, we get that

–x(n–2)(u) ≥ x(n–2)(v) – x(n–2)(u) =
∫ v

u

1
r1/α(s)

r1/α(s)x(n–1)(s) ds
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≥ r1/α(v)x(n–1)(v)μ0,0(v, u). (2.8)

Integrating (2.8) from u to v, we have

–x(n–3)(u) ≤ x(n–3)(v) – x(n–3)(u) = r1/α(v)x(n–1)(v)μ0,1(v, u). (2.9)

Integrating (2.9) n – 3 times from u to v, we get

x(u) ≥ r1/α(v)x(n–1)(v)μ0,n–2(v, u).

Now, we assume that x(u) ≥ r1/α(v)x(n–1)(v)μl,n–2(v, u) for l > 0. Thus, we find

x
(
σ (t)

) ≥ r1/α(t)x(n–1)(t)μl,n–2
(
t,σ (t)

)
,

which, with (1.1), gives

(
r(t)

(
x(n–1)(t)

)α)′ + q(t)r(t)
(
x(n–1)(t)

)α
μα

l,n–2
(
t,σ (t)

) ≤ 0. (2.10)

If we set ψ := r(t)(x(n–1)(t))α , then (2.10) becomes

ψ ′(t) ≤ –q(t)μα
l,n–2

(
t,σ (t)

)
ψ(t).

Applying the Grönwall inequality, we find

ψ(s) ≥ ψ(v) exp

(∫ v

s
q(u)μα

l,n–2
(
u,σ (u)

)
du

)

or

x(n–1)(s) ≥ r1/α(v)x(n–1)(v)
(

1
r(s)

exp

(∫ v

s
q(u)μα

l,n–2
(
u,σ (u)

)
du

))1/α

.

Thus, from (2.8), we see that

–x(n–2)(u) ≥ r1/α(v)x(n–1)(v)
∫ v

u

1
r1/α(s)

exp

(∫ v

s
q(u)μα

l,n–2
(
u,σ (u)

)
du

)1/α

ds

≥ r1/α(v)x(n–1)(v)μl+1,0(v, u).

Integrating this inequality n – 2 times from u to v, we get

x(u) ≥ r1/α(v)x(n–1)(v)μl+1,n–2(v, u).

Thus, the proof is complete. �

Theorem 2.1 Assume that x is a positive solution of (1.1) and ηk is defined as in Lemma 2.3.
If the delay differential equation

w′(t) +
1

r(σ (t))
q(t)ηα

k
(
σ (t)

)
w

(
σ (t)

)
= 0 (2.11)

is oscillatory for some δk ∈ (0, 1) and some k ∈N, then X+
I is empty.
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Proof Assume to the contrary that x ∈ X+
I . Then there exists t1 ≥ t0 such that x(t) > 0 and

x(σ (t)) > 0 for all t ≥ t1. From Lemma 2.3, we have that (2.3) holds. Combining (1.1) and
(2.3), we obtain

(
r(t)

(
x(n–1)(t)

)α)′ + q(t)ηα
k
(
σ (t)

)(
x(n–1)(σ (t)

))α ≤ 0. (2.12)

If we set w := r(x(n–1))α , then (2.12) becomes

w′(t) +
1

r(σ (t))
q(t)ηα

k
(
σ (t)

)
w

(
σ (t)

) ≤ 0.

In view of [24, Theorem 1], we have that (2.11) also has a positive solution, a contradiction.
Thus, the proof is complete. �

Corollary 2.1 Assume that x is a positive solution of (1.1) and ηk is defined as in
Lemma 2.3. If

lim inf
t→∞

∫ t

σ (t)

1
r(σ (u))

q(u)ηα
k
(
σ (u)

)
du >

1
e

(2.13)

for some δk ∈ (0, 1) and some k ∈ N, then X+
I is empty.

Proof In view of [12, Theorem 2], condition (2.13) guarantees that the delay equation
(2.11) is oscillatory. �

Theorem 2.2 Assume that x is a positive solution of (1.1), σ ′(t) > 0, and μl,k is defined as
in Lemma 2.4. If

lim sup
t→∞

∫ t

σ (t)
q(u)μα

l,n–2
(
σ (t),σ (u)

)
du > 1 (2.14)

for some l ∈N, then X+
D is empty.

Proof Assume to the contrary that x ∈ X+
D. Then there exists t1 ≥ t0 such that x(t) > 0 and

x(σ (t)) > 0 for all t ≥ t1. From Lemma 2.4, we have that (2.7) holds. Integrating (1.1) from
σ (t) to t, we obtain

r
(
σ (t)

)(
x(n–1)(σ (t)

))α – r(t)
(
x(n–1)(t)

)α =
∫ t

σ (t)
q(u)xα

(
σ (u)

)
du,

and so

r
(
σ (t)

)(
x(n–1)(σ (t)

))α ≥
∫ t

σ (t)
q(u)xα

(
σ (u)

)
du. (2.15)

Using (2.7) with u = σ (u) and v = σ (t), we get that

x
(
σ (u)

) ≥ r1/α(
σ (t)

)
x(n–1)(σ (t)

)
μl,n–2

(
σ (t),σ (u)

)
,
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with (2.15), gives

∫ t

σ (t)
q(u)μα

l,n–2
(
σ (t),σ (u)

)
du ≤ 1,

which contradicts condition (2.14). This completes the proof. �

Theorem 2.3 Assume that x is a positive solution of (1.1) and μl,k is defined as in
Lemma 2.4. If there exists a function θ ∈ C([t0,∞), (0,∞)) satisfying θ (t) < t and σ (t) < θ (t)
such that the delay differential equation

ϕ′(t) + q(t)μα
l,n–2

(
θ (t),σ (t)

)
ϕ
(
θ (t)

)
= 0 (2.16)

is oscillatory for some l ∈N, then X+
D is empty.

Proof Assume to the contrary that x ∈ X+
D. Then there exists t1 ≥ t0 such that x(t) > 0

and x(σ (t)) > 0 for all t ≥ t1. From Lemma 2.4, we have that (2.7) holds. Using (2.7) with
u = σ (t) and v = θ (t), we get that

x
(
σ (t)

) ≥ r1/α(
θ (t)

)
x(n–1)(θ (t)

)
μl,n–2

(
θ (t),σ (t)

)
.

Thus, from (1.1), we obtain

(
r(t)

(
x(n–1)(t)

)α)′ + q(t)μα
l,n–2

(
θ (t),σ (t)

)
r
(
θ (t)

)(
x(n–1)(θ (t)

))α ≤ 0. (2.17)

If we set ϕ := r(x(n–1))α , then (2.17) becomes

ϕ′(t) + q(t)μα
l,n–2

(
θ (t),σ (t)

)
ϕ
(
θ (t)

) ≤ 0.

In view of [24, Theorem 1], we have that (2.16) also has a positive solution, a contradiction.
Thus, the proof is complete. �

Theorem 2.4 Assume that x is a positive solution of (1.1), (σ –1(t))′ > 0 and μl,k is defined
as in Lemma 2.4. If there exists a function ϑ ∈ C([t0,∞), (0,∞)) satisfying ϑ(t) > t and
σ (ϑ(t)) < t such that the delay differential equation

ϕ′(t) +
(
σ –1(t)

)′q
(
σ –1(t)

)
μα

l,n–2
(
ϑ(t), t

)
ϕ
(
σ
(
ϑ(t)

))
= 0 (2.18)

is oscillatory for some l ∈N, then X+
D is empty.

Proof Assume to the contrary that x ∈ X+
D. Then there exists t1 ≥ t0 such that x(t) > 0 and

x(σ (t)) > 0 for all t ≥ t1. From Lemma 2.4, we have that (2.7) holds. From (1.1), we get

(
r
(
σ –1(t)

)(
x(n–1)(σ –1(t)

))α)′ +
(
σ –1(t)

)′q
(
σ –1(t)

)
xα(t) = 0. (2.19)

Using (2.7) with u = t and v = ϑ(t), we have

x(t) ≥ r1/α(
ϑ(t)

)
x(n–1)(ϑ(t)

)
μl,n–2

(
ϑ(t), t

)
,
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which with (2.19) gives

0 ≥ (
r
(
σ –1(t)

)(
x(n–1)(σ –1(t)

))α)′

+
(
σ –1(t)

)′q
(
σ –1(t)

)
μα

l,n–2
(
ϑ(t), t

)
r
(
ϑ(t)

)(
x(n–1)(ϑ(t)

))α . (2.20)

If we set ϕ(t) := r(x(n–1))α(σ –1(t)), then (2.20) becomes

ϕ′(t) +
(
σ –1(t)

)′q
(
σ –1(t)

)
μα

l,n–2
(
ϑ(t), t

)
ϕ
(
σ
(
ϑ(t)

)) ≤ 0.

In view of [24, Theorem 1], we have that (2.18) also has a positive solution, a contradiction.
Thus, the proof is complete. �

Applying a well-known criterion [12, Theorem 2] for delay equations (2.16) and (2.18)
to be oscillatory, we obtain the following two corollaries.

Corollary 2.2 Assume that x is a positive solution of (1.1) and μl,k is defined as in
Lemma 2.4. If there exists a function θ ∈ C([t0,∞), (0,∞)) satisfying θ (t) < t and σ (t) < θ (t)
such that

lim inf
t→∞

∫ t

θ (t)
q(u)μα

l,n–2
(
θ (u),σ (u)

)
du >

1
e

(2.21)

for some l ∈N, then X+
D is empty.

Corollary 2.3 Assume that x is a positive solution of (1.1), (σ –1(t))′ > 0 and μl,k is defined
as in Lemma 2.4. If there exists a function ϑ ∈ C([t0,∞), (0,∞)) satisfying ϑ(t) > t and
σ (ϑ(t)) < t such that

lim inf
t→∞

∫ t

σ (ϑ(t))

(
σ –1(u)

)′q
(
σ –1(u)

)
μα

l,n–2
(
ϑ(u), u

)
du >

1
e

(2.22)

for some l ∈N, then X+
D is empty.

Theorem 2.5 Assume that ηk and μl,k are defined as in Lemmas 2.3 and 2.4, respectively.
Then every solution of (1.1) is oscillatory if one of the following conditions is satisfied for
some δk ∈ (0, 1) and some k, l ∈N:

(a) There exists a function θ ∈ C([t0,∞), (0,∞)) satisfying θ (t) < t and σ (t) < θ (t) such
that the delay differential equations (2.11) and (2.16) are oscillatory;

(b) There exists a function ϑ ∈ C([t0,∞), (0,∞)) satisfying ϑ(t) > t, (σ –1(t))′ > 0 and
σ (ϑ(t)) < t such that the delay differential equations (2.11) and (2.18) are oscillatory.

Corollary 2.4 Assume that ηk and μl,k are defined as in Lemmas 2.3 and 2.4, respectively.
Then every solution of (1.1) is oscillatory if one of the following conditions is satisfied for
some δk ∈ (0, 1) and some k, l ∈N:

(a) Conditions (2.13) and (2.14) hold;
(b) Conditions (2.13) and (2.21) hold;
(c) Conditions (2.13) and (2.22) hold.
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Remark 2.1 The article [10] was concerned with the oscillation of equations (2.11), (2.16),
and (2.18). Thus, one can obtain a number of oscillation criteria for (1.1) by using related
results reported in [10].

Example 2.1 Consider the third-order differential equation

x′′′ +
q0

t3 x(λt) = 0, (2.23)

where t ≥ 1, q0 > 0, and λ ∈ (0, 2/3). It is easy to verify that η0(t) := δ0
2 λ2t2, μ0,0(v, u) = v – u,

μ0,1(v, u) = 1
2 (v – u)2,

μ1,0(v, u) = q0
(1 – λ)2

2
v ln

v
u

and

μ1,1(v, u) = q0
(1 – λ)2

2
v
(

v – u
(

1 + ln
v
u

))
.

Thus, by choosing k = 0, l = 1 and θ (t) := 3
2λt, conditions (2.13) and (2.21) reduce to

q0λ
2 ln

1
λ

>
2
e

(2.24)

and

q2
0

3
4
λ2(λ – 1)2

(
1
2

– ln
3
2

)
ln

2
3λ

>
1
e

, (2.25)

respectively. Using Corollary 2.4(b), we see that every solution of (2.23) is oscillatory if
(2.24) and (2.25) hold.

Remark 2.2 Apparently, Corollary 2.4(a) and Theorem 2 in [8] are the same for n = 3.
Consider a particular case of (2.23), namely x′′′ + q0t–3x(0.5t) = 0. By using the results in
Example 2.1, this equation is oscillatory if q0 > 16.988.
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