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Abstract
This paper is concerned with the number of limit cycles bifurcating from a period
annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a
planar piecewise quadratic system with multiple parameters, obtain its lower bound
for the maximum number of limit cycles by using Melnikov function method, and
find more limit cycles than (Li and Liu in J. Math. Anal. Appl. 428:1354–1367, 2015).
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1 Introduction
In the last decades, the study of piecewise smooth systems has attracted great interest for
their wider range of application in modeling real phenomena [2, 3]. Quite a few meth-
ods and interesting results have been obtained on limit cycle bifurcations of piecewise
smooth systems. For example, the authors in [4, 5] studied the problem of homoclinic
bifurcation of piecewise smooth systems and the authors in [6, 7] studied the problem
of Hopf bifurcations of piecewise smooth systems. Many research works concerned pla-
nar piecewise quadratic systems with two zones separated by a straight line. For example,
the authors in [8] studied the maximum number of limit cycles which can bifurcate from
the periodic orbits of the quadratic isochronous centers perturbed inside discontinuous
quadratic polynomial differential systems. By perturbing a center of discontinuous Bautin
system, nine limit cycles have been found in [9] and ten limit cycles have been obtained in
[10]. Recently, the authors in [11] claimed the lower bound for the Hilbert number is 16
in piecewise quadratic systems with two zones.

Roughly speaking, there are several methods to estimate the number of limit cycles
of planar piecewise smooth systems. For example, by computing Lyapunov constants to
study the maximal number of limit cycles obtained in switching systems, see [9, 10]. By
using the averaging theory to study the periodic solutions of discontinuous piecewise sys-
tems, see [8, 12–14] etc. In [15], an expression of the first order Melnikov function is de-
rived to study the number of limit cycles bifurcated from the periodic orbits of piecewise
Hamiltonian systems. Later, the authors [16, 17] developed the Melnikov function method
to near-Hamiltonian systems with multiple parameters. Specifically, for the following sys-
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tem:

(
ẋ
ẏ

)
=

⎧⎨
⎩

( H+
y (x,y,λ)+εp+(x,y,λ)

–H+
x (x,y,λ)+εq+(x,y,λ)

)
, x > 0,( H–

y (x,y,λ)+εp–(x,y,λ)
–H–

x (x,y,λ)+εq–(x,y,λ)

)
, x ≤ 0,

(1.1)

where 0 < ε � λ � 1, H±, p±, and q± are C∞ functions in (x, y) and depend on small pa-
rameter λ. In this case, the first order Melnikov function M of (1.1) depends on parameter
λ and it has an expansion of the form

M(h,λ) = M0(h) + λM1(h) + λ2M2(h) + O
(
λ3). (1.2)

The formulas for M1 and M2 were deduced in [17] under some conditions. When M0(h) is
not zero identically, then for 0 < λ � 1 one can study the number of limit cycles by using
M0(h). When M0(h) ≡ 0 and M1(h) is not zero identically, then for 0 < λ � 1 one can study
the number of limit cycles by using M1(h), and so forth.

The authors [1] considered the following planar piecewise smooth system:

(ẋ, ẏ) =

⎧⎨
⎩(y(1 + ax) + εP+(x, y), –x(1 + ax) + εQ+(x, y)), x > 0,

(y(1 + bx) + εP–(x, y), –x(1 + bx) + εQ–(x, y)), x ≤ 0,
(1.3)

where

P±(x, y) =
n∑

i+j=0

p±
ij xiyj, Q±(x, y) =

n∑
i+j=0

q±
ij xiyj.

It is not hard to see that system (1.3)|ε=0 has a first integral of the form H(x, y) = 1
2 (x2 + y2)

and the origin is a center. Let Lh denote the periodic orbit of (1.3)|ε=0, given by Lh = L+
h ∪L–

h
for h ∈ (0, 1

2η2), where

L+
h =

{
(x, y)

∣∣∣1
2
(
x2 + y2) = h, x > 0

}
, L–

h =
{

(x, y)
∣∣∣1
2
(
x2 + y2) = h, x ≤ 0

}
,

and

η =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{– 1
a , 1

b }, a < 0, b > 0,

– 1
a , a < 0, b ≤ 0,

1
b , a ≥ 0, b > 0,

+∞, a ≥ 0, b ≤ 0.

The authors in [1] gave a linear estimation of the maximum number (denoted by H(n))
of limit cycles which bifurcate from any compact region of the period annulus of system
(1.3) for all possible bounded coefficients p±

ij and q±
ij independent of the small parameter

ε up to the first order averaging method, and proved the following results:
(i) If ab 	= 0 and a 	= –b, then H(n) = 2[ n+1

2 ] + n + 1.
(ii) If ab 	= 0 and a = –b, then H(n) = [ n+1

2 ] + n.
(iii) If a 	= 0, b = 0 or a = 0, b 	= 0, then H(n) = [ n+1

2 ] + n + 1.
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Clearly, for the case of n = 2, one has particularly

H(2) =

⎧⎪⎪⎨
⎪⎪⎩

5, for ab 	= 0 and a 	= –b,

3, for ab 	= 0 and a = –b,

4, for a 	= 0, b = 0 or a = 0, b 	= 0.

Inspired by [15, 17], we construct a system with multiple parameters and obtain its lower
bound for the maximum number of limit cycles by using M1(h) in (1.2). Our main result
can be stated in the following.

Theorem 1.1 There is a system of the form (1.3) with n = 2 and |ε| sufficiently small such
that it has

(i) seven limit cycles for ab 	= 0 and a 	= –b;
(ii) four limit cycles for ab 	= 0 and a = –b;

(iii) five limit cycles for a 	= 0, b = 0 or a = 0, b 	= 0.

We remark that for a = b = 0 system (1.3) is a piecewise smooth near-Hamiltonian sys-
tem and can have n limit cycles, which has already been studied in [15]. Comparing with
[1], for the case of n = 2, our lower bound for the maximum number of limit cycles is one
or two bigger for each case.

This paper is organized as follows. In Sect. 2, we introduce a second small parameter λ

to (1.3) with n = 2 and give some preliminaries. In Sect. 3, we calculate the function M1(h)
for each case and prove our main result.

2 Preliminaries
Consider the following piecewise quadratic polynomial system with multiple parameters:

(
ẋ
ẏ

)
=

⎧⎪⎨
⎪⎩

( (y+λH+
1y)(1+ax)+ε(P+

0 (x,y)+λP+
1 (x,y))

–(x+λH+
1x)(1+ax)+ε(Q+

0 (x,y)+λQ+
1 (x,y))

)
, x > 0,( (y+λH–

1y)(1+bx)+ε(P–
0 (x,y)+λP–

1 (x,y))
–(x+λH–

1x)(1+bx)+ε(Q–
0 (x,y)+λQ–

1 (x,y))

)
, x ≤ 0,

(2.1)

where 0 < |ε| � λ � 1, H±
1 (x, y) =

∑2
i+j=1 h±

ij xiyj, and

P±
k (x, y) =

2∑
i+j=0

p±
kijx

iyj, Q±
k (x, y) =

2∑
i+j=0

q±
kijx

iyj, k = 0, 1. (2.2)

Obviously, (2.1) is a piecewise smooth near-integrable system. In the region {Lh|h ∈
(0, 1

2η2)}, system (2.1) is equivalent to the following near-Hamiltonian differential system:

(
ẋ
ẏ

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( y+λH+
1y+ε(

P+
0 (x,y)
1+ax +λ

P+
1 (x,y)
1+ax )

–x–λH+
1x+ε(

Q+
0 (x,y)
1+ax +λ

Q+
1 (x,y)
1+ax )

)
, 0 < x < η,

( y+λH–
1y+ε(

P–
0 (x,y)
1+bx +λ

P–
1 (x,y)
1+bx )

–x–λH–
1x+ε(

Q–
0 (x,y)
1+bx +λ

Q–
1 (x,y)
1+bx )

)
, –η < x ≤ 0.

(2.3)

Therefore, by [15], the first order Melnikov function of (2.3) can be expressed as

M(h,λ) =
∫
̂AλBλ

q+ dx – p+ dy +
H+

y (Aλ,λ)
H–

y (Aλ,λ)

∫
̂BλAλ

q– dx – p– dy, (2.4)
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Figure 1 Cloed orbit Lλ

where

H±(x, y,λ) =
x2 + y2

2
+ λH±

1 (x, y),

p+ =
P+

0 (x, y)
1 + ax

+ λ
P+

1 (x, y)
1 + ax

, q+ =
Q+

0 (x, y)
1 + ax

+ λ
Q+

1 (x, y)
1 + ax

,

p– =
P–

0 (x, y)
1 + bx

+ λ
P–

1 (x, y)
1 + bx

, q– =
Q–

0 (x, y)
1 + bx

+ λ
Q–

1 (x, y)
1 + bx

,

(2.5)

and Aλ = (0, a(h,λ)), Bλ = (0, b(h,λ)) with a(h,λ) > b(h,λ) satisfying H+(Aλ) = H+(Bλ) = h,
H–(Aλ) = H–(Bλ) for h ∈ (0, 1

2η2). ̂AλBλ is an orbital arc starting from Aλ and ending at Bλ

defined by H+(x, y,λ) = h, x > 0; ̂BλAλ is an orbital arc starting from Bλ(h) and ending at
Aλ(h) defined by H–(x, y,λ) = H–(Bλ(h)), x ≤ 0. Clearly, for given h ∈ (0, 1

2η2), ̂AλBλ and
̂BλAλ form a closed orbit Lλ with clockwise orientation(see Fig. 1).

By [17], for 0 < λ � 1, (2.4) has an expansion of the form (1.2), where

M0(h) =
∫

ÂB

Q+
0

1 + ax
dx –

P+
0

1 + ax
dy +

∫
B̂A

Q–
0

1 + bx
dx –

P–
0

1 + bx
dy, (2.6)

with A = Aλ|λ=0, B = Bλ|λ=0. Obviously, for given h ∈ (0, 1
2η2), ÂB and B̂A form a closed

orbit L0(h), defined by 1
2 (x2 + y2) = h.

Suppose h–
0j = h+

0j (j = 1, 2), so that the points on ̂AλBλ and ̂BλAλ satisfy
H±(x, y,λ) = h, ±x ≥ 0, h ∈ (0, 1

2η2). Then, by Theorem 1.1 of [17], M1(h) has the form

M1(h) = M11(h) + M12(h) + M13(h), (2.7)

where

M11(h) =
∫

ÂB

Q+
1

1 + ax
dx –

P+
1

1 + ax
dy +

∫
B̂A

Q–
1

1 + bx
dx –

P–
1

1 + bx
dy,

M12(h) = –
∫

ÂB
H+

1

((
P+

0
1 + ax

)
x

+
(

Q+
0

1 + ax

)
y

)
dt

–
∫

B̂A
H–

1

((
P–

0
1 + bx

)
x

+
(

Q–
0

1 + bx

)
y

)
dt,

M13(h) = I
(

P+
0

1 + ax

)∣∣∣∣
λ=0

– I
(

P–
0

1 + bx

)∣∣∣∣
λ=0

(2.8)
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with

I(r) = r
(
0, a(h,λ)

)∂a
∂λ

– r
(
0, b(h,λ)

) ∂b
∂λ

(2.9)

for a C∞ function r(x, y).
Since the authors in [18] have proved the equivalence of the Melnikov function method

and the averaging method, by using M0(h) we can obtain the same number of limit cycles
as that obtained by using the first order averaging method in [1]. By formula (15) of [1], it is
not hard to obtain the following lemma that gives the necessary and sufficient conditions
for M0(h) ≡ 0.

Lemma 2.1 For ab 	= 0 and a 	= –b, M0(h) ≡ 0 if and only if

p–
000 = p+

000, q+
001 =

1
a
(
p+

002 + q+
011

)
, q–

001 =
1
b
(
p–

002 + q–
011

)
,

p+
010 = ap+

000 +
1
a

p+
020, p–

010 = bp–
000 +

1
b

p–
020,

p–
020 = –

b
a
(
p+

002 + p+
020 + q+

011
)

– p–
002 – q–

011.

(2.10)

For ab 	= 0 and a = –b, M0(h) ≡ 0 if and only if

p–
000 = p+

000, q–
001 =

1
a
(
p+

002 + q+
011 – p–

002 – q–
011

)
– q+

001,

p–
010 =

1
a
(
p–

002 + q–
011 – p+

002 – q+
011

)
– p+

010,

p–
020 = p+

002 + p+
020 + q+

011 – p–
002 – q–

011.

(2.11)

For a 	= 0, b = 0, M0(h) ≡ 0 if and only if

p–
000 = p+

000, p–
002 = –2p–

020 – q–
011, q+

001 =
1
a
(
p+

002 + q+
011

)
,

p+
010 = ap+

000 +
1
a

p+
020, p–

010 = –
1
a
(
p+

002 + p+
020 + q+

011
)

– q–
001.

(2.12)

For b 	= 0, a = 0, M0(h) ≡ 0 if and only if

p–
000 = p+

000, p+
002 = –2p+

020 – q+
011, q–

001 =
1
b
(
p–

002 + q–
011

)
,

p–
010 = bp–

000 +
1
b

p–
020, p+

010 = –
1
b
(
p–

002 + p–
020 + q–

011
)

– q+
001.

(2.13)

3 Proof of the main result
In this section we prove Theorem 1.1. By (2.7), we know that M1(h) = M11(h) + M12(h) +
M13(h). In the following, we first divide three cases to calculate M1i(h) (i = 1, 2, 3).

Case 1. ab 	= 0 and a 	= –b
Suppose that (2.10) holds, so that M0(h) ≡ 0. Let

√
2h = r. Then L0(h) can be represented

as x = r cos θ , y = r sin θ , r ∈ (0,η), θ ∈ [– π
2 , 3π

2 ]. Then, by (2.8), we rewrite

M11(h) = M+
11(h) + M–

11(h),
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where

M+
11(h) =

∫ π
2

– π
2

∑2
i+j=0 ri+j+1(q+

1ij cosi θ sinj+1 θ + p+
1ij cosi+1 θ sinj θ )

1 + ar cos θ
dθ (3.1)

and

M–
11(h) =

∫ 3π
2

π
2

∑2
i+j=0 ri+j+1(q–

1ij cosi θ sinj+1 θ + p–
1ij cosi+1 θ sinj θ )

1 + br cos θ
dθ ,

=
∫ π

2

– π
2

∑2
i+j=0(–r)i+j+1(q–

1ij cosi θ sinj+1 θ + p–
1ij cosi+1 θ sinj θ )

1 – br cos θ
dθ . (3.2)

For the sake of convenience, introduce some notations as follows:

I+
i,j(r) =

∫ π
2

– π
2

ajrj cosj θ

(1 + ar cos θ )i dθ , I–
i,j(r) =

∫ π
2

– π
2

(–b)jrj cosj θ

(1 – br cos θ )i dθ , (3.3)

where ab 	= 0 and i ∈ Z, j ∈N.
By [1] and some simple definite integral calculations, we have

I+
2,0(r) =

I+
1,0(r) – 2ar
1 – a2r2 , I–

2,0(r) =
I–

1,0(r) + 2br
1 – b2r2 , (3.4)

where

I+
1,0(r) = J(a, r), I–

1,0(r) = J(–b, r),

with

J(ν, r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4√
1–ν2r2 ( π

2 – arctan(
√

1+νr
1–νr )), ν < 0, r ∈ (0, – 1

ν
),

4√
1–ν2r2 arctan(

√
1–νr
1+νr ), ν > 0, r ∈ (0, 1

ν
),

2, ν > 0, r = 1
ν

,
2√

ν2r2–1
ln(νr +

√
ν2r2 – 1), ν > 0, r ∈ ( 1

ν
, +∞).

Moreover, noting that ajrj cosj θ = (1+ar cos θ –1)j, then by using the binomial expansion

(1 + ar cos θ – 1)j =
j∑

m=0

Cm
j (–1)j–m(1 + ar cos θ )m, j ∈N,

it is easy to deduce the following relationship:

I±
i,j (r) =

j∑
m=0

Cm
j (–1)j–mI±

i–m,0(r), i ∈ Z, j ∈N. (3.5)

It is direct that

I+
0,0(r) = π , I+

–1,0(r) = π + 2ar, I+
–2,0(r) = π + 4ar +

1
2
πa2r2,

I–
0,0(r) = π , I–

–1,0(r) = π – 2br, I–
–2,0(r) = π – 4br +

1
2
πb2r2.

(3.6)
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In the following we will use I±
i,j instead of I±

i,j (r) for simplicity.
Now, coming back to M±

11(h), (3.1) and (3.2) can be read as

M+
11(h) =

γ +
13

a3 I+
1,3 +

γ +
12

a2 I+
1,2 +

γ +
11r2 + p+

100
a

I+
1,1 + γ +

10r2I+
1,0, (3.7)

M–
11(h) =

γ –
13

b3 I–
1,3 +

γ –
12

b2 I–
1,2 +

γ –
11r2 + p–

100
b

I–
1,1 + γ –

10r2I–
1,0, (3.8)

where

γ ±
13 = p±

120 – p±
102 – q±

111, γ ±
12 = p±

110 – q±
101,

γ ±
11 = p±

102 + q±
111, γ ±

10 = q±
101.

(3.9)

Obviously, γ ±
1i (i = 0, 1, 2, 3) can be taken as free parameters.

By (3.5) we have

I±
1,1 = –I±

1,0 + I±
0,0, I±

1,2 = I±
1,0 – 2I±

0,0 + I±
–1,0,

I±
1,3 = –I±

1,0 + 3I±
0,0 – 3I±

–1,0 + I±
–2,0.

(3.10)

Inserting (3.6) and (3.10) into (3.7) and (3.8) respectively yields

M+
11(h) = d+

11
(
π – I+

1,0
)

+ d+
12r2I+

1,0 + b+
11r + b+

12r2, (3.11)

M–
11(h) = d–

11
(
π – I–

1,0
)

+ d–
12r2I–

1,0 – b–
11r + b–

12r2, (3.12)

where

d+
11 =

p+
100
a

–
γ +

12
a2 +

γ +
13

a3 , d+
12 = γ +

10 –
γ +

11
a

,

b+
11 =

2γ +
12

a
–

2γ +
13

a2 , b+
12 =

π

a

(
γ +

13
2

+ γ +
11

)
,

d–
11 =

p–
100
b

–
γ –

12
b2 +

γ –
13

b3 , d–
12 = γ –

10 –
γ –

11
b

,

b–
11 =

2γ –
12

b
–

2γ –
13

b2 , b–
12 =

π

b

(
γ –

13
2

+ γ –
11

)
.

(3.13)

Clearly, d±
1i , b±

1i (i = 1, 2) can be taken as free parameters.
Next, we calculate M12(h). Note that along the curve L0(h), dt = – 1

x dy. Hence, by (2.8),
we have

M12(h) = M+
12(h) + M–

12(h),

where

M+
12(h) = –

∫ π
2

– π
2

H+
1 (r cos θ , r sin θ )

( P+
0x + Q+

0y

1 + ar cos θ
–

aP+
0

(1 + ar cos θ )2

)
dθ , (3.14)

M–
12(h) = –

∫ 3π
2

π
2

H–
1 (r cos θ , r sin θ )

( P–
0x + Q–

0y

1 + br cos θ
–

bP–
0

(1 + br cos θ )2

)
dθ . (3.15)
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Through a direct computation, we obtain

M+
12(h) = –

∫ π
2

– π
2

[
a+

10r2 + (a+
11r2 + ã+

11)r cos θ + a+
12r2 cos2 θ + a+

13r3 cos3 θ

1 + ar cos θ

– a
((

a+
20r4 + ã+

20r2) +
(
a+

21r2 + ã+
21

)
r cos θ +

(
a+

22r2 + ã+
22

)
r2 cos2 θ

+ a+
23r3 cos3 θ + a+

24r4 cos4 θ
)
/
(
(1 + ar cos θ )2)]dθ ,

and

M–
12(h) = –

∫ π
2

– π
2

[
a–

10r2 – (a–
11r2 + ã–

11)r cos θ + a+
12r2 cos2 θ – a–

13r3 cos3 θ

1 – br cos θ

– b
((

a–
20r4 + ã–

20r2) –
(
a–

21r2 + ã–
21

)
r cos θ +

(
a–

22r2 + ã–
22

)
r2 cos2 θ

– a–
23r3 cos3 θ + a–

24r4 cos4 θ
)
/
(
(1 – br cos θ )2)]dθ ,

where

a±
10 = h±

02
(
p±

010 + q±
001

)
+ h±

01
(
p±

011 + 2q±
002

)
, ã±

11 = h±
10

(
p±

010 + q±
001

)
,

a±
11 = h±

02
(
2p±

020 + q±
011

)
+ h±

11
(
p±

011 + 2q±
002

)
, a±

13 = h±
20

(
2p±

020 + q±
011

)
– a±

11,

a±
12 = h±

20
(
p±

010 + q±
001

)
+ h±

10
(
2p±

020 + q±
011

)
– a±

10, ã±
20 = h±

01p±
001 + h±

02p±
000,

a±
20 = h±

02p±
002, ã±

21 = h±
10p±

000, a±
21 = h±

01p±
011 + h±

02p±
010 + h±

11p±
001 + h±

10p±
002,

ã±
22 =

(
h±

20 – h±
02

)
p±

000 – h±
01p±

001 + h±
10p±

010, a±
23 = h±

10p±
020 + h±

20p±
010 – a±

21,

a±
22 =

(
h±

20 – 2h±
02

)
p±

002 + h±
02p±

020 + h±
11p±

011, a±
24 = h±

20p±
020 – h±

02p±
002 – a±

22.

(3.16)

Further, by (3.3), one achieves

M+
12(h) = N+(a, r), M–

12(h) = N–(b, r),

where

N±(ν, r) = –a±
10r2I±

1,0 –
(a±

11r2 + ã±
11)

ν
I±

1,1 –
a±

12
ν2 I±

1,2 –
a±

13
ν3 I±

1,3 + ν
(
a±

20r4 + ã±
20r2)I±

2,0

+ ν

(
a±

21r2 + ã±
21

ν
I±

2,1 +
a±

22r2 + ã±
22

ν2 I±
2,2 +

a±
23

ν3 I±
2,3 +

a±
24

ν4 I±
2,4

)
.

In view of (3.5), we have

I±
2,1 = –I±

2,0 + I±
1,0, I±

2,3 = –I±
2,0 + 3I±

1,0 – 3I±
0,0 + I±

–1,0,

I±
2,2 = I±

2,0 – 2I±
1,0 + I±

0,0, I±
2,4 = I±

2,0 – 4I±
1,0 + 6I±

0,0 – 4I±
–1,0 + I±

–2,0.
(3.17)

It follows from (3.10) and (3.17) that

M+
12(h) = k+

1 r4I+
2,0 + k+

2 r2I+
2,0 + k+

3 r2I+
1,0 + k+

4
(
π – I+

1,0
)

+ k+
5 r + k+

6 r2, (3.18)
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M–
12(h) = k–

1 r4I–
2,0 + k–

2 r2I–
2,0 + k–

3 r2I–
1,0 + k–

4
(
π – I–

1,0
)

– k–
5 r + k–

6 r2, (3.19)

where

k+
i = m+

i (a), k–
i = m–

i (b), i = 1, 2, . . . , 6, (3.20)

with

m±
1 (ν) = νa±

20,

m±
2 (ν) = –

a±
24
ν

+ a±
23 +

a±
22
ν

– a±
21 – νã±

22 – ν 2̃a±
21 + νã±

20,

m±
3 (ν) = –

2a±
22

ν
+ a±

21 +
a±

11
ν

– a±
10,

m±
4 (ν) =

3a±
24

ν3 –
2a±

23
ν2 +

ã±
22
ν

–
a±

13
ν3 +

a±
12

ν2 –
ã±

11
ν

,

m±
5 (ν) = –

6a±
24

ν2 +
4a±

23
ν

+
2a±

13
ν2 –

2a±
12

ν
– 2̃a±

22 + 2νã±
21,

m±
6 (ν) =

π

2ν

(
a±

24 + 2a±
22 – a±

13 – 2a±
11

)
.

(3.21)

Now we are in the position to calculate M13(h). Recall that

H+(
0, a(h,λ),λ

)
= H+(

0, b(h,λ),λ
)

= h, a(h,λ) > b(h,λ).

Thus, we have from (2.5)

a(h,λ) =
–h+

01λ +
√




1 + 2h+
02λ

, b(h,λ) =
–h+

01λ –
√




1 + 2h+
02λ

,

where


 = h+2
01λ2 + 4hh+

02λ + 2h.

Consequently,

a(h,λ)|λ=0 =
√

2h, b(h,λ)|λ=0 = –
√

2h, (3.22)

and

∂a
∂λ

∣∣∣∣
λ=0

= –h+
01 – h+

02
√

2h,
∂b
∂λ

∣∣∣∣
λ=0

= –h+
01 + h+

02
√

2h. (3.23)

Therefore, by (2.8) and (2.10), we obtain

M13(h) = 2h+
01

(
p–

001 – p+
001

)
r + 2h+

02
(
p–

002 – p+
002

)
r3. (3.24)

Noting that h–
02 = h+

02, by (3.16), (3.20) and (3.21), (3.24) reads

M13(h) = 2h+
01

(
p–

001 – p+
001

)
r + 2

(
1
b

k–
1 –

1
a

k+
1

)
r3. (3.25)
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Hence, combining (3.11), (3.12), (3.18), (3.19), and (3.25), we find that

M1(h) = l1

(
r4I+

2,0 –
2
a

r3
)

+ l2r2I+
2,0 + l3r2I+

1,0 + l4
(
π – I+

1,0
)

+ l5r + l6r2

+ l7

(
r4I–

2,0 +
2
b

r3
)

+ l8r2I–
2,0 + l9r2I–

1,0 + l10
(
π – I–

1,0
)
, (3.26)

where

l1 = k+
1 , l2 = k+

2 , l3 = k+
3 + d+

12, l4 = k+
4 + d+

11,

l5 = k+
5 – k–

5 + b+
11 – b–

11 + 2h+
01

(
p–

001 – p+
001

)
, l6 = k+

6 + k–
6 + b+

12 + b–
12,

l7 = k–
1 , l8 = k–

2 , l9 = k–
3 + d–

12, l10 = k–
4 + d–

11.

(3.27)

Case 2. ab 	= 0 and a = –b
Suppose that (2.11) holds, so that M0(h) ≡ 0. If a = –b, then I–

i,0 = I+
i,0 (i = 1, 2). By (3.26),

we have

M1(h) = l̃1

(
r4I+

2,0 –
2
a

r3
)

+ l̃2r2I+
2,0 + l̃3r2I+

1,0 + l̃4
(
π – I+

1,0
)

+ l̃5r + l̃6r2, (3.28)

where

l̃1 = l1 + l7, l̃2 = l2 + l8, l̃3 = l3 + l9,

l̃4 = l4 + l10, l̃5 = l5, l̃6 = l6.
(3.29)

Case 3. a 	= 0, b = 0 or b 	= 0, a = 0
Suppose that (2.12) holds, so that M0(h) ≡ 0. Note that, for a 	= 0, b = 0, M+

11(h), M+
12(h),

and M13(h) are identical to (3.11), (3.18), and (3.24) respectively. Hence, in order to give
M1(h), it suffices to calculate M–

11(h) and M–
12(h).

We have from (3.2)

M–
11(h) =

∫ 3π
2

π
2

2∑
i+j=0

ri+j+1(q–
1ij cosi θ sinj+1 θ + p–

1ij cosi+1 θ sinj θ
)

dθ

=
∫ π

2

– π
2

2∑
i+j=0

(–r)i+j+1(q–
1ij cosi θ sinj+1 θ + p–

1ij cosi+1 θ sinj θ
)

dθ

= –γ –
13r3

∫ π
2

– π
2

cos3 θ dθ + γ –
12r2

∫ π
2

– π
2

cos2 θ dθ

–
(
γ –

11r2 + p–
100

)
r
∫ π

2

– π
2

cos θ dθ + γ –
10r2π . (3.30)

Through a direct computation,

∫ π
2

– π
2

cos3 θ dθ =
4
3

,
∫ π

2

– π
2

cos2 θ dθ =
π

2
,

∫ π
2

– π
2

cos θ dθ = 2. (3.31)
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Thus, (3.30) becomes

M–
11(h) = –2p–

100r +
(

πγ –
10 +

π

2
γ –

12

)
r2 –

(
4
3
γ –

13 + 2γ –
11

)
r3. (3.32)

By (3.15), together with (3.31), we have

M–
12(h) = –

∫ π
2

– π
2

H–
1
(
r cos(θ + π ), r sin(θ + π )

)(
P–

0x + Q–
0y

)(
r cos(θ + π ), r sin(θ + π )

)
dθ

= –πa–
10r2 + 2

(
a–

11r3 + ã–
11r

)
–

π

2
a–

12r2 +
4
3

a–
13r3

= 2̃a–
11r –

π

2
(
2a–

10 + a–
12

)
r2 +

(
2a–

11 +
4
3

a–
13

)
r3. (3.33)

Combining (3.11), (3.18), (3.24), (3.32), and (3.33), one can obtain

M1(h) = l1r4I+
2,0 + l2r2I+

2,0 + l3r2I+
1,0 + l4

(
π – I+

1,0
)

+ l5r + l6r2 + l7r3, (3.34)

where

l1 = k+
1 , l2 = k+

2 , l3 = k+
3 + d+

12, l4 = k+
4 + d+

11,

l5 = k+
5 + 2̃a–

11 + b+
11 – 2p–

100 + 2h+
01

(
p–

001 – p+
001

)
,

l6 = k+
6 –

π

2
(
2a–

10 + a–
12

)
+ b+

12 + πγ –
10 +

π

2
γ –

12,

l7 = 2a–
11 +

4
3

a–
13 –

4
3
γ –

13 – 2γ –
11 + 2h+

02p–
002.

Similarly, suppose that (2.13) holds to ensure M0(h) ≡ 0. Then, for the case b 	= 0, a = 0,
we can obtain

M1(h) = l̂1r4I–
2,0 + l̂2r2I–

2,0 + l̂3r2I–
1,0 + l̂4

(
π – I–

1,0
)

+ l̂5r + l̂6r2 + l̂7r3, (3.35)

where

l̂1 = k–
1 , l̂2 = k–

2 , l̂3 = k–
3 + d–

12, l̂4 = k–
4 + d–

11,

l̂5 = –k–
5 – 2̃a+

11 – b–
11 + 2p+

100 + 2h+
01

(
p–

001 – p+
001

)
,

l̂6 = k–
6 –

π

2
(
2a+

10 + a+
12

)
+ b–

12 + πγ +
10 +

π

2
γ +

12,

l̂7 = –2a+
11 –

4
3

a+
13 +

4
3
γ +

13 + 2γ +
11 – 2h+

02p+
002.

We can prove the following theorem.

Theorem 3.1 Suppose that M0(h) ≡ 0 and M1(h) is not zero identically. Denote by Z1(2)
the maximum number of zeros of M1(h) with 0 < λ � 1. Then

Z1(2) =

⎧⎪⎪⎨
⎪⎪⎩

7, for ab 	= 0 and a 	= –b,

4, for ab 	= 0 and a = –b,

5, for a 	= 0, b = 0 or a = 0, b 	= 0.
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Proof First, for the case ab 	= 0 and a 	= –b, we study the number of zeros of M1(h) in (3.26).
We introduce the following coefficients:

c1 = h+
02p+

002, c2 = h+
01p+

011, c3 = d+
12, c4 = h+

01q+
002, c5 = b+

11 – b–
11,

c6 = h–
02p–

002, c7 = h–
01p–

011, c8 = d–
12, c9 = h–

01q–
002, c10 = b+

12 + b–
12.

Since p±
1ij and q±

1ij are independent of p±
0ij and q±

0ij, so by (3.13) it is easy to see ci (i =
1, 2, . . . , 10) can be taken as free parameters as long as h±

0i 	= 0 (i = 1, 2). Under condition
(2.10), for ab 	= 0, one can obtain by (3.16), (3.20), (3.21), and (3.27)

det
∂(l1, l1, . . . , l10)
∂(c1, c2, . . . , c10)

=
16
ab

	= 0.

Similar to the proof of Corollary 2.4.1 in [19], one knows that li (i = 1, 2, . . . , 10) in (3.26)
can be taken as free parameters.

For 0 < r � 1, we have the following Taylor expansions:

π – I+
1,0 = 2ar –

π

2
a2r2 +

4
3

a3r3 –
3π

8
a4r4 +

16
15

a5r5 –
5π

16
a6r6 +

32
35

a7r7 + O
(
r8),

π – I–
1,0 = –2br –

π

2
b2r2 –

4
3

b3r3 –
3π

8
b4r4 –

16
15

b5r5 –
5π

16
b6r6 –

32
35

b7r7 + O
(
r8),

r2I+
1,0 = πr2 – 2ar3 +

1
2
πa2r4 –

4
3

a3r5 +
3
8
πa4r6 –

16
15

a5r7 + O
(
r8),

r2I–
1,0 = πr2 + 2br3 +

π

2
b2r4 +

4
3

b3r5 +
3π

8
b4r6 +

16
15

b5r7 + O
(
r8),

r2I+
2,0 = πr2 – 4ar3 +

3π

2
a2r4 –

16
3

a3r5 +
15π

8
a4r6 –

32
5

a5r7 + O
(
r8),

r2I–
2,0 = πr2 + 4br3 +

3π

2
b2r4 +

16
3

b3r5 +
15π

8
b4r6 +

32
5

b5r7 + O
(
r8).

(3.36)

Inserting (3.36) into (3.26), we get

M1(h) =
∑
i≥1

Airi, 0 < r � 1, (3.37)

where

A1 = 2al4 + l5 – 2bl10,

A2 = π

(
l2 + l3 –

1
2

a2l4 + l8 + l9 –
1
2

b2l10

)
+ l6,

A3 = –
2
a

l1 – 4al2 – 2al3 +
4
3

a3l4 +
2
b

l7 + 4bl8 + 2bl9 –
4
3

b3l10,

A4 = π

(
l1 +

3
2

a2l2 +
1
2

a2l3 –
3
8

a4l4 + l7 +
3
2

b2l8 +
1
2

b2l9 –
3
8

b4l10

)
,

A5 = –4al1 –
16
3

a3l2 –
4
3

a3l3 +
16
15

a5l4 + 4bl7 +
16
3

b3l8 +
4
3

b3l9 –
16
15

b5l10, (3.38)

A6 = π

(
3
2

a2l1 +
15
8

a4l2 +
3
8

a4l3 –
5

16
a6l4 +

3
2

b2l7 +
15
8

b4l8 +
3
8

b4l9 –
5

16
b6l10

)
,
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A7 = –
16
3

a3l1 –
32
5

a5l2 –
16
15

a5l3 +
32
35

a7l4 +
16
3

b3l7 +
32
5

b5l8 +
16
15

b5l9 –
32
35

b7l10,

A8 = π

(
15
8

a4l1 +
35
16

a6l2 +
5

16
a6l3 –

35
128

a8l4 +
15
8

b4l7

+
35
16

b6l8 +
5

16
b6l9 –

35
128

b8l10

)

and Ai (i ≥ 9) are linear combinations of li (i = 1, 2, . . . , 10).
By direct computation, for ab 	= 0 and a 	= –b, we have by (3.38)

det
∂(A1, A2, . . . , A8)

∂(l2, l3, l4, l5, l6, l8, l9, l10)
=

π3

30,240
a8b8(a + b)9 	= 0. (3.39)

Fix l1 and l7. Take l2 = –l3 = – 1
a2 l1, l8 = –l9 = – 1

b2 l7, and l4 = l5 = l6 = l10 = 0 such that A1 =
A2 = · · · = A8 = 0. Thus, by (3.39), (3.38) has the inverse li = li(A1, A2, . . . , A8), i = 1, 2, . . . , 10,
and consequently Ai = 0 (i ≥ 9) as A1 = A2 = · · · = A8 = 0. It follows that (3.38) can be
rewritten as

M1(h) =
8∑

i≥1

Ai
(
1 + Pi(r)

)
ri, 0 < r � 1, (3.40)

where Pi(r) = O(r), i = 1, 2, . . . , 8. Hence, by Rolle’s theorem, (3.40) implies that M1(h) has
at most seven zeros in h for 0 <

√
2h � 1.

On the other hand, (3.39) implies that A1, A2, . . . , A8 can be taken as free parameters.
Letting δ = (l2, l3, l4, l5, l6, l8, l9, l10) and taking δ0 = (– 1

a2 l1, 1
a2 l1, 0, 0, 0, – 1

b2 l7, 1
b2 l7, 0), we can

choose proper value δ near δ0 such that

0 < A1 � –A2 � A3 � –A4 � A5 � –A6 � A7 � –A8 � 1,

which ensures that M1(h) has seven zeros in h for 0 <
√

2h � 1.
Second, consider the case ab 	= 0 and a = –b. Obviously, l̃i (i = 1, 2, . . . , 6) in (3.29) can be

taken as free parameters.
Inserting (3.36) into (3.28), we get

M1(h) =
∑
i≥1

Ãiri, 0 < r � 1, (3.41)

where

Ã1 = 2ãl4 + l̃5, Ã2 = π

(̃
l2 + l̃3 –

1
2

a2̃l4

)
+ l̃6,

Ã3 = –
2
ã

l1 – 4ãl2 – 2ãl3 +
4
3

a3̃l4, Ã4 = π

(̃
l1 +

3
2

a2̃l2 +
1
2

a2̃l3 –
3
8

a4̃l4

)
,

Ã5 = –4ãl1 –
16
3

a3̃l2 –
4
3

a3̃l3 +
16
15

a5̃l4

(3.42)
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and Ãi (i ≥ 6) are linear combinations of l̃i (i = 1, 2, . . . , 6). Moreover, for ab 	= 0 and a = –b,
we have by (3.42)

det
∂(Ã1, Ã2, . . . , Ã5)
∂ (̃l2,̃ l3,̃ l4,̃ l5,̃ l6)

= –
2π

45
a8 	= 0. (3.43)

Similar to the above case, Ãi = 0 (i ≥ 6) if Ã1 = Ã2 = · · · = Ã5 = 0. Thus, M1(h) in (3.41) has
at most four zeros in h for 0 <

√
2h � 1.

Also, (3.43) implies that Ã1, Ã2, . . . , Ã5 can be taken as free parameters. Let δ̃ =
(̃l2,̃ l3,̃ l4,̃ l5,̃ l6) and take δ̃0 = (– 1

a2̃ l1, 1
a2̃ l1, 0, 0, 0). Then Ã1 = Ã2 = · · · = Ã5 = 0 if δ̃ = δ̃0.

Hence, we can choose proper value δ̃ near δ̃0 such that

0 < Ã1 � –Ã2 � Ã3 � –Ã4 � Ã5 � 1,

which ensures that M1(h) has four zeros in h for 0 <
√

2h � 1.
For the case a 	= 0, b = 0, it is easy to see li (i = 1, 2, . . . , 7) in (3.34) can be taken as free

parameters. Then, by inserting (3.36) into (3.34), we get the expansion

M1(h) =
∑
i≥1

Airi, 0 < r � 1, (3.44)

where

A1 = 2al4 + l5, A4 = π

(
l1 +

3
2

a2l2 +
1
2

a2l3 –
3
8

a4l4

)
,

A2 = π

(
l2 + l3 –

1
2

a2l4

)
+ l6, A5 = –4al1 –

16
3

a3l2 –
4
3

a3l3 +
16
15

a5l4,

A3 = –4al2 – 2al3 +
4
3

a3l4 + l7, A6 = π

(
3
2

a2l1 +
15
8

a4l2 +
3
8

a4l3 –
5

16
a6l4

)
(3.45)

and Ai (i ≥ 7) are linear combinations of li (i = 1, 2, . . . , 7). By calculation, for a 	= 0 and
b = 0, we have by (3.45)

det
∂(A1, A2, . . . , A6)
∂(l2, l3, l4, l5, l6, l7)

= –
π2

240
a11 	= 0. (3.46)

By using the similar analysis, one can obtain that M1(h) in (3.44) has at most five ze-
ros in h for 0 <

√
2h � 1. Moreover, (3.46) implies that A1, A2, . . . , A6 can be taken as

free parameters. Let δ = (l2, l3, l4, l5, l6, l7) and take δ0 = (– 1
a2 l1, 1

a2 l1, 0, 0, 0, – 2
a l1). Then

A1 = A2 = · · · = A5 = A6 = 0 if δ = δ0. Hence, we can choose proper value δ near δ0 such
that

0 < A1 � –A2 � A3 � –A4 � A5 � –A6 � 1,

which ensures that M1(h) has five zeros in h for 0 <
√

2h � 1. In the case of b 	= 0, a = 0,
the proof is similar. Theorem 3.1 is proved. �
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Proof of Theorem 1.1 It is not hard to see that system (2.1) can be rewritten as

(ẋ, ẏ) =

⎧⎨
⎩(y(1 + ax) + λF+(x, y), –x(1 + ax) + λG+(x, y)), x > 0,

(y(1 + bx) + λF–(x, y), –x(1 + bx) + λG–(x, y)), x ≤ 0,
(3.47)

where
(

F+(x, y)
G+(x, y)

)
=

(
H+

1y(1 + ax) + σP+
0 (x, y) + εP+

1 (x, y)
–H+

1x(1 + ax) + σQ+
0 (x, y) + εQ+

1 (x, y)

)
, x > 0,

and
(

F–(x, y)
G–(x, y)

)
=

(
H–

1y(1 + bx) + σP–
0 (x, y) + εP–

1 (x, y)
–H–

1x(1 + bx) + σQ–
0 (x, y) + εQ–

1 (x, y)

)
, x ≤ 0,

with 0 < |ε| � λ � 1 and σ = ε
λ

. Obviously, 0 < |σ | � 1.
By Theorem 3.1, there exists λ0 > 0 such that, for any λ ∈ (0,λ0], M(h,λ) for system

(3.47) has k (k = 7, 4, 5 for each case) zeros in h for 0 <
√

2h � 1. It follows that, for any
λ ∈ (0,λ0] and 0 < |ε| � λ, system (3.47) can have k limit cycles. That is to say, for any
λ ∈ (0,λ0], there exist ε0 and σ0 = ε0

λ
satisfying 0 < |ε0| � λ and 0 < |σ0| � 1 such that

system (3.47) can have k limit cycles. Note that system (3.47) has the form of (2.1) with
n = 2. The proof is then completed. �
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