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Abstract
Since the first case of 2019 novel coronavirus disease (COVID-19) detected on
30 January, 2020, in India, the number of cases rapidly increased to 3819 cases
including 106 deaths as of 5 April, 2020. Taking this into account, in the present work,
we have analysed a Bats–Hosts–Reservoir–People transmission fractional-order
COVID-19 model for simulating the potential transmission with the thought of
individual response and control measures by the government. The real data available
about number of infected cases from 14 March, 2000 to 26 March, 2020 is analysed
and, accordingly, various parameters of the model are estimated or fitted. The Picard
successive approximation technique and Banach’s fixed point theory have been used
for verification of the existence and stability criteria of the model. Further, we conduct
stability analysis for both disease-free and endemic equilibrium states. On the basis of
sensitivity analysis and dynamics of the threshold parameter, we estimate the
effectiveness of preventive measures, predicting future outbreaks and potential
control strategies of the disease using the proposed model. Numerical computations
are carried out utilising the iterative Laplace transform method and comparative
study of different fractional differential operators is done. The impacts of various
biological parameters on transmission dynamics of COVID-19 is investigated. Finally,
we illustrate the obtained results graphically.
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1 Introduction
Coronavirus disease is likely to emerge as a watershed moment in the history of the planet.
COVID-19, the abbreviation of coronavirus disease (2019), is caused by a severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) [1], which hit the globe with a bang. In
December 2019, the first outbreak was noticed in Hubei province, Wuhan, China [2]. On
30 January, 2020, the World Health Organization (WHO) revealed the COVID-19 to be a
public health emergency and identified it as a pandemic on 11 March, 2020. The symptoms
of COVID-19 are not specific, and many cases showed that an infected person might be
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asymptomatic. The majority of the cases have two common symptoms which include dry
cough (68%) and fever (88%). Some of the cases have symptoms that include fatigue, mus-
cle and joint pain, respiratory sputum production (phlegm), sore throat, loss of the sense
of smell, headache or chills, and the shortness of breath. Moreover, the growth of this
infection can further proceed to acute respiratory distress syndrome, severe pneumonia,
and death. The COVID-19 virus spreads to large extent between people in close contact
with each other (within approximately 2 m). The common incubation period ranges from
1 to 14 days [3]. In the absence of a definitive treatment modality like a vaccine, physi-
cal distancing has been accepted globally as the most efficient strategy for reducing the
severity of disease and gaining control over it [4]. The concealment of physical contact in
working environments, schools and other open circles is the objective of such preventive
measures.

1.1 Timeline and data analyses
On 30 January, 2020, the first case of COVID-19 was reported in India. The nation revealed
its initial three cases in the state of Kerala, all were students who had a travel history from
Wuhan, China [5]. The transmission escalated within March when many reported cases
throughout the country were found to be connected to the people having travel history to
the countries which were affected by COVID-19. On 11 March, 2020, the Indian govern-
ment started taking strict actions by suspending all visas to India from 13 March, 2020 till
15 April, 2020. A 76-year-old man was the first victim of disease in the country who had
returned from Saudi Arabia on 12 March, 2020 [6]. On 15 March, 2020, there were 100
confirmed cases, but this number crossed 1,000 on 28 March, 2020 and then 2,000 on 2
April, 2020 [7].

The Indian government has implemented high measures for a moderate outbreak.
A day-long countrywide public curfew was observed in India on 22 March, 2020. More-
over, on 24 March, 2020, the Prime Minister of India announced a countrywide lockdown
for 21 days. In this study, we consider the reported cases of SARS-CoV-2, from 14 March,
2020 till 26 March, 2020, which were greater compared to initial period. We summarize
the actual reported data [8] in the country as shown in the following Figs. 1 and 2.

1.2 Mathematical model
The application of computational mathematical methods is used to simulate infections
within the populations numerically. Mathematical models of infectious disease dynam-
ics have a deep history of more than 100 years. The most common mathematical for-

Figure 1 Confirmed cases of COVID-19 in India
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Figure 2 Numbers of recovered people and deaths
from 14 March, 2020 to 26 March 2020 in India

Table 1 Fitted and referred parametric values used in the coronavirus model (1.2)

Description of parameter and notation Value Reference

Birth rate � 53,320.19 Fitted
Contact rate α 0.05 [12]
Natural mortality rate λ 1

69.50×365 [13]
Transmission rate β 0.02844 Fitted
Incubation period of I δ 0.0717876 Fitted
Incubation period of A μ 0.05 Fitted
The proportion of asymptomatic infection φ 0.8243 Fitted
Disease transmission coefficient γ 0.121× 10–7 Fitted
Recovery or removal or rate of I σ 0.09871 [11]
Recovery or removal or rate of A ρ 0.854302 [11]
Contribution of the virus to Q by I κ 0.000398 [11]
Contribution of the virus to Q by A ν 0.001 Fitted
Removing rate of virus from Q η 0.01 Fitted

mulations are used to represent the individual transition in a community between ‘com-
partments’, which model the situation of individual infection to surprisingly significant
accuracy. These models of compartmental disease segregate a population into groups de-
pending on each individual’s infectious state, and related population sizes with respect to
time.

In [9], Lin et al. suggested a conceptual model for the coronavirus disease 2019, which
effectively catches the timeline of the COVID-19 outbreak. A mathematical model for
reproducing the stage-based transmissibility of a novel coronavirus is examined by Chen
et al. in [10]. In [11] Khan et al. formulated a mathematical model of coronavirus versus
people, which is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

DtS(t) = � – λS – αS(I+βA)
N – γ SQ,

DtE(t) = αS(I+βA)
N + γ SQ – (1 – φ)δE – φμE – λE,

DtI(t) = (1 – φ)δE – (σ + λ)I,
DtA(t) = φμE – (ρ + λ)A,
DtR(t) = σ I + ρA – λR,
DtQ(t) = κI + νA – ηQ,

(1.1)

where N represents the total number of people. Further, N is segregated into five sub-
classes such as susceptible people S(t), exposed people E(t), infected (symptomatic), peo-
ple I(t), asymptotically infected A(t), and the removed or the recovered people R(t). The
people in the reservoir or market are denoted by Q(t). The description of various param-
eters used in this model with their values and references is given in Table 1.
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Mathematical models, utilizing ordinary differential equations with integer-order have
been used significantly for understanding the dynamics of biological systems [14, 15]. In
any case, every such model depends on classical derivatives that have some limitations
related to the order of differential equations under consideration. To overcome these re-
strictions, many authors have looked for the help of a recently emerging area of mathe-
matics known as fractional calculus. In fractional calculus, the differential operators used
are non-integer or fractional order, which possess memory properties and are valuable to
demonstrate many natural phenomena, nature-related truths, and facts having nonlocal
dynamics and anomalous behaviour. The study of epidemiological dynamical processes
involving memory effects is appropriate because such frameworks rely on the strength of
memory which is constrained by order of a fractional derivative operator.

In recent times, many researchers have developed and suggested efficient techniques
to figure out real and approximate solutions of the differential equation involving frac-
tional operators [16–22]. A lot of scholars are investigating epidemic models related to
different infectious diseases involving fractional operators because they show a reasonable
biphasic decline of contamination of diseases [23–27]. In the past decades, several types
of fractional operators were suggested to gain better insights into the dynamics of models.
Some of the commonly used operators are Riemann–Liouville, Caputo, Caputo–Fabrizio,
Katugampola, Atangana–Baleanu, Hadamard and many more, where every operator has
some advantages and disadvantages over the others. For example, Caputo fractional op-
erator uses initial conditions with integer-order derivatives having clear physical meaning
but has a singularity at some points. To overcome this limitation recently, Caputo and Fab-
rizio [28] have recommended a unique fractional derivative operator having a nonsingular
and exponential kernel and what’s more, Losada and Nieto [29] examined the properties
of a recently proposed fractional derivative. The advantage of this operator is that, it has a
nonlocal and nonsingular kernel and best suited to describe as well as analyse the dynam-
ics of COVID-19. For more about the Caputo–Fabrizio derivative operator, see [30–36].

We believe that a suitable mathematical model will be helpful for health officials to take
positive measures to contain the spread of the contagious disease of the novel coronavirus.
Motivated by this and above useful applications of the Caputo–Fabrizio (CF) operator
in epidemic mathematical models, we investigate the dynamics of a novel coronavirus
model based on the human-to-human transmission as well as from reservoir-to-human
suggested by Khan et al. [11] in the form of a system of nonlinear differential equations.
We develop the proposed model according to the characteristic of the disease and for-
mulate it in terms of Caputo–Fabrizio fractional differential system of equations to find
the condition that minimizes and controls the novel coronavirus disease spreading in the
community. Finally, all the theoretical results will be verified with the help of a numerical
simulation. The model is given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CFDτ
t S(t) = � – λS – αS(I+βA)

N – γ SQ,
CFDτ

t E(t) = αS(I+βA)
N + γ SQ – (1 – φ)δE – φμE – λE,

CFDτ
t I(t) = (1 – φ)δE – (σ + λ)I,

CFDτ
t A(t) = φμE – (ρ + λ)A,

CFDτ
t R(t) = σ I + ρA – λR,

CFDτ
t Q(t) = κI + νA – ηQ,

(1.2)
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with initial conditions

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,

A(0) = A0 ≥ 0, R(0) = R0 ≥ 0, Q(0) = Q0 ≥ 0,
(1.3)

where τ is the order of CF fractional derivative operator such that τ ∈ (0, 1].
The approximate solution and graphical results are obtained by applying the iterative

Laplace transform method (ILTM).
The structure of this paper is as follows: In Sect. 2, basic definitions and results for the

fractional operator and the Laplace transform are presented. In Sect. 3, an iterative scheme
to find the solution of the above model using Laplace transform and new iterative method
(NIM) is given; moreover, stability criteria by utilizing Banach fixed point theory along
with the Picard successive approximation method are also discussed. The results involving
stability analysis of the equilibria (drug-free equilibrium state and endemic equilibrium
state) are presented in Sect. 4. In Sect. 5, data fitting and estimation is done, along with
numerical simulations for various values of the fractional-order τ which are displayed
graphically. Section 6 is about discussion, and finally, we give our conclusions in Sect. 7.

2 Preliminaries
Some fundamental definitions and results from fractional calculus are presented in this
section.

Definition 2.1 The Caputo fractional derivative operator of order τ (τ ≥ 0) and n ∈ N∪
{0} is defined as

Dτ
t
(
u(t)

)
=

1
Γ (n – τ )

∫ t

0
(t – ζ )n–τ–1 dn

dtn u(ζ ) dζ , (2.1)

where n – 1 ≤ τ < n.

Further, the fractional-order derivative which has been considered with exponential ker-
nel by Caputo and Fabrizio in [28] and analysed by Losada and Nieto in [29] is given by
following definitions.

Definition 2.2 Let u ∈ H1(a, b), b > a, 0 < τ < 1. Then the time-fractional Caputo–
Fabrizio fractional differential operator is defined by

CFDτ
t u(t) =

M(τ )
(1 – τ )

∫ t

a
exp

[

–
τ (t – ζ )

1 – τ

]

u′(ζ ) dζ , t ≥ 0, 0 < τ < 1, (2.2)

where M(τ ) is a normalisation function whic depends on τ and satisfies M(0) = M(1) = 1.

Definition 2.3 The CF fractional integral operator of order 0 < τ < 1 is given by

CFJτ
t u(t) =

2(1 – τ )
(2 – τ )M(τ )

u(t) +
2τ

(2 – τ )M(τ )

∫ t

0
u(ζ ) dζ , t ≥ 0, (2.3)

where CFDτ
t u(t) = 0, if u is a constant function.
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Remark 2.1 It has been observed from the previous definitions that the fractional integral
of a function with order 0 < τ ≤ 1 is an average between respective functions and their
integral of order one. It further gives

2(1 – τ )
(2 – τ )M(τ )

u(t) +
2τ

(2 – τ )M(τ )
= 1.

The previous equation gives an obvious formula for

M(τ ) =
2

(2 – τ )
, 0 ≤ τ ≤ 1.

Definition 2.4 The Laplace transform (LT) for the CF fractional operator of order 0 <
τ ≤ 1 for m ∈N is given as

L
(CFDm+τ

t u(t)
)
(p) =

1
1 – τ

L
(
u(m+1)(t)

)
L
(

exp

(

–
τ

1 – τ
t
))

=
pm+1L(u(t)) – pmu(0) – pm–1u′(0) – · · · – u(m)(0)

p + τ (1 – p)
. (2.4)

In particular, we have

L
(CFDτ

t u(t)
)
(p) =

pL(u(t))
p + τ (1 – p)

, m = 0,

L
(CFDτ+1

t u(t)
)
(p) =

p2L(u(t)) – pu(0) – u′(0)
p + τ (1 – p)

, m = 1.

3 Iterative scheme and stability analysis
Consider the coronavirus model (1.2) along with initial conditions (1.3). The terms SI ,
SA and SQ in this model are nonlinear. Applying the Laplace transform on both sides of
system (1.2), we obtain

pL(S(t)) – S(0)
p + τ (1 – p)

= L
(

� – λS –
αS(I + βA)

N
– γ SQ

)

,

pL(E(t)) – E(0)
p + τ (1 – p)

= L
(

αS(I + βA)
N

+ γ SQ – (1 – φ)δE – φμE – λE
)

,

pL(I(t)) – I(0)
p + τ (1 – p)

= L
(
(1 – φ)δE – (σ + λ)I

)
,

pL(A(t)) – A(0)
p + τ (1 – p)

= L
(
φμE – (ρ + λ)A

)
,

pL(R(t)) – R(0)
p + τ (1 – p)

= L(σ I + ρA – λR),

pL(Q(t)) – Q(0)
p + τ (1 – p)

= L(κI + νA – ηQ).

(3.1)

Rearranging, we get

L
(
S(t)

)
=

S(0)
p

+
(

p + τ (1 – p)
p

)

L
(

� – λS –
αS(I + βA)

N
– γ SQ

)

,



Shaikh et al. Advances in Difference Equations        (2020) 2020:373 Page 7 of 19

L
(
E(t)

)
=

E(0)
p

+
(

p + τ (1 – p)
p

)

L
(

αS(I + βA)
N

+ γ SQ

– (1 – φ)δE – φμE – λE
)

,

L
(
I(t)

)
=

I(0)
p

+
(

p + τ (1 – p)
p

)

L
(
(1 – φ)δE – (σ + λ)I

)
, (3.2)

L
(
A(t)

)
=

A(0)
p

+
(

p + τ (1 – p)
p

)

L
(
φμE – (ρ + λ)A

)
,

L
(
R(t)

)
=

R(0)
p

+
(

p + τ (1 – p)
p

)

L(σ I + ρA – λR),

L
(
Q(t)

)
=

Q(0)
p

+
(

p + τ (1 – p)
p

)

L(κI + νA – ηQ).

Further, the inverse Laplace transform of equations (3.2) yields

S(t) = S(0) + L–1
[(

p + τ (1 – p)
p

)

L
(

� – λS –
αS(I + βA)

N
– γ SQ

)]

,

E(t) = E(0) + L–1
[(

p + τ (1 – p)
p

)

L
(

αS(I + βA)
N

+ γ SQ

– (1 – φ)δE – φμE – λE
)]

,

I(t) = I(0) + L–1
[(

p + τ (1 – p)
p

)

L
(
(1 – φ)δE – (σ + λ)I

)
]

, (3.3)

A(t) = A(0) + L–1
[(

p + τ (1 – p)
p

)

L
(
φμE – (ρ + λ)A

)
]

,

R(t) = R(0) + L–1
[(

p + τ (1 – p)
p

)

L(σ I + ρA – λR)
]

,

Q(t) = Q(0) + L–1
[(

p + τ (1 – p)
p

)

L(κI + νA – ηQ)
]

.

The series solutions achieved by the method are given by

S =
∞∑

n=0

Sn, E =
∞∑

n=0

En, I =
∞∑

n=0

In,

A =
∞∑

n=0

An, R =
∞∑

n=0

Rn, Q =
∞∑

n=0

Qn.

(3.4)

The nonlinearities SI , SA and SQ can be written as

SI =
∞∑

n=0

Gn, SA =
∞∑

n=0

Hn, SQ =
∞∑

n=0

Ln,

whereas Gn, Hn and Ln are further decomposed as follows:

Gn =
n∑

i=0

Si

n∑

i=0

Ii –
n–1∑

i=0

Si

n–1∑

i=0

Ii,
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Hn =
n∑

i=0

Si

n∑

i=0

Ai –
n–1∑

i=0

Si

n–1∑

i=0

Ai,

Ln =
n∑

i=0

Si

n∑

i=0

Qi –
n–1∑

i=0

Si

n–1∑

i=0

Qi.

Using initial conditions, we get the recursive formula given by:

Sn+1(t) = Sn(0) + L–1
[(

p + τ (1 – p)
p

)

L
(

� – λSn –
αSn(In + βAn)

N
– γ SnQn

)]

,

En+1(t) = En(0) + L–1
[(

p + τ (1 – p)
p

)

L
(

αSn(In + βAn)
N

+ γ SnQn

– (1 – φ)δEn – φμEn – λEn

)]

,

In+1(t) = In(0) + L–1
[(

p + τ (1 – p)
p

)

L
(
(1 – φ)δEn – (σ + λ)In

)
]

, (3.5)

An+1(t) = An(0) + L–1
[(

p + τ (1 – p)
p

)

L
(
φμEn – (ρ + λ)An

)
]

,

Rn+1(t) = Rn(0) + L–1
[(

p + τ (1 – p)
p

)

L(σ In + ρAn – λRn)
]

,

Qn+1(t) = Qn(0) + L–1
[(

p + τ (1 – p)
p

)

L(κIn + νAn – ηQn)
]

.

3.1 Stability analysis of the proposed method
Let (B,‖ · ‖) be a Banach space with self-map T on B. Also ζn+1 = q(T , ζn) represents an
exact recurrence formula. A fixed-point set of T is denoted by U(T). Moreover, T has
at least one element ζn, which converges to point x ∈ U(T). Let {zn ∈ B} and define jn =
‖zn+1 – q(T , zn)‖. If limn→∞ jn = 0 implies limn→∞ zn = x , then a given iteration method
ζn+1 = q(T , ζn) is known as T-stable. In this manner, this sequence {zn} has an upper bound,
and the iteration is known to be the Picard’s iteration. Moreover, it is T-stable, if all of the
above conditions are satisfied for ζn+1 = Tζn.

Theorem 3.1 Let (B,‖ · ‖) be a Banach space with self-map T on B and satisfying

‖Ta – Tb‖ ≤ Γ ‖a – Ta‖ + ε‖a – b‖

for all a, b ∈ B where 0 ≤ Γ , 0 ≤ ε < 1. Suppose T is Picard T-stable. Consider equations
(3.5) related to (1.2).

Theorem 3.2 Consider a self-map T defined as

T
(
Sn(t)

)
= Sn+1(t)

= Sn(0) + L–1
[(

p + τ (1 – p)
p

)

L
(

� – λSn –
αSn(In + βAn)

N
– γ SnQn

)]

,

T
(
En(t)

)
= En+1(t)
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= En(0) + L–1
[(

p + τ (1 – p)
p

)

L
(

αSn(In + βAn)
N

+ γ SnQn – (1 – φ)δEn – φμEn – λEn

)]

,

T
(
In(t)

)
= In+1(t) = In(0) + L–1

[(
p + τ (1 – p)

p

)

L
(
(1 – φ)δEn – (σ + λ)In

)
]

,

T
(
An(t)

)
= An+1(t) = An(0) + L–1

[(
p + τ (1 – p)

p

)

L
(
φμEn – (ρ + λ)An

)
]

,

T
(
Rn(t)

)
= Rn+1(t) = Rn(0) + L–1

[(
p + τ (1 – p)

p

)

L(σ In + ρAn – λRn)
]

,

T
(
Qn(t)

)
= Qn+1(t) = Qn(0) + L–1

[(
p + τ (1 – p)

p

)

L(κIn + νAn – ηQn)
]

,

where p+τ (1–p)
p is a Lagrange’s multiplier in fractional form. It is T-stable in L1(a, b) if

(

1 – λF(τ ) –
α

N
(K1 + K2)G(τ ) –

αβ

N
(K1 + K3)H(τ ) – γ (K1 + K4)J(τ )

)

< 1,

(

1 +
α

N
(K1 + K2)G(τ ) +

αβ

N
(K1 + K3)H(τ ) –

(
(1 – φ)δ + φμ + λ

)
J1(τ )

)

< 1,

(
1 + (1 – φ)δG1(τ ) – (σ + λ)H1(τ )

)
< 1,

(
1 + φμG2(τ ) – (ρ + λ)H2(τ )

)
< 1,

(
1 + σG3(τ ) + ρH3(τ ) – λJ3(τ )

)
< 1,

(
1 + κG4(τ ) + νH4(τ ) – ηJ4(τ )

)
< 1.

(3.6)

Proof The proof begins by showing that T has a fixed point. Therefore, for all (m, n) ∈
N × N , we evaluate the following differences:

T
(
Sm(t)

)
– T

(
Sn(t)

)
= Sm(t) – Sn(t) + L–1

[(
p + τ (1 – p)

p

)

L
(

� – λSm

–
αSm(Im + βAm)

N
– γ SmQm

)]

– L–1
[(

p + τ (1 – p)
p

)

× L
(

� – λSn –
αSn(In + βAn)

N
– γ SnQn

)]

,

T
(
Em(t)

)
– T

(
En(t)

)
= Em(t) – En(t) + L–1

[(
p + τ (1 – p)

p

)

L
(

αSm(Im + βAm)
N

+ γ SmQm – (1 – φ)δEm – φμEm – λEm

)]

– L–1
[(

p + τ (1 – p)
p

)

L
(

αSn(In + βAn)
N

+ γ SnQn

– (1 – φ)δEn – φμEn – λEn

)]

,

T
(
Im(t)

)
– T

(
In(t)

)
= Im(t) – In(t) + L–1

[(
p + τ (1 – p)

p

)

L
(

(1 – φ)δEm (3.7)
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– (σ + λ)Im

)]

– L–1
[(

p + τ (1 – p)
p

)

L
(
(1 – φ)δEn – (σ + λ)In

)
]

,

T
(
Am(t)

)
– T

(
An(t)

)
= Am(t) – An(t) + L–1

[(
p + τ (1 – p)

p

)

L
(
φμEm

– (ρ + λ)Am
)
]

– L–1
[(

p + τ (1 – p)
p

)

L
(
φμEn – (ρ + λ)An

)
]

,

T
(
Rm(t)

)
– T

(
Rn(t)

)
= Rm(t) – Rn(t) + L–1

[(
p + τ (1 – p)

p

)

L(σ Im + ρAm

– λRm)
]

– L–1
[(

p + τ (1 – p)
p

)

L(σ In + ρAn – λRn)
]

,

T
(
Qm(t)

)
– T

(
Qn(t)

)
= Qm(t) – Qn(t) + L–1

[(
p + τ (1 – p)

p

)

L(κIm + νAm

– ηQm)
]

– L–1
[(

p + τ (1 – p)
p

)

L(κIn + νAn – ηQn)
]

.

Considering first equation of (3.7) and taking the norm of both sides of it, without loss
of generality, we get

∥
∥T

(
Sm(t)

)
– T

(
Sn(t)

)∥
∥ =

∥
∥
∥
∥Sm(t) – Sn(t) + L–1

[(
p + τ (1 – p)

p

)

L
(

� – λSm

–
αSm(Im + βAm)

N
– γ SmQm

)]

– L–1
[(

p + τ (1 – p)
p

)

× L
(

� – λSn –
αSn(In + βAn)

N
– γ SnQn

)]∥
∥
∥
∥, (3.8)

so that using triangular inequality and further simplifying (3.8) yields

∥
∥T

(
Sm(t)

)
– T

(
Sn(t)

)∥
∥ ≤ ∥

∥Sm(t) – Sn(t)
∥
∥ + L–1

[(
s + α(1 – s)

s

)

L
[
∥
∥–λ(Sm – Sn)

∥
∥

+
∥
∥
∥
∥–

α

N
Sn(Im – In)

∥
∥
∥
∥ +

∥
∥
∥
∥–

α

N
Im(Sm – Sn)

∥
∥
∥
∥

+
∥
∥
∥
∥–

αβ

N
Am(Sm – Sn)

∥
∥
∥
∥ +

∥
∥–γ Sn(Qm – Qn)

∥
∥

+
∥
∥–γ Qm(Sm – Sn)

∥
∥ +

∥
∥
∥
∥–

αβ

N
Sn(Am – An)

∥
∥
∥
∥

]]

. (3.9)

As both solutions have comparative influence, we assume that

∥
∥Sm(t) – Sn(t)

∥
∥ =

∥
∥Em(t) – En(t)

∥
∥,

∥
∥Sm(t) – Sn(t)

∥
∥ =

∥
∥Im(t) – In(t)

∥
∥,

∥
∥Sm(t) – Sn(t)

∥
∥ =

∥
∥Am(t) – An(t)

∥
∥,

∥
∥Sm(t) – Sn(t)

∥
∥ =

∥
∥Rm(t) – Rn(t)

∥
∥,

∥
∥Sm(t) – Sn(t)

∥
∥ =

∥
∥Qm(t) – Qn(t)

∥
∥.
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Replacing this in (3.9), we get the following relation:

∥
∥T

(
Sm(t)

)
– T

(
Sn(t)

)∥
∥ ≤ ∥

∥Sm(t) – Sn(t)
∥
∥ + L–1

[(
s + α(1 – s)

s

)

L
[
∥
∥–λ(Sm – Sn)

∥
∥

+
∥
∥
∥
∥–

α

N
Sn(Sm – Sn)

∥
∥
∥
∥ +

∥
∥
∥
∥–

α

N
Im(Sm – Sn)

∥
∥
∥
∥

+
∥
∥
∥
∥–

αβ

N
Sn(Sm – Sn)

∥
∥
∥
∥ +

∥
∥
∥
∥–

αβ

N
Am(Sm – Sn)

∥
∥
∥
∥

+
∥
∥–γ Sn(Sm – Sn)

∥
∥ +

∥
∥–γ Qm(Sm – Sn)

∥
∥

]]

. (3.10)

Also the convergent sequences Sn, Im, Am and Qm are bounded. Next, we can obtain five
different positive constants, K1, K2, K3, K4 and K5 for all t such that

‖Sn‖ < K1, ‖Im‖ < K2, ‖Am‖ < K3, ‖Qm‖ < K4, (m, n) ∈ N×N. (3.11)

Further, considering equations (3.10) and (3.11), we get

∥
∥T

(
Sm(t)

)
– T

(
Sn(t)

)∥
∥ ≤

(

1 – λF(τ ) –
α

N
(K1 + K2)G(τ ) –

αβ

N
(K1 + K3)H(τ )

– γ (K1 + K4)J(τ )
)

∥
∥(Sm – Sn)

∥
∥, (3.12)

where F , G, H and J are functions of L–1{L( p+α(1–p)
p )}. In the same manner, we can get

∥
∥T

(
Em(t)

)
– T

(
En(t)

)∥
∥ ≤

(

1 +
α

N
(K1 + K2)G(τ ) +

αβ

N
(K1 + K3)H(τ )

–
(
(1 – φ)δ + φμ + λ

)
J1(τ )

)
∥
∥(Em – En)

∥
∥,

∥
∥T

(
Im(t)

)
– T

(
In(t)

)∥
∥ ≤ (

1 + (1 – φ)δG1(τ ) – (σ + λ)H1(τ )
)∥
∥(Im – In)

∥
∥,

∥
∥T

(
Am(t)

)
– T

(
An(t)

)∥
∥ ≤ (

1 + φμG2(τ ) – (ρ + λ)H2(τ )
)∥
∥(Am – An)

∥
∥,

∥
∥T

(
Rm(t)

)
– T

(
Rn(t)

)∥
∥ ≤ (

1 + σG3(τ ) + ρH3(τ ) – λJ3(τ )
)∥
∥(Rm – Rn)

∥
∥,

∥
∥T

(
Qm(t)

)
– T

(
Qn(t)

)∥
∥ ≤ (

1 + κG4(τ ) + νH4(τ ) – ηJ4(τ )
)∥
∥(Qm – Qn)

∥
∥,

(3.13)

where
(

1 – λF(τ ) –
α

N
(K1 + K2)G(τ ) –

αβ

N
(K1 + K3)H(τ ) – γ (K1 + K4)J(τ )

)

< 1,

(

1 +
α

N
(K1 + K2)G(τ ) +

αβ

N
(K1 + K3)H(τ ) –

(
(1 – φ)δ + φμ + λ

)
J1(τ )

)

< 1,

(
1 + (1 – φ)δG1(τ ) – (σ + λ)H1(τ )

)
< 1,

(
1 + φμG2(τ ) – (ρ + λ)H2(τ )

)
< 1,

(
1 + σG3(τ ) + ρH3(τ ) – λJ3(τ )

)
< 1,

(
1 + κG4(τ ) + νH4(τ ) – ηJ4(τ )

)
< 1.
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Therefore, the nonlinear self-mapping T has a fixed point. Next, we show that T sat-
isfies all the conditions in Theorem 3.1. Assuming (3.12) and (3.13) hold, we use ε =
(0, 0, 0, 0, 0, 0) and

Γ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 – λF(τ ) – α
N (K1 + K2)G(τ ) – αβ

N (K1 + K3)H(τ ) – γ (K1 + K4)J(τ )),
(1 + α

N (K1 + K2)G(τ ) + αβ

N (K1 + K3)H(τ ) – ((1 – φ)δ + φμ + λ)J1(τ )),
(1 + (1 – φ)δG1(τ ) – (σ + λ)H1(τ )),
(1 + φμG2(τ ) – (ρ + λ)H2(τ )),
(1 + σG3(τ ) + ρH3(τ ) – λJ3(τ )),
(1 + κG4(τ ) + νH4(τ ) – ηJ4(τ )).

Thus, each condition in Theorem 3.2 is satisfied by the self-map T . Hence, T is Picard
T-stable. �

4 Stability analysis of the equilibria
To determine conditions for control of the novel coronavirus disease, we analyse the quali-
tative behaviour of the proposed model (1.2). To calculate the basic reproduction number,
we start from the disease-free equilibrium by equating all variables and rate of change to
zero except for S = S0. The feasible area of the model (1.2) is given as

χ =
{
(
S(t), E(t), I(t), A(t), R(t)

) ∈R
5
+

∣
∣
∣N ≤ �

λ
, Q ∈ R+

}

. (4.1)

The explanation given in [11] about the basic reproduction number R0 states that it is
interpreted as the expected number of secondary infections which stem from a single in-
fected individual into an otherwise susceptible population. Moreover, it states that the
disease-free equilibrium (DER) of the model (1.2) is given as

E0 =
(
S0, 0, 0, 0, 0, 0

)
=

(
�

λ
, 0, 0, 0, 0, 0

)

. (4.2)

The behaviour of this equilibrium is studied by using linear stability analysis and we ob-
serve whether the equilibrium becomes stable, and the disease outbreak becomes under
control. We analyse the dynamics of the model (1.2) around disease-free equilibrium with
the help of analysis using the following results.

Theorem 4.1 ([11]) The disease-free equilibrium (DFE) E0 of system (1.2) is locally asymp-
totically stable if R0 < 1.

Moreover, the basic reproduction number denotes the maximum epidemic potential of
a virus and effectively depends upon various factors like the current susceptibility of the
population, whether some individuals have immunity due to prior exposure to the virus, or
whether some individuals are vaccinated against the disease. Therefore, R0 changes signif-
icantly with respect to time and estimation is based on a more realistic situation within the
population. Currently, the study conducted between January 2020 and February 2020 for
the 2019-nCoV virus in China by Hellewell et al. [37] suggests that the coronavirus spreads
more rapidly than estimated by the World Health Organization (WHO). This work reveals
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that R0 ranged between 1.4 and 6.49 with an average of 3.28 and a median of 2.79. The esti-
mated value is very high, and it is essential to decrease it for the control of the coronavirus
pandemic.

To evaluate R0 of the model (1.2), we use the computational part given in [38]. The
matrices F and V are given as

F =

⎡

⎢
⎢
⎢
⎣

0 α βα
γ�

λ

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎦

, V =

⎡

⎢
⎢
⎢
⎣

φμ + (1 – φ)δ + λ 0 0 0
(φ – 1)δ λ + σ 0 0

–φμ 0 ρ + λ 0
0 –κ –ν η

⎤

⎥
⎥
⎥
⎦

.

Using spectral radius, the required basic reproduction number R0 is given as

R0 =
μφ(λ + σ )(αβηλ + γ�ν) + δ(1 – φ)(λ + ρ)(αηλ + γ�κ)

ηλ(λ + ρ)(λ + σ )(φ(μ – δ) + δ + λ)
. (4.3)

5 Data fitting and numerical simulations
Here, we study numerical simulations of the CF coronavirus model (1.2). For this, we
consider a few parametric values from the literature and the rest are estimated or fit-
ted. We use the total initial population of India N = 1,352,600,000 [39]. We have N =
S(0) + E(0) + I(0) + A(0) + R(0) + Q(0), E0 = 1,724,266, I0 = 745, A0 = 413, R0 = 66, initial sus-
ceptible population is determined to be S0 = 1,350,900,000 = N – (E(0) + I(0) + A(0)) – R(0),
and Q0 = 10,000. The life expectancy in India for the year 2019 is 69.50, so we estimate a
natural mortality rate λ = 1

69.50 per year. The birth rate is estimated as � = λ×N
365 = 53,320.19

and we consider this is to be the limited population in the absence of infection.
We use a set of values given in [11–13] and, estimating threshold parameters, the basic

reproduction number is calculated as R0 = 2.58913 for the model (1.2).
By applying ILTM successively up to four terms, we get an approximate solution of the

fractional coronavirus model (1.2) in series form as given below:

S(t) = 1.35084 × 109 + 59,227.3τ – 2899.01τ 2 + 1119.34τ 3 + 0.0894777τ 4

+ 0.000387τ 5 + 1.230716883309 × 10–9t6τ 6 + 4.43058077991 × 10–8τ 6

+ t5(–2.215290389957 × 10–8τ 6 – 0.0000193771τ 5)

+ t4(1.3845564937236667 × 10–7τ 6 + 0.000290711τ 5

+ 0.0111359τ 4) + t3(–3.8398366759269393 × 10–7τ 6 – 0.00142145τ 5

– 0.119042τ 4 – 186.503τ 3) + t2(4.873638857907262 × 10–7τ 6 + 0.00271391τ 5

+ 0.357519τ 4 + 1678.85τ 3 – 1449.43τ 2) + t
(
–2.6583484679494354 × 10–7τ 6

– 0.00193857τ 5 – 0.357911τ 4 – 3358.03τ 3 + 5798.02τ 2 – 59,227.3τ
)
,

E(t) = 1.79202 × 106 – 66,189.1τ – 212.456τ 2 – 0.000387843τ 5

– 4.432452623242 × 10–8τ 6 + t5(2.2162263116212257 × 10–8τ 6

+ 0.0000193836τ 5) – 1.231236839789538 × 10–9t6τ 6

+ t4(–1.3851414447632568 × 10–7τ 6 – 0.000290807τ 5 – 0.0113827τ 4)
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– 0.0924117τ 4 + t3(3.8414589401434 × 10–7τ 6 + 0.0014219τ 5 + 0.12199τ 4

+ 224.878τ 3) – 1349.6τ 3 + t2(4.87569788556 × 10–7τ 6 – 0.0027148τ 5

– 0.36781τ 4 – 2024.23τ 3 – 106.302τ 2) + t
(
2.6594715 × 10–7τ 6 + 0.00193τ 5

+ 0.3696τ 4 + 4048.79τ 3 + 424.912τ 2 + 66,189.1τ
)
,

I(t) = 21,239.8 – 19,384.5τ + 0.0000561t4τ 4 + 0.000674τ 4 + t3(11.596τ 3

– 0.0006742τ 4) – 69.574τ 3 + t2(0.00236τ 4 – 104.362τ 3 – 520.381τ 2)

– 1040.76τ 2 + t
(
–0.00269τ 4 + 208.724τ 3 + 2081.52τ 2 + 19,384.5τ

)
,

A(t) = 62,514.30 – 102,290τ + 0.001836t4τ 4 + 0.002203τ 4 – 0.002203t3τ 4

+ 8133.38t3τ 3 – 48,800.3τ 3 + 0.007711t2τ 4 – 73,200.4t2τ 3 + 44,494.3t2τ 2

+ 88,988.6τ 2 – 0.008813tτ 4 + 146,401tτ 3 – 177,977tτ 2 + 102,290tτ ,

R(t) = –44.1625τ 2t3 +
(
6472.41τ 2 – 264.975τ

)
t2 + 12,414.9τ 2 +

(
–25,094.7τ 2

+ 25,785.5τ – 264.975
)
t – 25,255.6τ + 12,906.7,

Q(t) = –12.4041τ + 9907.29 – 0.16144t3τ 3 + 0.968642τ 3 + t2(1.45296τ 3

+ 2.37455τ 2) + 4.7491τ 2 + t
(
–2.90592τ 3 – 9.49821τ 2 + 12.4041τ

)
.

6 Discussion
The considered model contains many parameters, hence several limitations arise in this
study. Firstly, we have not used the detailed data of the COVID-19 for the estimation and
utilized the data from the literature [11]. Besides, the parameters of population versatility
were not from a precise data set. There are uncertainties in all parameters of our model,
and these would translate into uncertainties in forecasts and estimates. Increasing the ca-
pacity of testing people for COVID-19 can lead to getting lucid information about the
number of asymptomatic cases. This will enhance the accuracy of estimation and further
progress of COVID-19. The government of India has imposed 21 days nationwide lock-
down from 25 March, 2020 and was asking people to stay at home, restrict population
movement, which can help limit transmission of the virus.

Tables 2 to 7 depict approximate values of all classes of model (1.2) for fractional val-
ues of τ = 0.7, 0.8, 0.9, 1. Moreover, they give error analysis between approximate solution
for τ = 1 of (1.2) and solution obtained from classical derivative model (1.1). Clearly, it is
observed that the Caputo–Fabrizio fractional operator is highly reliable and efficient to
estimate approximate solutions of mathematical models of infectious diseases.

Table 2 Numerical results of susceptible population S(t) for fractional parameter τ = 0.7, 0.8, 0.9, 1
and comparison between classical and approximate solution

t Susceptible population S(t) Absolute
errorα = 0.7 α = 0.8 α = 0.9 α = 1

0 1.35088× 109 1.35088× 109 1.35088× 109 1.35088× 109 0
50 1.34057× 109 1.333653× 109 1.33500× 109 1.32537× 109 0
100 1.28180× 109 1.25053× 109 1.21088× 109 1.16185× 109 7.15256× 10–7

150 1.12703× 109 1.02199× 109 8.88152× 108 7.22024× 108 0
190 9.02255× 108 6.89022× 108 4.16846× 108 7.85013× 108 0
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Table 3 Numerical results of exposed population E(t) for fractional parameter τ = 0.7, 0.8, 0.9, 1 and
comparison between classical and approximate solution

t Exposed population E(t) Absolute
errorα = 0.7 α = 0.8 α = 0.9 α = 1

0 1.74512× 106 1.73824× 106 1.73129× 106 1.72427× 106 2.32831× 10–10

50 1.19043× 107 1.61123× 107 2.14275× 107 2.79884× 107 1.86265× 10–8

100 7.59901× 107 1.10997× 107 1.55765× 108 2.11508× 108 2.08616× 10–7

150 2.51400× 108 3.72009× 108 5.26368× 108 7.19307× 108 8.34465× 10–7

200 5.95356× 108 8.84518× 108 1.25536× 109 1.71808× 109 2.14577× 10–6

Table 4 Numerical results of infectious population I(t) for fractional parameter τ = 0.7, 0.8, 0.9, 1 and
comparison between classical and approximate solution

t Infected population I(t) Absolute
errorα = 0.7 α = 0.8 α = 0.9 α = 1

0 7136.9 5030.55 2900.06 745 0
50 510,112 627,863 779,156 971,180 2.27708× 10–7

100 2.53987× 106 3.76779× 106 5.40300× 106 7.50897× 106 9.53674× 10–7

150 9.07833× 106 1.38766× 107 2.02139× 107 2.83114× 107 2.34693× 10–6

200 2.31094× 107 3.54094× 107 5.15567× 107 7.20841× 107 4.57466× 10–6

Table 5 Numerical results of asymptomatic infected population A(t) for fractional parameter
τ = 0.7, 0.8, 0.9, 1 and comparison between classical and approximate solution

t Asymptotic infected population A(t) Absolute
errorα = 0.7 α = 0.8 α = 0.9 α = 1

0 17,777.5 12,049.6 6959.01 413 0
50 3.42203× 108 5.00188× 108 7.00586× 108 9.48444× 108 1.19209× 10–7

100 2.76018× 109 4.07858× 109 5.76149× 109 7.85341× 109 0
150 9.34626× 109 1.38584× 1010 1.96297× 1010 2.68150× 1010 0
200 2.21928× 1010 3.29629× 1010 4.67521× 1010 6.39332× 1010 0

Table 6 Numerical result of recovered population R(t) for fractional parameter τ = 0.7, 0.8, 0.9, 1 and
comparison between classical and approximate solution

t Recovered population R(t) Error

α = 0.7 α = 0.8 α = 0.9 α = 1

0 1311.09 647 232.73 66 0
50 1.66665× 106 2.12307× 106 2.63429× 106 3.20032× 106 1.86265× 10–9

100 5.03577× 106 6.50869× 106 8.16997× 106 1.00196× 107 9.31323× 10–9

150 8.07996× 106 1.05078× 107 1.32537× 107 1.63177× 107 1.49012× 10–8

200 8.77051× 106 1.14705× 107 1.45318× 107 1.79540× 107 3.35276× 10–8

Figures 3(a) to 5(b) show the behaviour of susceptible people S(t), exposed people E(t),
infected people I(t), asymptotic infected people A(t), recovered people R(t), and people
in reservoir Q(t) versus time t in days, respectively, for distinct values of τ .

Figure 3(a) demonstrates that the number of susceptible people decreases rapidly and
converges to zero as the value of τ decreases. The graph in Fig. 3(b) for exposed people
shows that as the value of τ goes down, the rate of increase also reduces. Figure 4(a) shows
that the infected population increases sharply with non-integer values of τ , but as the value
of τ decreases, the rate of increase of infection gets lower. It also shows that at a very slow
pace (τ = 0.1), the number of infected people is significantly lower.
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Table 7 Numerical results of reservoir population Q(t) for fractional parameter τ = 0.7, 0.8, 0.9, 1 and
comparison between classical and approximate solution

t Reservoir population Q(t) Absolute
errorα = 0.7 α = 0.8 α = 0.9 α = 1

0 9901.27 9900.9 9900.68 9900.61 0
15 10,042.4 10,166.6 10,194.8 10,216.9 0
30 9992.84 9777.12 9447.94 8986.48 5.45697× 10–12

45 8357.09 7058.65 5276.77 2940.08 2.27394× 10–11

60 4105.23 337.37 0 0 4.18368× 10–11

Figure 3 Dynamical behavior of (a) suspected population S(t) and (b) exposed population E(t) for various
values of τ with respect to time (days)

Figure 4 Dynamical behavior of (a) infected (symptomatic) population I(t) and (b) asymptotic population A(t)
for various values of τ with respect to time (days)

The number of asymptomatic infected people A(t) also increases for various values of τ ,
as shown in Fig. 4(b). Likewise, it can be seen in Fig. 5(a) that people are recovered or re-
moved (dead) very rapidly with a change of τ . Finally, Fig. 5(b) depicts people in the market
or reservoir, which decreases with fractional values of τ . We have also plotted solutions
obtained by classical derivative in Figs. 3(a) to 5(b) by a blue dashed line to compare with
approximate solutions using fractional derivative and noted that both solutions are almost
identical.

Figure 6(a) shows a surface plot of infected people with respect to time t (0 ≤ t ≤ 60)
and τ (0 < τ ≤ 1). From Fig. 6(b), it is observed that the rate of infectious population with
different fractional-order parameter given by τ significantly depends upon parameters.
The proportion of asymptomatic infection (φ = 0.9543), recovery or removal rate of I
(σ = 0.0237) and incubation period of the asymptomatic population (μ = 0.08). The size of
the infectious population significantly reduces compared to Fig. 4(a) by fitting these para-
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Figure 5 Dynamical behavior of (a) recovered population R(t) and (b) reservoir population Q(t) for various
values of τ with respect to time (days)

Figure 6 Dynamical behavior of the infected population I(t) where (a) shows the surface for 0 < τ ≤ 1 and
0≤ t ≤ 60 while (b) shows infected population with parameters μ = 0.08, σ = 0.0237

metric values appropriately. Moreover, the infection rate also depends on the people in the
reservoir or market (Q(t)), and making this class near to zero reduces the infection rapidly.
The simulations carried out justified our control strategies to minimize the infected popu-
lation and reservoir. Moreover, they also revealed that a difference in the esteem influences
the dynamics of the epidemic. The non-integer order has a notable effect on the dynamics
of the epidemic, and this model depends continuously on the time-fractional derivative.

To the early end of the COVID-19 pandemic and in the absence of some sure treatment
like a vaccine, preventive measures to reduce the spread of the virus are recommended.
Some of such precautions include social distancing, decreasing number of contacts of sus-
ceptible population, mitigation, containment, suppression against the infection and self-
quarantine of entire population living in affected areas are crucial. Moreover, the policy
of reducing the transmission period by finding and isolating patients as quickly as possi-
ble through efforts by the quarantine authorities and complete participation of the public
would benefit greatly the control of this infection.

7 Conclusions
In this paper, we proposed the pandemic problem of the COVID-19. We formulated a frac-
tional mathematical model to suggest some possible control strategies that will be helpful
for public health officials to eradicate this contagious disease from the community. It has
been observed from the present work that infectious diseases can be effectively modelled
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with nonlocal Caputo–Fabrizio fractional derivative operator. Moreover, by implement-
ing the Banach fixed point theory, the stability criteria for steady solutions and existence
have been verified. Approximate solutions and graphical demonstration by using iterative
Laplace transform method of the CF fractional coronavirus model have been presented.
It is noted that memory features in CF derivative explore hidden dynamics of the infec-
tion in the mathematical models of infectious disease, which is not possible to realise with
integer-order derivatives.

It is to be noted from this analysis that one of the very key parameters is the disease
transmission coefficient γ which plays a significant role in determining the basic repro-
duction number R0. The control measures suggest that the infection will be eradicated
rapidly once the control strategies will be implemented in a true manner. In the end, all
the theoretical results are supported with the help of graphical and tabular representation
by using mathematical software. This model becomes highly reliable when real-time and
actual estimates of transmission structures are available.

In the future study, the dynamics of COVID-19 pandemic along with the effect of some
control measures by including more classes into the present model will be proposed. These
compartments include symptomatic but not traced population, asymptomatic and quar-
antined individuals. The model will be an extended version of the present model and pro-
posed using memory features and nonlocality.
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