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Abstract
The prevalence of the use of integral inequalities has dramatically influenced the
evolution of mathematical analysis. The use of these useful tools leads to faster
advances in the presentation of fractional calculus. This article investigates the
Hermite–Hadamard integral inequalities via the notion of�-convexity. After that, we
introduce the notion of�μ-convexity in the context of conformable operators. In
view of this, we establish some Hermite–Hadamard integral inequalities (both
trapezoidal and midpoint types) and some special case of those inequalities as well.
Finally, we present some examples on special means of real numbers. Furthermore,
we offer three plot illustrations to clarify the results.
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1 Introduction
For any v1, v2 ∈ [a, b] and � ∈ [0, 1], the real-valued function g on an interval [a, b] is called
a convex function if the following holds:

g
(
�v1 + (1 – �)v2

) ≤ �g(v1) + (1 – �)g(v2). (1.1)

The theory and application of convexity has a close relationship with theory and ap-
plication of inequalities or integral inequalities. The convex function (1.1) has been ex-
tended and generalized in several directions, such as pseudo-convex [1], quasi-convex [2],
strongly convex [3], ε-convex [4], s-convex [5], h-convex [6, 7], (α, m)-convex [8, 9], invex
and preinvex [10–12], and other kinds of convex functions by a number of mathemati-
cians; see [13–21] for more details.

Integral inequalities form an essential field of study among the field of mathematical
analysis. They have been vital in providing bounds to solve some boundary value prob-
lems in fractional calculus, and in establishing the existence and uniqueness of solutions
for certain fractional differential equations. Convexity plays an important role in the field
of integral inequality due to the behavior of its definition. Also, there is a strong connection
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between convexity and integral inequality. For this reason, many known integral inequal-
ities have been established in the literature. The Hermite–Hadamard (HH) inequality is
the most well known one: for an L1 convex function g : I ⊆ R→ R with v1, v2 ∈ I , v1 < v2,
the HH inequality is defined as follows:

g
(

v1 + v2

2

)
≤ 1

v2 – v1

∫ v2

v1

g(x) dx ≤ g(v1) + g(v2)
2

. (1.2)

A huge number of researchers in the field of applied mathematics have dedicated their
interest to generalize, improve, refine, counterpart, and extend HH inequality (1.2) for
various types of convex functions; see e.g. [22–30].

Recently, Samet [31] introduced a new notion of convexity for certain functions that
depends on some axioms. This often generalizes various types of convexity e.g. ε-convex
functions, α-convex functions, h-convex functions, and so on. Also, for further details,
visit [16, 32].

Throughout our study, we suppose that I ⊆ R (R the set of real numbers), V =
{(η1,η2);η� ∈ [v1, v2],� = 1, 2} and R̄ = {(η1,η2,η3);ηi ∈ R,� = 1, 2, 3}. Then the family of
F of functions � : R̄× [0, 1] → R satisfies the major axioms [31]:

(Λ1) If y� ∈ L1(0, 1), � = 1, 2, 3, then for every γ ∈ [0, 1] we have

∫ 1

0
�

(
y1(η), y2(η), y3(η),γ

)
dη

= �

(∫ 1

0
y1(η) dη,

∫ 1

0
y2(η) dη,

∫ 1

0
y3(η) dη,γ

)
.

(Λ2) For every u ∈ L1(0, 1), w ∈ L∞(0, 1), and (z1, z2) ∈ R2, we have

∫ 1

0
�

(
w(η)u(η), w(η)z1, w(η)z2,η

)
dη = T�,w

(∫ 1

0
w(η)u(η) dη, z1, z2

)
,

where T�,w : R̄→ R is a function depending on (F , w). Moreover, it is a nondecreas-
ing function according to the first variable.

(Λ3) For any (w, y1, y2, y3) ∈ R4, y4 ∈ [0, 1], we have

w�(y1, y2, y3, y4) = �(wy1, wy2, wy3, y4) + Lw,

where Lw ∈ R is a constant (depending on w).

Definition 1.1 Let g : [v1, v2] ⊆ R→ R with v1 < v2 be a function, then we say that g is a
convex function according to � ∈F (or briefly �-convex function) iff

�̄
(
g
(
ηx + (1 – η)y

)
, g(x), g(y),η

) ≤ 0, (x, y,η) ∈ V × [0, 1].

Remark 1.1 Suppose that (v1, v2) ∈ R2 with v1 < v2,
(i) if g : [v1, v2] ⊂ R→ R is an ε-convex function, or equivalently [26]

g
(
ηx + (1 – η)y

) ≤ ηg(x) + (1 – η)g(y) + ε, (x, y,η) ∈ V × [0, 1],
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then we define the functions � : R̄× [0, 1] → R as follows:

�(y1, y2, y3, y4) = y1 – y4y2 – (1 – y4)y3 – ε, (1.3)

and T�,w : R̄× [0, 1] → R as

T�,w(y1, y2, y3) = y1 –
(∫ 1

0
tw(η) dη

)
y2 –

(∫ 1

0
(1 – η)w(η) dη

)
y3 – ε. (1.4)

For

Lw = (1 – w)ε, (1.5)

we can observe that � ∈F and

�
(
g
(
ηx + (1 – η)y

)
, g(x), g(y),η

)
= g

(
ηx + (1 – η)y

)
– ηg(x) – (1 – η)g(y) – ε ≤ 0,

and this tells us g is an �-convex function. In a particular case, we take ε = 0 to show that
g is an �-convex function according to � when g is assumed to be a convex function.

(ii) If g : [v1, v2] ⊂ R→ R is a μ-convex function with μ ∈ (0, 1], or equivalently

g
(
ηx + (1 – η)y

) ≤ ημg(x) +
(
1 – ημ

)
g(y), (x, y,η) ∈ V × [0, 1].

Then we define the function � : R̄× [0, 1] → R as follows:

�(y1, y2, y3, y4) = y1 – yμ
4 y2 –

(
1 – yμ

4
)
y3, (1.6)

and T�,w : R̄× [0, 1] → R as

T�,w(y1, y2, y3) = y1 –
(∫ 1

0
ημw(η) dη

)
y2 –

(∫ 1

0

(
1 – ημ

)
w(η) dη

)
y3. (1.7)

For Lw = 0, we can observe that � ∈F and

�
(
g
(
ηx + (1 – η)y

)
, g(x), g(y),η

)
= g

(
ηx + (1 – η)y

)
– ημg(x) –

(
1 – ημ

)
g(y) – ε ≤ 0,

or g is an �-convex function.
(iii) If h : I → R is a function and it is not identically 0, where (0, 1) ⊆ I . Also, suppose

that g : [v1, v2] ⊂ I → [0,∞) is an h-convex function, that is,

g
(
ηx + (1 – η)y

) ≤ h(η)g(x) + h(1 – η)g(y), (x, y,η) ∈ V × [0, 1].

Then we define the functions � : R̄× [0, 1] → R as follows:

�(y1, y2, y3, y4) = y1 – h(y4)y3 – h(1 – y4)y2, (1.8)
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and T�,w : R̄× [0, 1] → R as

T�,w(y1, y2, y3) = y1 –
(∫ 1

0
h(η)w(η) dη

)
y2 –

(∫ 1

0
h(1 – η)w(η) dη

)
y3. (1.9)

For Lw = (1 – w)ε, we can observe that � ∈F and

�
(
g
(
ηx + (1 – η)y

)
, g(x), g(y),η

)
= g

(
ηx + (1 – η)y

)
– h(η)g(x) – h(1 – η)g(y) – ε ≤ 0,

or we can say that g is an �-convex function.

In recent years, many possible inequalities have been proposed in the context of frac-
tional calculus including the midpoint and trapezoidal formula inequalities and inequal-
ities for ε-convexity, α-convexity, (α, m)-convexity, and h-convexity; see [26, 31, 33] for
more details.

2 Conformable fractional operators and �μ-convexity
In the last fifteen years, the definition of fractional calculus has been more appropriate
to describe historical dependence processes than the local limit definitions of integer or-
dinary differential equations (ODEs) or partial differential equations (PDEs), and has re-
ceived more and more attention in many mathematical and physical fields, see for de-
tails [34–44]. Differential equations of fractional order are more accurate than differential
equations of integer order in describing the nature of things and objective laws. In 1695,
Leibnitz discovered fractional derivatives, and after that more and more researchers have
dedicated themselves to the study of fractional calculus. The most commonly used frac-
tional calculus definitions are Riemann–Liouville definition, Caputo definition, and con-
formable fractional definition in basic mathematical and engineering application research.
In the present paper, we deal with the conformable fractional definition [45–47] in order
to obtain our results.

In this section, we recall some preliminaries and properties on conformable fractional
calculus. For further details and applications, see the previously published articles [33, 45–
54].

Definition 2.1 ([47]) Let g : [0,∞) → R, then the μth order conformable derivative of g
at η is defined by

Dμ(g)(η) = lim
ε→0

g(η + εη1–μ) – g(η)
ε

, μ ∈ (0, 1),η > 0. (2.1)

For μ-differentiable function g in some (0,μ),μ > 0, limt→0+ g(μ)(η) exist, define

g(μ)(0) = lim
t→0+

g(μ)(η).

Furthermore, if g is differentiable, then we have

Dμ(g)(η) = η1–μg ′(η), where g ′(η) = lim
ε→0

g(η + ε) – g(η)
ε

. (2.2)
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Observe that we can write g(μ)(η) for dμ

dμη
(g(η)) or simply Dμ(g)(η) to denote a μth order

conformable derivative of g at η. Furthermore, if the μth order conformable derivative of
g exists, then we can simply say g is μ-differentiable.

Theorem 2.1 ([48]) Assume that μ ∈ (0, 1] and f , g are two μ-differentiable functions at
a point η > 0. Then we have:

1. Dμ(v1f + v2g) = v1Dμ(f ) + v2Dμ(g) for all v1, v2 ∈ R,
2. Dμ(fg) = fDμ(g) + gDμ(f ),
3. Dμ( f

g ) = gDμ(f )–fDμ(g)
g2 ,

4. Dμ(c) = 0 for each constant function, namely g(η) = c,
5. Dμ(1) = 0,
6. Dμ( 1

μ
ημ) = 1.

Some basic properties of conformable operator are now stated, which are useful in what
follows.

Definition 2.2 ([47]) Assume that μ ∈ (0, 1], 0 ≤ v1 ≤ v2, and g : [v1, v2] ⊂ R → R, then
we say that a function g is μ-fractional integrable on the interval [v1, v2] if the following
integral

∫ v2

v1

g(η) dμη =
∫ v2

v1

g(η)ημ–1 dη (2.3)

exists and is finite.

Remark 2.1
(a) We indicate by L1

μ([v1, v2]) all μ-fractional integrable functions on an interval
[v1, v2].

(b) The usual Riemann improper integral has the form

Iv1
μ (g)(η) = Iv1

1
(
ημ–1g

)
=

∫ t

v1

xμ–1g(x) dx, μ ∈ (0, 1]. (2.4)

Theorem 2.2 ([47, 48]) Let g : (v1, v2) → R be differentiable and μ ∈ (0, 1]. Then, for all
η > v1, we have

Iv1
μ Dv1

μ (g)(η) = g(η) – g(v1).

Theorem 2.3 ([51]) Suppose that g : [v1,∞) → R such that g(n) is continuous. Then, for
each η > v1, we have

Dv1
μ Iv1

μ (g)(η) = g(η), μ ∈ (n, n + 1],

which is called the inverse property.

Theorem 2.4 ([47, 48]) Let g : [v1, v2] ⊂ R→ R be two functions with fg is differentiable.
Then

∫ v2

v1

g(x)Dv1
μ (h)(x) dμx = gh|v2

v1 –
∫ v2

v1

h(x)Dv1
μ (g)(x) dμx.
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Theorem 2.5 ([47, 48]) Let f , g : [v1, v2] ⊂ R→ R be a continuous function on [v1, v2] and
with 0 ≤ v1 ≤ v2. Then

∣∣Iv1
μ (g)(η)

∣∣ ≤ Iv1
μ |f |(η), μ ∈ (0, 1].

It is time to define the concept of �μ-convexity on conformable integrals, namely the
family of �μ.

The family of �μ of functions �μ : R̄× [0, 1] → R satisfies the major axioms:
(Λ̄1) If y� ∈ L1(0, 1), � = 1, 2, 3, then for every γ ∈ [0, 1] we have

∫ 1

0
�μ

(
y1(η), y2(η), y3(η),γ

)
dη

= �μ

(∫ 1

0
y1(η) dη,

∫ 1

0
y2(η) dη,

∫ 1

0
y3(η) dη,γ

)
.

(Λ̄2) For every u ∈ L1(0, 1), w ∈ L∞(0, 1), and (z1, z2) ∈ R2, we have

∫ 1

0
�μ

(
w(η)u(η), w(η)z1, w(η)z2,η

)
dη = T�μ ,w

(∫ 1

0
w(η)u(η) dη, z1, z2

)
,

where T�μ ,w : R̄ → R is a nondecreasing function according to the first variable
which depends on (�μ, w).

(Λ̄3) For any (w, y1, y2, y3) ∈ R4, y4 ∈ [0, 1], we have

w�μ(y1, y2, y3, y4) = �μ(wy1, wy2, wy3, y4) + Lw,

where Lw ∈ R is a constant (depending on w).

Definition 2.3 Let μ ∈ (0, 1] and g : [v1, v2] ⊂ R→ R with v1 < v2 be a function, then we
say g is a conformable convex function according to �μ ∈ F (or briefly �μ-conformable
convex function) if

�μ

(
g
(
ημxμ +

(
1 – ημ

)
yμ

)
, g

(
xμ

)
, g

(
yμ

)
,ημ

) ≤ 0, (x, y,η) ∈ V × [0, 1].

Remark 2.2 Suppose that (v1, v2) ∈ R2 with v1 < v2.
(i) Let g : [v1, v2] ⊂ R→ R be an ε-conformable convex function, or equivalently

g
(
ημxμ +

(
1 – ημ

)
yμ

) ≤ ημg
(
xμ

)
+

(
1 – ημ

)
g
(
yμ

)
+ ε, (x, y,η) ∈ V × [0, 1].

Then we define the function �μ : R̄× [0, 1] → R as follows:

�μ(y1, y2, y3, y4) = y1 – yμ
4 y2 –

(
1 – yμ

4
)
y3 – ε, (2.5)

and T�μ ,w : R̄× [0, 1] → R as

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
ημw

(
ημ

)
dμη

)
y2 –

(∫ 1

0

(
1 – ημ

)
w(η) dμη

)
y3 – ε. (2.6)
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For

Lw = (1 – w)ε, (2.7)

it can be observed that � ∈F and

�μ

(
g
(
ημxμ +

(
1 – ημ

)
yμ

)
, g

(
xμ+

)
, g

(
yμ

)
,ημ

)

= g
(
ημxμ +

(
1 – ημ

)
yμ

)
– ημg

(
xμ

)
–

(
1 – ημ

)
g
(
yμ

)
– ε ≤ 0,

or in another meaning g is an �-conformable convex function. In particular, g is an �-
conformable convex function according to � for ε = 0 when g is a conformable convex
function.

(ii) Let g : [v1, v2] ⊂ I → R be a μ-conformable convex function μ ∈ (0, 1]; that is,

g
(
ημxμ +

(
1 – ημ

)
yμ

) ≤ ηg
(
xμ

)
+ (1 – η)g

(
yμ

)
, (x, y,η) ∈ V × [0, 1].

Then we define the functions �μ : R̄× [0, 1] → R as follows:

�μ(y1, y2, y3, y4) = y1 – y4y2 – (1 – y4)y3, (2.8)

and T�μ ,w : R̄× [0, 1] → R as

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
tw

(
ημ

)
dμη

)
y2 –

(∫ 1

0
(1 – η)w

(
ημ

)
dμη

)
y3. (2.9)

For Lw = 0, we can observe that �μ ∈F and

�μ

(
g
(
ημxμ +

(
1 – ημ

)
yμ

)
, g

(
xμ

)
, g

(
yμ

)
,ημ

)

= g
(
ημxμ +

(
1 – ημ

)
yμ

)
– ηg

(
xμ

)
– (1 – η)g

(
yμ

)
– ε ≤ 0,

or equivalently g is an �μ-conformable convex function.
(iii) Let h : I → R be a function, which is not identically 0, where (0, 1) ⊆ I . Let g :

[v1, v2] ⊂ I → [0,∞) be an h-conformable convex function, or let

g
(
ημxμ +

(
1 – ημ

)
yμ

) ≤ h
(
ημ

)
g
(
xμ

)
+ h

(
1 – ημ

)
g
(
yμ

)
, (x, y,η) ∈ V × [0, 1].

Then we define the functions �μ : R̄× [0, 1] → R as follows:

�μ(y1, y2, y3, y4) = y1 – h(y4)y3 – h
(
1 – yμ

4
)
y2, (2.10)

and T�μ ,w : R̄× [0, 1] → R as

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
h
(
ημ

)
w

(
ημ

)
dμη

)
y2

–
(∫ 1

0
h
(
1 – ημ

)
w

(
ημ

)
dμη

)
y3. (2.11)
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For Lw = (1 – w)ε, we can observe that �μ ∈F and

�μ

(
g
(
ημxμ +

(
1 – ημ

)
yμ

)
, g

(
xμ

)
, g

(
yμ

)
,ημ

)

= g
(
ημxμ +

(
1 – ημ

)
yμ

)
– h

(
ημ

)
g
(
xμ

)
– h

(
1 – ημ

)
g
(
yμ

)
– ε ≤ 0,

or equivalently we can say g is an �μ-conformable convex function.

For the conformable operators, we recall some early findings in the earlier literature
which may help us in finding our main results. For example in [55], Sarikaya et al. investi-
gated new results for the conformable fractional operator, and their results are as follows.

Theorem 2.6 ([55, Theorem 11]) Let μ ∈ (0, 1] and g : [v1, v2] ⊂ R→R be a μ-fractional
differentiable function on (v1, v2) with 0 ≤ v1 < v2. Then we have

g
(

vμ
1 + vμ

2
2

)
≤ μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx ≤ g(vμ

1 ) + g(vμ
2 )

2
. (2.12)

Lemma 2.1 ([55, Lemma 3]) Let μ ∈ (0, 1] and g : [v1, v2] ⊂ R→R be a μ-fractional differ-
entiable function on (v1, v2) with 0 ≤ v1 < v2. If Dμ(g) is a μ-fractional integrable function
on [v1, v2], then we have

g(vμ
1 ) + g(vμ

2 )
2

–
∫ v2

v1

g
(
xμ

)
dμx

=
vμ

2 – vμ
1

2

∫ 1

0

(
1 – 2ημ

)
Dμ(g)

(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)

dμη. (2.13)

Lemma 2.2 ([55, Lemma 4]) Let μ ∈ (0, 1] and g : [v1, v2] ⊂ R→R be a μ-fractional differ-
entiable function on (v1, v2) with 0 ≤ v1 < v2. If Dμ(g) is a μ-fractional integrable function
on [v1, v2], then we have

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)

=
(
vμ

2 – vμ
1
)∫ 1

0
p(η)Dμ(g)

(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)

dμη, (2.14)

where

P(η) =

⎧
⎨

⎩
ημ, 0 ≤ t ≤ 1

21/μ ,

ημ – 1, 1
21/μ ≤ t ≤ 1.

In view of these indices, we investigate some new inequalities of HH type for the � and
�μ-convex functions involving conformable fractional operators in this attempt. Specifi-
cally, we investigate some inequalities of trapezoidal and midpoint type.

3 Hermite–Hadamard inequalities for �-convex functions
This section deals with the investigation of HH-type inequalities for �-convex functions.
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Theorem 3.1 Let g : [v1, v2] ⊂ R → R be a μ-fractional differentiable function on (v1, v2)
with 0 ≤ v1 < v2. If g is an �-convex function on [v1, v2] for some � ∈F , then

�

(
g
(

vμ
1 + vμ

2
2

)
,

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx,

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx,

1
2

)
+

∫ 1

0
Lw(η) dη

≤ 0, (3.1)

T�,w

(
2μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx, g

(
vμ

1
)

+ g
(
vμ

2
)
, g

(
vμ

1
)

+ g
(
vμ

2
)
)

+
∫ 1

0
Lw(η) dη ≤ 0. (3.2)

Proof The �-convexity of g leads to

�

(
g
(

x + y
2

)
, g(x), g(y),

1
2

)
, x, y ∈ [v1, v2].

For the values x = ημvμ
1 + (1 – ημ)vμ

2 and y = (1 – ημ)vμ
1 + ημvμ

2 , where η ∈ [0, 1], we obtain

�

(
g
(

vμ
1 + vμ

2
2

)
, g

(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)
, g

((
1 – ημ

)
vμ

1 + ημvμ
2
)
,

1
2

)
≤ 0.

Multiplying this inequality w(η) = 1 and making use of axiom (Λ3), we get

�

(
g
(

vμ
1 + vμ

2
2

)
, g

(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)
, g

((
1 – ημ

)
vμ

1 + ημvμ
2
)
,

1
2

)
+ Lw(η) ≤ 0.

Integrating over [0, 1] according to η and making use of axiom (Λ1), we get

�

(∫ 1

0
g
(

vμ
1 + vμ

2
2

)
dμη,

∫ 1

0
g
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)

dμη,

∫ 1

0
g
((

1 – ημ
)
vμ

1 + ημvμ
2
)

dμη,
1
2

)
+

∫ 1

0
Lw(η) dμη ≤ 0,

that is,

�

(
g
(

vμ
1 + vμ

2
2

)
,

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx,

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx,

1
2

)
+

∫ 1

0
Lw(η) dη

≤ 0,

where we have used

∫ 1

0
g
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)

dμη =
∫ 1

0
g
((

1 – ημ
)
vμ

1 + ημvμ
2
)

dμη

=
μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx.

This completely gives the proof of (3.1). On the other hand, since g is �-convex, we have

�
(
g
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)
, g

(
vμ

1
)
, g

(
vμ

2
)
,η

) ≤ 0,

�
(
g
((

1 – ημ
)
vμ

1 + ημvμ
2
)
, g

(
vμ

2
)
, g

(
vμ

1
)
,η

) ≤ 0.
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We make use of the linearity of � to get

�
(
g
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)

+ g
((

1 – ημ
)
vμ

1 + ημvμ
2
)
, g

(
vμ

1
)

+ g
(
vμ

2
)
, g

(
vμ

1
)

+ g
(
vμ

2
)
,η

) ≤ 0.

Applying the axiom (Λ3) for w(η) = 1, we get

�
(
g
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)

+ g
((

1 – ημ
)
vμ

1 + ημvμ
2
)
, g

(
vμ

1
)

+ g
(
vμ

2
)
, g

(
vμ

1
)

+ g
(
vμ

2
)
,η

)

+ Lw(η) ≤ 0.

Integrating over [0, 1] according to η and making use of axiom (Λ2) we get

T�,w

(
2μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx, g

(
vμ

1
)

+ g
(
vμ

2
)
, g

(
vμ

1
)

+ g
(
vμ

2
))

+
∫ 1

0
Lw(η) dη ≤ 0.

This completes the proof of (3.2). Thus, the proof of Theorem 3.1 is completed. �

Corollary 3.1 Theorem 3.1 with g to be ε-convex leads to

g
(

vμ
1 + vμ

2
2

)
– ε ≤ μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx ≤ g(vμ

1 ) + g(vμ
2 )

2
+

ε

2
. (3.3)

Proof By making use of w(η) = 1 in (1.5), we get

∫ 1

0
Lw(η) dη = 0. (3.4)

Making use of (1.3), (3.1), and (3.4), we get

0 ≥ F
(

g
(

vμ
1 + vμ

2
2

)
,

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx,

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx,

1
2

)
+

∫ 1

0
Lw(η) dη

= g
(

vμ
1 + vμ

2
2

)
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – ε,

or equivalently,

g
(

vμ
1 + vμ

2
2

)
– ε ≤ μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx.

Making use of w(η) = 1 in (1.4), we have

T�,w(y1, y2, y3) = y1 –
(∫ 1

0
t dη

)
y2 –

(∫ 1

0
(1 – η) dη

)
y3 – ε

= y1 –
y2 + y3

2
– ε, y1, y2, y3 ∈ R. (3.5)

Now, from (3.2) and (3.5), we can deduce

0 ≥ T�,w

(
2μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx, g

(
vμ

1
)

+ g
(
vμ

2
)
, g

(
vμ

1
)

+ g
(
vμ

2
))

+
∫ 1

0
Lw(η) dη

=
2μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx –

(
g
(
vμ

1
)

+ g
(
vμ

2
))

– ε.
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This gives

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx ≤ g(vμ

1 ) + g(vμ
2 )

2
+

ε

2
.

This ends the proof of (3.3). �

Remark 3.1 Inequality (3.3) with ε = 0 becomes inequality (2.12).

Corollary 3.2 Theorem 3.1 with g to be h-convex leads to

1
2h( 1

2 )
g
(

vμ
1 + vμ

2
2

)
≤ μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx ≤ g(vμ

1 ) + g(vμ
2 )

2

∫ 1

0
h(η) dη. (3.6)

Proof Making use (1.5) and (3.1) with Lw(η) = 0, we have

0 ≥ F
(

g
(

vμ
1 + vμ

2
2

)
,

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx,

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx,

1
2

)
+

∫ 1

0
Lw(η) dη

= g
(

vμ
1 + vμ

2
2

)
– h

(
1
2

)
2μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx,

or equivalently,

1
2h( 1

2 )
g
(

vμ
1 + vμ

2
2

)
≤ μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx.

Now, by making use of w(η) = 1 in (1.4) and (3.2), we get

0 ≥ T�,w

(
2μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx, g

(
vμ

1
)

+ g
(
vμ

2
)
, g

(
vμ

1
)

+ g
(
vμ

2
))

+
∫ 1

0
Lw(η) dη

=
2μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx –

(
g
(
vμ

1
)

+ g
(
vμ

2
))(∫ 1

0
h(η) dη

)
.

This gives

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx ≤

(
g(vμ

1 ) + g(vμ
2 )

2

)(∫ 1

0
h(η) dη

)
.

Thus, the proof of (3.6) is completed. �

4 Hermite–Hadamard inequalities for �μ-convex functions
Here, we deal with the investigation of HH-type inequalities for�μ-convex functions. This
section is separated into two subsections: a section for the trapezoidal formula inequality
and the other one for the midpoint formula inequality of HH type, respectively.

4.1 Trapezoidal inequalities for �μ-convex functions
Theorem 4.1 Let g : [v1, v2] ⊂ R → R be a μ-fractional differentiable function on (v1, v2)
and Dμ(g) be a μ-fractional integrable function on [v1, v2] with 0 ≤ v1 < v2. If |Dμ(g)| is
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an �μ-convex function on [v1, v2] for some �μ ∈ F and the function η ∈ [0, 1] → Lw(ημ)

belongs to L1[0, 1], where w(ημ) = |1 – 2ημ|, then we have the inequality

T�μ ,w

(
2

vμ
2 – vμ

1

∣
∣∣
∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣
∣∣
∣,

∣∣Dμ(g)
(
vμ

1
)∣∣,

∣∣Dμ(g)
(
vμ

2
)∣∣,η

)

+
∫ 1

0
Lw(η) dμη ≤ 0. (4.1)

Proof The �μ-convexity of |Dμ(g)| leads to

�μ

(∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

) ≤ 0.

By applying axiom (Λ̄3) for w(ημ) = |1 – 2ημ|, η ∈ [0, 1], we can deduce

�μ

(
w

(
ημ

)∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣, w

(
ημ

)∣∣Dμ(g)
(
vμ

1
)∣∣, w

(
ημ

)∣∣Dμ(g)
(
vμ

2
)∣∣,η

) ≤ 0.

Integrating over [0, 1] according to η and by making use of axiom (Λ̄2), we obtain

T�μ ,w

(∫ 1

0
w

(
ημ

)∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣dμη,

∣∣Dμ(g)
(
vμ

1
)∣∣,

∣∣Dμ(g)
(
vμ

2
)∣∣,η

)

+
∫ 1

0
Lw(ημ) dμt ≤ 0.

From Lemma 2.1, we have

∣∣
∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣
∣∣

≤ vμ
2 – vμ

1
2

∫ 1

0
w

(
ημ

)∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣dμη.

Since T�μ ,w is nondecreasing according to the first variable, then we can deduce

T�μ ,w

(
2

vμ
2 – vμ

1

∣∣
∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣
∣∣,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

)

+
∫ 1

0
Lw(ημ) dμη ≤ 0,

which ends the proof of (4.1). �

Corollary 4.1 Theorem 4.1 with |Dμ(g)| to be ε conformable convex leads to

∣∣
∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣
∣∣

≤ vμ
2 – vμ

1
2

(
23μ2 + 6 × 2μ2 – 8

6μ × 23μ2

)(∣∣Dμ(g)
(
vμ

1
)∣∣ +

∣∣Dμ(g)
(
vμ

2
)∣∣ +

2μ – 1
2μ

ε

)
. (4.2)
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Proof We know that any ε-convex is �μ-convex. So, by making use of w(ημ) = |1 – 2ημ|
in (2.7) and by using Definition 2.2, we get

∫ 1

0
Lw(η) dμη = ε

∫ 1

0

(
1 – w(η)

)
dμη =

1
2μ

ε.

By making use of w(ημ) = |1 – 2ημ| in (2.6), we get

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
ημ

∣∣1 – 2ημ
∣∣dμη

)
y2 –

(∫ 1

0

(
1 – ημ

)∣∣1 – 2ημ
∣∣dμη

)
y3 – ε

= y1 –
(

23μ2 + 6 × 2μ2 – 8
6μ × 23μ2

)
(y2 + y3) – ε

for y1, y2, y3 ∈ R. By making use of Theorem 4.1, we get

0 ≥ T�μ ,w

(
2

vμ
2 – vμ

1

∣∣∣
∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣∣
∣,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

)
+

∫ 1

0
Lw(ημ) dμη

=
2

vμ
2 – vμ

1

∣
∣∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣
∣∣∣

–
(

23μ2 + 6 × 2μ2 – 8
6μ × 23μ2

)(∣∣Dμ(g)
(
vμ

1
)∣∣ +

∣
∣Dμ(g)

(
vμ

2
)∣∣) – ε +

1
2μ

ε.

This rearranges to the required inequality (4.2). �

Remark 4.1 Corollary 4.1 with ε = 0 becomes Theorem 13 in [55].

Corollary 4.2 Theorem 4.1 with |Dμ(g)| to be μ-conformable convex leads to

∣
∣∣
∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣
∣∣
∣

≤ vμ
2 – vμ

1
2(μ + 1)(2μ + 1)

(
1 +

μ

21/μ

)
(∣∣Dμ(g)

(
vμ

1
)∣∣ +

∣∣Dμ(g)
(
vμ

2
)∣∣). (4.3)

Proof We know that any μ-convex is �μ-convex. So, by making use of w(ημ) = |1 – 2ημ|
in (2.9), we get

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
t
∣∣1 – 2ημ

∣∣dμη

)
y2 –

(∫ 1

0
(1 – η)

∣∣1 – 2ημ
∣∣dμη

)
y3

= y1 –
1

(μ + 1)(2μ + 1)

(
1 +

μ

21/μ

)
(y2 + y3)

for y1, y2, y3 ∈ R. Then, by applying Theorem 4.1, we have

0 ≥ T�μ ,w

(
2

vμ
2 – vμ

1

∣∣∣
∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣∣
∣,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

)
+

∫ 1

0
Lw(ημ) dμη
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=
2

vμ
2 – vμ

1

∣∣
∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣
∣∣

–
1

(μ + 1)(2μ + 1)

(
1 +

μ

21/μ

)(∣∣Dμ(g)
(
vμ

1
)∣∣ +

∣
∣Dμ(g)

(
vμ

2
)∣∣).

This rearranges to the required inequality (4.3). �

Corollary 4.3 Theorem 4.1 with |Dμ(g)| to be h-conformable convex leads to

∣∣
∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣
∣∣

≤ vμ
2 – vμ

1
2

(∫ 1

0
h
(
ημ

)∣∣1 – 2ημ
∣∣dμη

)(∣∣Dμ(g)
(
vμ

1
)∣∣ +

∣∣Dμ(g)
(
vμ

2
)∣∣). (4.4)

Proof It is known that every μ-convex is�μ-convex. So, by making use of w(ημ) = |1–2ημ|
in (2.11), we get

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
h
(
ημ

)∣∣1 – 2ημ
∣
∣dμη

)
y2

–
(∫ 1

0
h
(
1 – ημ

)∣∣1 – 2ημ
∣∣dμη

)
y3

= y1 –
(∫ 1

0
h
(
ημ

)∣∣1 – 2ημ
∣
∣dμη

)
(y2 + y3)

for y1, y2, y3 ∈ R. Then, by using Theorem 4.1, we get

0 ≥ T�μ ,w

(
2

vμ
2 – vμ

1

∣∣∣
∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣∣
∣,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

)
+

∫ 1

0
Lw(ημ) dμη

=
2

vμ
2 – vμ

1

∣
∣∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣
∣∣∣

–
(∫ 1

0
h
(
ημ

)∣∣1 – 2ημ
∣∣dμη

)
(∣∣Dμ(g)

(
vμ

1
)∣∣ +

∣∣Dμ(g)
(
vμ

2
)∣∣).

This completes the proof of (4.4). �

Theorem 4.2 Let g : [v1, v2] ⊂ R → R be a μ-fractional differentiable function on (v1, v2)
and Dμ(g) be a μ-fractional integrable function on [v1, v2] with 0 ≤ v1 < v2. If |Dμ(g)| p

p–1 is
an �μ-convex function on [v1, v2] for some �μ ∈F , then we have

T�μ ,1
(
v1(g, p),

∣∣Dμ(g)
(
vμ

1
)∣∣

p
p–1 ,

∣∣Dμ(g)
(
vμ

2
)∣∣

p
p–1

) ≤ 0, (4.5)
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where

v1(g, p) =
(

2
vμ

2 – vμ
1

) p
p–1

(
1

2μ(p + 1)

{
2 –

(
1 –

1
2μ2–1

)p+1

–
(

1
2μ2–1

– 1
)p+1}) –1

p–1

×
∣∣
∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣
∣∣

p
p–1

.

Proof By using the �μ-convexity of |Dμ(g)| p
p–1 , we have

�μ

(∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣

p
p–1 ,

∣
∣Dμ(g)

(
vμ

1
)∣∣

p
p–1 ,

∣
∣Dμ(g)

(
vμ

2
)∣∣

p
p–1 ,η

) ≤ 0.

By making use of w(ημ) = 1 in axiom (Λ̄3), we obtain

T�μ ,1

(∫ 1

0

∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣

p
p–1 dμη,

∣∣Dμ(g)
(
vμ

1
)∣∣

p
p–1 ,

∣∣Dμ(g)
(
vμ

2
)∣∣

p
p–1

)
≤ 0.

Then, by making use Lemma of 2.2, we have

∣
∣∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣
∣∣∣

≤ vμ
2 – vμ

1
2

(
1

2μ(p + 1)

{
2 –

(
1 –

1
2μ2–1

)p+1

–
(

1
2μ2–1

– 1
)p+1}) 1

p

×
(∫ 1

0

∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣

p
p–1 dμη

) p–1
p

.

Since T�μ ,w is nondecreasing according to the first variable, then we can deduce

T�μ ,1
(
v1(g, p),

∣∣Dμ(g)
(
vμ

1
)∣∣

p
p–1 ,

∣∣Dμ(g)
(
vμ

2
)∣∣

p
p–1

) ≤ 0.

This completes the proof of (4.5). �

Corollary 4.4 Theorem 4.2 with |Dμ(g)| p
p–1 to be ε-conformable convex leads to

∣
∣∣
∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣
∣∣
∣

≤ vμ
2 – vμ

1
2

(
1

2μ(p + 1)

{
2 –

(
1 –

1
2μ2–1

)p+1

–
(

1
2μ2–1

– 1
)p+1}) 1

p

×
( |Dμ(g)(vμ

1 )| p
p–1 + |Dμ(g)(vμ

2 )| p
p–1

2μ
+ ε

) p–1
p

. (4.6)

Proof By making use of w(ημ) = |1 – 2ημ| in (2.6) and by Definition 2.3, we get

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
ημ

∣
∣1 – 2ημ

∣
∣dμη

)
y2 –

(∫ 1

0

(
1 – ημ

)∣∣1 – 2ημ
∣
∣dμη

)
y3 – ε

= y1 –
y2 + y3

2μ
– ε
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for y1, y2, y3 ∈ R. Then, by using Theorem 4.2, we have

0 ≥ T�μ ,1
(
v1(g, p),

∣∣Dμ(g)
(
vμ

1
)∣∣

p
p–1 ,

∣∣Dμ(g)
(
vμ

2
)∣∣

p
p–1

)
– ε

= v1(g, p) –
|Dμ(g)(vμ

1 )| p
p–1 + |Dμ(g)(vμ

2 )| p
p–1

2μ
– ε

=
(

2
vμ

2 – vμ
1

) p
p–1

(
1

2μ(p + 1)

{
2 –

(
1 –

1
2μ2–1

)p+1

–
(

1
2μ2–1

– 1
)p+1}) –1

p–1

×
∣∣
∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣
∣∣

p
p–1

–
|Dμ(g)(vμ

1 )| p
p–1 + |Dμ(g)(vμ

2 )| p
p–1

2μ
– ε.

This completes our proof. �

Remark 4.2 Corollary 4.4 with ε = 0 becomes Theorem 13 in [55].

Corollary 4.5 Theorem 4.2 with |Dμ(g)| to be μ-convex leads to

∣∣
∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣
∣∣

≤ vμ
2 – vμ

1
2

(
1

2μ(p + 1)

{
2 –

(
1 –

1
2μ2–1

)p+1

–
(

1
2μ2–1

– 1
)p+1}) 1

p

×
(

μ|Dμ(g)(vμ
1 )| p

p–1 + |Dμ(g)(vμ
2 )| p

p–1

μ(μ + 1)

) p–1
p

. (4.7)

Proof By making use of w(ημ) = 1 in (2.9), we get

T�μ ,1(y1, y2, y3) = y1 –
(∫ 1

0
η dμη

)
y2 –

(∫ 1

0
(1 – η) dμη

)
y3

= y1 –
μy2 + y3

μ(μ + 1)

for y1, y2, y3 ∈ R. Then, by using Theorem 4.2, we have

0 ≥ T�μ ,1
(
v1(g, p),

∣∣Dμ(g)
(
vμ

1
)∣∣

p
p–1 ,

∣∣Dμ(g)
(
vμ

2
)∣∣

p
p–1

)

= v1(g, p) –
μ|Dμ(g)(vμ

1 )| p
p–1 + |Dμ(g)(vμ

2 )| p
p–1

μ(μ + 1)
.

This rearranges to the required inequality (4.7). �
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Corollary 4.6 Theorem 4.2 with |Dμ(g)| to be h-convex leads to

∣∣
∣∣
g(vμ

1 ) + g(vμ
2 )

2
–

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx

∣∣
∣∣

≤ vμ
2 – vμ

1
2

(
1

2μ(p + 1)

{
2 –

(
1 –

1
2μ2–1

)p+1

–
(

1
2μ2–1

– 1
)p+1}) 1

p

×
(∫ 1

0
h
(
ημ

)
dμη

) p–1
p (∣∣Dμ(g)

(
vμ

1
)∣∣

p
p–1 +

∣∣Dμ(g)
(
vμ

2
)∣∣

p
p–1

) p–1
p . (4.8)

Proof By making use of (2.11) with w(ημ) = 1, we have

T�μ ,1(y1, y2, y3) = y1 –
(∫ 1

0
h
(
ημ

)
dμη

)
y2 –

(∫ 1

0
h
(
1 – ημ

)
dμη

)
y3

= y1 –
(∫ 1

0
h
(
ημ

)
dμη

)
(y2 + y3)

for y1, y2, y3 ∈ R. Then, by making use of Theorem 4.2, we get

0 ≥ T�μ ,1
(
v1(g, p),

∣
∣Dμ(g)

(
vμ

1
)∣∣

p
p–1 ,

∣
∣Dμ(g)

(
vμ

2
)∣∣

p
p–1

)

= v1(g, p) –
(∫ 1

0
h
(
ημ

)
dμη

)(∣∣Dμ(g)
(
vμ

1
)∣∣

p
p–1 +

∣
∣Dμ(g)

(
vμ

2
)∣∣

p
p–1

)
.

This rearranges to the required inequality (4.8). �

4.2 Midpoint formula inequalities for �μ-convex functions
Theorem 4.3 Let g : [v1, v2] ⊂ R → R be a μ-fractional differentiable function on (v1, v2)
and Dμ(g) be a μ-fractional integrable function on [v1, v2] with 0 ≤ v1 < v2. If |Dμ(g)| is an
�μ-convex function on [v1, v2] for some �μ ∈F and the function η ∈ [0, 1] → Lw(η) belongs
to L1[0, 1], where w(η) = |P(η)| (P(η) is given in Lemma 2.2, then we have the inequality

T�μ ,w

(
1

vμ
2 – vμ

1

∣∣
∣∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣∣
∣∣,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

)

+
∫ 1

0
Lw(η) dμη ≤ 0. (4.9)

Proof By using the �μ-convexity of |Dμ(g)|, we have

�μ

(∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣,

∣∣Dμ(g)
(
vμ

1
)∣∣,

∣∣Dμ(g)
(
vμ

2
)∣∣,η

) ≤ 0.

Making use of axiom (Λ̄3) for w(η) = |P(η)|, η ∈ [0, 1], we obtain

�μ

(
w(η)

∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣, w(η)

∣∣Dμ(g)
(
vμ

1
)∣∣, w(η)

∣∣Dμ(g)
(
vμ

2
)∣∣,η

) ≤ 0.
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Integrating over [0, 1] according to η and by making use of axiom (Λ̄2), we can obtain

T�μ ,w

(∫ 1

0
w(η)

∣
∣Dμ(g)

(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣dμη,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

)

+
∫ 1

0
Lw(η) dμη ≤ 0.

From Lemma 2.2, we have

∣
∣∣
∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣
∣∣
∣

≤ (
vμ

2 – vμ
1
)∫ 1

0
w(η)

∣∣Dμ(g)
(
ημvμ

1 +
(
1 – ημ

)
vμ

2
)∣∣dμη.

Since T�μ ,w is nondecreasing according to the first variable, then we can deduce

T�,w

(
1

vμ
2 – vμ

1

∣∣
∣∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣∣
∣∣,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

)

+
∫ 1

0
Lw(η) dμη ≤ 0.

This completes the proof of (4.9). �

Corollary 4.7 Theorem 4.3 with |Dμ(g)| to be ε-convex leads to

∣∣∣
∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣∣∣
∣

≤ (
vμ

2 – vμ
1
)
( |Dμ(g)(vμ

1 )| + |Dμ(g)(vμ
2 )|

8μ
+

4μ – 3
μ

ε

)
. (4.10)

Proof By making use of w(ημ) = |P(η)| in (2.7) as well as Definition 2.3, we get

∫ 1

0
Lw(η) dμη = ε

∫ 1

0

(
1 –

∣
∣P(η)

∣
∣)dμη =

3
4μ

ε.

Then, by making use (2.6) with w(ημ) = |P(η)|, we get

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
ημ

∣∣P(η)
∣∣dμη

)
y2 –

(∫ 1

0

(
1 – ημ

)∣∣P(η)
∣∣dμη

)
y3 – ε

= y1 –
y2 + y3

8μ
– ε,

for y1, y2, y3 ∈ R. Thus, by using Theorem 4.3, we have

0 ≥ T�,w

(
1

vμ
2 – vμ

1

∣∣∣
∣

μ

vμ
2 – vμ

1

∫ v2

a
g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣∣∣
∣,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

)
+

∫ 1

0
Lw(η) dμη
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=
1

vμ
2 – vμ

1

∣∣
∣∣

μ

vμ
2 – vμ

1

∫ v2

a
g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣∣
∣∣

–
|Dμ(g)(vμ

1 )| + |Dμ(g)(vμ
2 )|

8μ
– ε +

3
4μ

ε.

This completes the proof of (4.10). �

Remark 4.3 Corollary 4.7 with ε = 0 becomes Theorem 14 in [55].

Corollary 4.8 Theorem 4.3 with |Dμ(g)| to be μ-convex leads to

∣∣
∣∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣∣
∣∣

≤ (
vμ

2 – vμ
1
){ μ

(μ + 1)(2μ + 1)

(
1 –

1
21/μ + 1

)∣
∣Dμ(g)

(
vμ

1
)∣∣

+
[

1
4μ

–
μ

(μ + 1)(2μ + 1)

(
1 –

1
21/μ + 1

)]∣
∣Dμ(g)

(
vμ

2
)∣∣

}
. (4.11)

Proof By making use of w(ημ) = |P(η)| in (2.9), we get

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
t
∣
∣P(η)

∣
∣dμη

)
y2 –

(∫ 1

0
(1 – η)

∣
∣P(η)

∣
∣dμη

)
y3

= y1 –
μ

(μ + 1)(2μ + 1)

(
1 –

1
21/μ + 1

)
y2

–
[

1
4μ

–
μ

(μ + 1)(2μ + 1)

(
1 –

1
21/μ + 1

)]
y3

for y1, y2, y3 ∈ R. It follows from Theorem 4.3 that

0 ≥ T�μ ,w

(
1

vμ
2 – vμ

1

∣
∣∣
∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣
∣∣
∣,

∣∣Dμ(g)
(
vμ

1
)∣∣,

∣∣Dμ(g)
(
vμ

2
)∣∣,η

)
+

∫ 1

0
Lw(ημ) dμη

=
1

vμ
2 – vμ

1

∣∣
∣∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣∣
∣∣

–
μ

(μ + 1)(2μ + 1)

(
1 –

1
21/μ + 1

)∣∣Dμ(g)
(
vμ

1
)∣∣

–
[

1
4μ

–
μ

(μ + 1)(2μ + 1)

(
1 –

1
21/μ + 1

)]∣
∣Dμ(g)

(
vμ

2
)∣∣.

This rearranges to the required inequality (4.11). �

Corollary 4.9 Theorem 4.3 with |Dμ(g)| to be h-convex leads to

∣
∣∣∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣
∣∣∣

≤ (
vμ

2 – vμ
1
)
(∫ 1

0
h
(
ημ

)∣∣1 – 2ημ
∣∣dμη

)
(∣∣Dμ(g)

(
vμ

1
)∣∣ +

∣∣Dμ(g)
(
vμ

2
)∣∣). (4.12)
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Proof By making use of w(ημ) = |P(η)| in (2.11), we get

T�μ ,w(y1, y2, y3) = y1 –
(∫ 1

0
h
(
ημ

)∣∣P(η)
∣∣dμη

)
y2 –

(∫ 1

0
h
(
1 – ημ

)∣∣P(η)
∣∣dμη

)
y3

= y1 –
(∫ 1

0
h
(
ημ

)∣∣P(η)
∣
∣dμη

)
(y2 + y3)

for y1, y2, y3 ∈ R. Then, by using Theorem 4.3, we get

0 ≥ T�μ ,w

(
1

vμ
2 – vμ

1

∣∣
∣∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣∣
∣∣,

∣
∣Dμ(g)

(
vμ

1
)∣∣,

∣
∣Dμ(g)

(
vμ

2
)∣∣,η

)
+

∫ 1

0
Lw(ημ) dμη

=
1

vμ
2 – vμ

1

∣
∣∣
∣

μ

vμ
2 – vμ

1

∫ v2

v1

g
(
xμ

)
dμx – g

(
vμ

1 + vμ
2

2

)∣
∣∣
∣

–
(∫ 1

0
h
(
ημ

)∣∣P(η)
∣∣dμη

)
(∣∣Dμ(g)

(
vμ

1
)∣∣ +

∣∣Dμ(g)
(
vμ

2
)∣∣),

which rearranges to the required inequality (4.12). �

5 Application test
In this section we give some applications of our theorems to the special means for the
positive numbers v1 > 0 and v2 > 0:

• Arithmetic mean:

A(v1, v2) =
v1 + v2

2
.

• Harmonic mean:

H = H(v1, v2) =
2v1v2

v1 + v2
, v1, v2 > 0.

• Logarithmic mean:

L(v1, v2) =
v2 – v1

ln |v2| – ln |v1| , |v1| 
= |v2|, v1, v2 
= 0, v1, v2 ∈ R.

• Generalized log-mean:

Lp(v1, v2) =
[

v2
p+1 – v1

p+1

(p + 1)(v2 – v1)

] 1
p

, p ∈ Z \ {–1, 0}, v1, v2 ∈ R, v1 
= v2.

Proposition 5.1 Let μ ∈ (0, 1], v1, v2 ∈ R with 0 < v1 < v2. Then we have

�

(
A–1(vμ

1 , vμ
2
)
,L–1(vμ

1 , vμ
2
)
,L–1(vμ

1 , vμ
2
)
,

1
2

)
≤ 0, (5.1)

T�,w

(
2L–1(vμ

1 , vμ
2
)
,

1
2
H–1(vμ

1 , vμ
2
)
,

1
2
H–1(vμ

1 , vμ
2
)
)

≤ 0. (5.2)
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Proof The assertion follows from Theorem 3.1 and a simple computation applied to g(x) =
1
x , x ∈ [v1, v2], where g is convex and therefore �-convex function on [v1, v2] according to
� defined in (1.3) with ε = 0. �

Proposition 5.2 Let μ ∈ (0, 1], v1, v2 ∈ R with 0 < v1 < v2. Then we have

A–1(vμ
1 , vμ

2
) ≤L–1(vμ

1 , vμ
2
) ≤H–1(vμ

1 , vμ
2
)
. (5.3)

Proof The assertion follows from Corollary 3.1 and a simple computation applied to g(x) =
1
x , x ∈ [v1, v2], where it is easy to check that g is convex and therefore ε-convex with ε = 0.�

Proposition 5.3 Let μ ∈ (0, 1], v1, v2 ∈ R with 0 < v1 < v2. Then we have

�

(
An(vμ

1 , vμ
2
)
,Ln

n
(
vμ

1 , vμ
2
)
,Ln

n
(
vμ

1 , vμ
2
)
,

1
2

)
≤ 0, (5.4)

T�,w
(
2Ln

n
(
vμ

1 , vμ
2
)
, vnμ

1 + vnμ
2 , vnμ

1 + vnμ
2

)
. (5.5)

Proof The assertion follows from Theorem 3.1 and a simple computation applied to g(x) =
xn, x ∈ [v1, v2] with n ≥ 2, where g is convex and therefore �-convex function on [v1, v2]
according to � defined in (1.3) with ε = 0. �

Proposition 5.4 Let μ ∈ (0, 1], v1, v2 ∈ R with 0 < v1 < v2. Then we have

∣
∣H–1(vμ

1 , vμ
2
)

–L–1(vμ
1 , vμ

2
)∣∣ ≤ vμ

2 – vμ
1

2

(
23μ2 + 6 × 2μ2 – 8

6μ × 23μ2

)(
v–μ(1+μ)

1 + v–μ(1+μ)
2

)
. (5.6)

Proof The assertion follows from Corollary 4.1 and a simple computation applied to g(x) =
– 1

x , x ∈ [v1, v2], where it is easy to check that |Dμ(g)| is convex and therefore ε-convex with
ε = 0. �

Proposition 5.5 Let μ ∈ (0, 1], v1, v2 ∈ R with 0 < v1 < v2. Then we have

∣
∣L–1(vμ

1 , vμ
2
)

– A–1(vμ
1 , vμ

2
)∣∣ ≤ (

vμ
2 – vμ

1
)(v–μ(1+μ)

1 + v–μ(1+μ)
2

8μ

)
. (5.7)

Proof The assertion follows from Corollary 4.7 and a simple computation applied to g(x) =
– 1

x , x ∈ [v1, v2], where it is easy to check that |Dμ(g)| is convex and therefore ε-convex with
ε = 0. �

6 Three illustrative plots
In this section, we give three plots of three dimensions to the above propositions in the
previous section.

• Fig. 1 represents Proposition 5.2 with μ = 1
2 , v1 = x, v2 = y.

• Fig. 2 represents Proposition 5.4 μ = 1
2 , v1 = x, v2 = y.

• Fig. 3 represents Proposition 5.5 μ = 1
2 , v1 = x, v2 = y.
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Figure 1 Figure representation for Proposition 5.2

Figure 2 Figure representation for Proposition 5.4

Figure 3 Figure representation for Proposition 5.5
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7 Conclusion
Introducing new definitions in the calculus will always open new doors in the field of sci-
ence and technology. The use of these new definitions in mathematical analysis always
requires the presentation of integral inequalities related to them in order to find the ex-
istence and uniqueness of such problems. One of the new definitions presented for local
fractional calculus is conformable fractional operator. In this study, we have considered
the Hermite–Hadamard integral inequalities in the context of conformable fractional cal-
culus. Also, we have introduced the notion of �μ-convexity. For this, we have established
some Hermite–Hadamard inequalities and related results in the contexts of fractional cal-
culus and conformable fractional calculus.
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