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1 Introduction
Approximation theory basically deals with problems to find approximation of functions
by simpler functions like polynomial. Bernstein [8] was first to construct a sequence of
positive linear operators to provide a constructive proof of the well-known Weierstrass
approximation theorem. Since then several operators have been defined to study approx-
imation properties in different spaces.

In [13], Jakimovski and Leviatan introduced the following operators and obtained some
of their approximation properties:

Rm(h; y) =
e–my

P(1)

∞∑

k=0

Qk(my)h
(

k
m

)
. (1.1)

For all h ∈ E[0,∞), the set of functions of exponential type on [0,∞) with |h(x)| ≤ βeαx,
α,β > 0, where Qk(y) =

∑k
j=0 bj

yk–j

(k–j)! (k ∈N), are Appell polynomials [5] defined by the iden-
tity

P(w)ewy =
∞∑

m=0

Qm(y)wm, (1.2)

such that P(w) =
∑∞

m=0 bmwm, P(1) �= 0 is an analytic function in the disk |w| < r (r > 1).
Note that, for P(1) = 1, Qm(y) = y

m! and operators (1.1) are reduced to Favard–Szász oper-
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ators:

Sm(h; y) = e–my
∞∑

k=0

(my)k

k!
h
(

k
m

)
. (1.3)

Recently, Büyükyazıcı et al. [9] studied the following operators:

S∗
m(h; y) =

e– m
bm y

P(1)

∞∑

k=0

Qk

(
m
bm

y
)

h
(

k
m

bm

)
. (1.4)

In this paper, we generalize the above operators and study their several approximation
properties. We investigate a Korovkin-type theorem and obtain the order of convergence
by using the modulus of continuity. Furthermore, we obtain the approximation with the
help of Lipschitz continuous functions and give some direct theorems.

For more details on the related work, we refer to [1–4, 6, 7, 11, 14, 15, 17–19, 21, 23–26].
We define an integral type modification of Jakimovski–Leviatan operators by introduc-

ing the sequences of unbounded and increasing functions {um}, {vm} such that

lim
m→∞

um

vm
= 1 + O

(
1

vm

)
and lim

m→∞
1

vm
→ 0. (1.5)

Let m ∈N, φ > m and

h ∈ Cφ[0,∞) =
{

h ∈ C[0,∞) : h(t) = O
(
tφ

)}
. (1.6)

For Qr(y) ≥ 0 and P(1) �= 0, we define

Lum ,vm
m (h; y) =

e–umy

P(1)

∞∑

r=0

Qr(umy)
1

B(r + 1, m)

∫ ∞

0

tr

(1 + t)r+m+1 h
(

mt
vm

)
dt. (1.7)

2 Moments
Lemma 2.1 Suppose ei = ti–1 (i = 1, 2, 3). Then the following hold true for operators (1.7):

(1) Lum ,vm
m (e1; y) = 1;

(2) Lum ,vm
m (e2; y) = um

vm
m

(m–1) y + 1
vm

m
(m–1)

( P′(1)
P(1) + 1

)
;

(3) Lum ,vm
m (e3; y) =

( um
vm

)2 m2

(m–2)(m–1) y2 + 2 um
v2

m

m2

(m–2)(m–1)
( P′(1)

P(1) + 2
)
y + 1

v2
m

m2

(m–2)(m–1)
( P′′(1)

P(1) + 4 P′(1)
P(1) + 2

)
.

Proof We can easily see that

∞∑

r=0

Qr(umy) = P(1)eumy, (2.1)

∞∑

r=0

rQr(umy) =
[
P′(1) + (umy)P(1)

]
eumy, (2.2)

∞∑

r=0

r2Qr(umy) =
[
P′′(1) + 2(umy)P′(1) + P′(1) + (umy)P(1) + (umy)2P(1)

]
eumy. (2.3)
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(1) Take h = e1

Lum ,vm
m (e1; x) =

e–umy

P(1)

∞∑

r=0

Qr(umy)
1

B(r + 1, m)

∫ ∞

0

tr

(1 + t)r+m+1 dt

=
e–umy

P(1)

∞∑

r=0

Qr(umy)
B(r + 1, m)
B(r + 1, m)

= 1.

(2) Take h = e2

Lum ,vm
m (e2; y) =

me–umy

vmP(1)

∞∑

r=0

Qr(umy)
1

B(r + 1, m)

∫ ∞

0

tr+1

(1 + t)r+m+1 dt

=
me–umy

vmP(1)

∞∑

r=0

Qr(umy)
B(r + 2, m – 1)

B(r + 1, m)

=
m

vm(m – 1)
e–umy

P(1)

∞∑

r=0

(r + 1)Qr(umy)
B(r + 1, m)
B(r + 1, m)

=
m

vm(m – 1)
+

m
vm(m – 1)

e–umy

P(1)

∞∑

r=0

rQr(umy)

=
m

vm(m – 1)
+

mum

vm(m – 1)

(
y +

1
um

P′(1)
P(1)

)
.

(3) Take h = e3

Lum ,vm
m (e3; y) =

m2e–umy

v2
mP(1)

∞∑

r=0

Qr(umy)
1

B(r + 1, m)

∫ ∞

0

tr+2

(1 + t)r+m+1 dt

=
m2

v2
m(m – 2)(m – 1)

e–umy

P(1)

∞∑

r=0

Qr(umy)
(
r2 + 3r + 2

)

=
2m2

v2
m(m – 2)(m – 1)

+
3m2

v2
m(m – 2)(m – 1)

(
P′(1)
P(1)

+ umy
)

+
m2

v2
m(m – 2)(m – 1)

(
P′′(1)
P(1)

+ 2umy
P′(1)
P(1)

+
P′(1)
P(1)

+ umy + u2
my2

)
. �

Lemma 2.2 If Υj = (e2 – y)j for j = 1, 2, then we have
1◦ Lum ,vm

m (Υ1; y) =
( um

vm
m

(m–1) – 1
)
y + 1

vm
m

(m–1)
( P′(1)

P(1) + 1
)
;

2◦ Lum ,vm
m (Υ2; y) =

[
( um

vm
)2 m2

(m–2)(m–1) – 2 um
vm

m
(m–1) + 1

]
y2 +

[
2 um

v2
m

m2

(m–2)(m–1)
( P′(1)

P(1) + 2
)

– 2 um
vm

m
(m–1)

( P′(1)
P(1) + 1

)]
y + 1

v2
m

m2

(m–2)(m–1)
( P′′(1)

P(1) + P′(1)
P(1) + 2

)
.

3 Approximation in a weighted space
In this section we present approximation results in the space CB[0,∞) of all bounded and
continuous functions on [0,∞), which is a linear normed space with the norm

‖h‖CB[0,∞) = sup
y≥0

∣∣h(y)
∣∣.
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For our convenience, we rewrite

Cγ [0,∞) =
{

h ∈ C[0,∞) :
∣∣h(t)

∣∣ ≤ K(1 + t)γ for some K > 0
}

.

Let

E =
{

h ∈ C[0,∞) : lim
y→∞

h(y)
1 + y2 exists

}
.

Theorem 3.1 Let h ∈ Cγ [0,∞) ∩ E and γ ≥ 2. Then

lim
m→∞ Lum ,vm

m (h; y) = h(y) uniformly.

Proof In the lighting of Korovkin’s theorem and Lemma 2.1, it is obvious that

lim
m→∞ Lum ,vm

m (ej; y) = yj–1, j = 1, 2, 3. �

Following Gadžiev [12], we recall the weighted spaces for which the analogues of Ko-
rovkin’s theorem hold [20]. Let φ be a continuous and strictly increasing function and
�(y) = 1 + φ2(y), limy→∞ �(y) = ∞. Moreover,

B�[0,∞) =
{

h :
∣∣h(y)

∣∣ ≤ Kh�(y)
}

and C�[0,∞) = B�[0,∞) ∩ C[0,∞)

with ‖h‖� = supy≥0
|h(y)|
�(y) , where the constant Kh depends only on h. The sequence of posi-

tive linear operators {Lum ,vm
m }m≥1 maps C�[0,∞) into B�[0,∞) if and only if

∣∣Lum ,vm
m (�; y)

∣∣ ≤ K�(y),

where y ∈ [0,∞) and K > 0 is a constant. Finally, let C0
�[0,∞) ⊂ C�[0,∞) satisfying

lim
y→∞

h(y)
�(y)

= Kh.

Theorem 3.2 (cf. [16]) Let the sequence of positive linear operators Km, acting from
C�[0,∞)to B�[0,∞), satisfy the conditions

lim
m→∞

∥∥Km
(
tk ; y

)
– yk∥∥

�
= 0 (k = 0, 1, 2).

Then, for each h ∈ C0
�[0,∞),

lim
m→∞‖Kmh – h‖� = 0.

Theorem 3.3 For every h ∈ C0
�[0,∞), operators Lum ,vm

m satisfy

lim
m→∞

∥∥Lum ,vm
m (h; y) – h

∥∥
�

= 0.
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Proof In view of Theorem 3.2, suppose φ(y) = y, then �(y) = 1 + y2. Since

∥∥Lum ,vm
m (ei; y) – yi–1∥∥

�
= sup

y≥0

|Lum ,vm
m (ei; y) – yi–1|

1 + y2 .

For i = 1, from Lemma 2.1 we get

lim
m→∞

∥∥Lum ,vm
m (e1; y) – 1

∥∥
�

= 0.

For i = 2,

sup
y≥0

|Lum ,vm
m (e2; y) – y|

1 + y2 ≤
∣∣∣∣
um

vm

m
(m – 1)

– 1
∣∣∣∣ sup

y≥0

y
1 + y2

+
∣∣∣∣

m
vm(m – 1)

(
1 +

P′(1)
P(1)

)∣∣∣∣ sup
y≥0

1
1 + y2 .

Therefore

lim
m→∞

∥∥Lum ,vm
m (e2; y) – y

∥∥
�

= 0.

For i = 3,

sup
y≥0

|Lum ,vm
m (e2; y) – y2|

1 + y2 ≤
∣∣∣∣

(
um

vm

)2 m2

(m – 2)(m – 1)
– 1

∣∣∣∣ sup
y≥0

y2

1 + y2

+
∣∣∣∣
um

v2
m

m2

(m – 2)(m – 1)

(
2

P′(1)
P(1)

+ 4
)∣∣∣∣ sup

y≥0

y
1 + y2

+
∣∣∣∣

m2

v2
m(m – 2)(m – 1)

(
P′′(1)
P(1)

+ 4
P′(1)
P(1)

+ 2
)∣∣∣∣ sup

y≥0

1
1 + y2 .

Therefore,

lim
m→∞

∥∥Lum ,vm
m (e3; y) – y2∥∥

�
= 0.

Lemma 2.1 implies that

lim
m→∞

∥∥Lum ,vm
m (h; y) – h

∥∥
�

= 0. �

4 Rate of convergence
We write C∗

B[0,∞) for the set of all uniformly continuous and bounded functions on [0,∞)
with ‖f ‖CB[0,∞) = supy∈[0,∞) |f (y)|. For

ω◦(h, δ◦) = sup
|t–y|≤δ

∣∣h(t) – h(y)
∣∣, δ◦ > 0, h ∈ CB[0,∞), (4.1)

we have

∣∣h(t) – h(y)
∣∣ ≤

(
δ◦ + |t – y|

δ◦

)
ω◦(h, δ◦) (4.2)

and limδ◦→0+ ω◦(h, δ◦) = 0.
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For C > 0 and 0 < ζ ≤ 1, the Lipschitz class is defined by

LipC(ζ ) =
{

h :
∣∣h(η1) – h(η2)

∣∣ ≤ C|η1 – η2|ζ
(
η1,η2 ∈ [0,∞)

)}
. (4.3)

Theorem 4.1 Let m ∈N and m > 2, then for all h ∈ C∗
B[0,∞)

∣∣Lum ,vm
m (h; y) – h(y)

∣∣ ≤ 2ω◦(h;Ψm), (4.4)

where (Ψm)2 =
[
( um

vm
)2 m2

(m–2)(m–1) –2 um
vm

m
(m–1) +1

]
y2 +

[ um
v2

m

m2

(m–2)(m–1)
(
2 P′(1)

P(1) +4
)

– 1
vm

m
(m–1)

( 2P′(1)
P(1) +

2
)]

y + 1
v2

m

m2

(m–2)(m–1)
( P′′(1)

P(1) + P′(1)
P(1) + 2

)
.

Proof We have

∣∣Lum ,vm
m (h; y) – h(y)

∣∣ =
∣∣Lum ,vm

m (h; y) – h(y)Lum ,vm
m (e1; y)

∣∣

=
∣∣Lum ,vm

m
(
h(t) – h(y); y

)∣∣

≤ Lum ,vm
m

(∣∣h(t) – h(y)
∣∣; y

)
.

In the light of (4.1) and (4.2), we get

∣∣Lum ,vm
m (h; y) – h(y)

∣∣ ≤ Lum ,vm
m

(
1 +

|t – y|
δ◦ ; y

)
ω◦(h, δ◦)

=
(

1 +
1
δ◦ Lum ,vm

m
(|t – y|; y

))
ω◦(h, δ◦).

Apply the Cauchy–Schwarz inequality

Lum ,vm
m

(|t – y|; y
) ≤ [

Lum ,vm
m (e1; y)Lum ,vm

m
(
(t – y)2; y

)] 1
2

so that

∣∣Lum ,vm
m (h; y) – h(y)

∣∣ ≤
(

1 +
1
δ◦ Lum ,vm

m (Υ2; y)
1
2

)
ω◦(h, δ◦). (4.5)

Choosing δ◦ = Ψm =
√

Lum ,vm
m (Υ2; y) yields the result. �

Remark 4.2 For um = vm = 1, the above estimate is reduced to [22], i.e.,

∣∣Lm(h; y) – h(y)
∣∣ ≤ 2ω◦(h,Φm), (4.6)

where (Φm)2 =
( m2

(m–2)(m–1) – 2m
(m–1) + 1

)
y2 +

[ 2m
(m–2)(m–1)

( P′(1)
P(1) ) + 2) – 2

(m–1)
( P′(1)

P(1) + 1
)]

y +
1

(m–2)(m–1)
( P′′(1)

P(1) + P′(1)
P(1) + 2

)
.

Theorem 4.3 For every h ∈ LipC(ζ ), we have

∣∣Lum ,vm
m (h; y) – h(y)

∣∣ ≤ C(Ψm)ζ ,

where m > 2, m ∈N, and Ψm =
√

Lum ,vm
m (Υ2; y) by Theorem 4.1.
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Proof We use (4.3) and Hölder’s inequality to get

∣∣Lum ,vm
m (h; y) – h(y)

∣∣

≤ ∣∣Lum ,vm
m

(
h(t) – h(y); y

)∣∣

≤ Lum ,vm
m

(∣∣h(t) – h(y)
∣∣; y

)

≤ CLum ,vm
m

(|t – y|ζ ; y
)
.

≤ C
e–umy

vmP(1)

∞∑

r=0

Qr(umy)
1

B(r + 1, m)

∫ ∞

0

tr

(1 + t)r+m+1 |t – y|ζ dt

=
e–umy

vmP(1)

( ∞∑

r=0

Qr(umy)
1

B(r + 1, m)

)1– ζ
2

×
(

Qr(umy)
1

B(r + 1, m)

) ζ
2
∫ ∞

0

tr

(1 + t)r+m+1 |t – y|ζ dt

≤ C

(
e–umy

vmP(1)

∞∑

r=0

Qr(umy)
1

B(r + 1, m)

∫ ∞

0

tr

(1 + t)r+m+1 dt

)1– ζ
2

×
(

e–umy

vmP(1)

∞∑

r=0

Qr(umy)
1

B(r + 1, m)

∫ ∞

0

tr

(1 + t)r+m+1 |t – y|2 dt

) ζ
2

= CLum ,vm
m (Υ2; y)

ζ
2 .

This completes the proof. �

5 Direct theorems
Let

Cκ
B[0,∞) =

{
f ∈ CB[0,∞) : f ′, f ′′ ∈ CB[0,∞)

}
(5.1)

with the norm

‖f ‖Cκ
B[0,∞) = ‖f ‖CB[0,∞) +

∥∥f ′∥∥
CB[0,∞) +

∥∥f ′′∥∥
CB[0,∞), (5.2)

and let Ω◦ = {f ∈ CB[0,∞) : f ′, f ′′ ∈ CB[0,∞)}. For h ∈ CB[0,∞), Peetre’s K-functional is
defined by

K◦
2
(
h, δ◦) = inf

f ∈Ω◦
{(‖h – f ‖CB[0,∞) + δ◦∥∥f ′′∥∥

C2
B[0,∞)

)
: f ∈ Ω◦}. (5.3)

For a positive constant M, one has K◦
2 (h, δ◦) ≤ Mω◦

2(h,
√

δ◦), where δ◦ > 0 and the second
order modulus of continuity ω◦

2 is defined by

ω◦
2
(
h,

√
δ◦) = sup

0<u<
√

δ◦
sup

y∈[0,∞)

∣∣h(y + 2u) – 2h(y + u) + h(y)
∣∣. (5.4)
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Theorem 5.1 Let m > 2, m ∈N. Then for all f ∈ Cκ
B[0,∞) we have

∣∣Lum ,vm
m (f ; y) – f (y)

∣∣ ≤
(

Ψm +
(Ψm)2

2

)
‖f ‖Cκ

B[0,∞),

where Ψm is defined by Theorem 4.1.

Proof By Taylor’s formula, one has

f (t) = f (y) + f ′(y)(t – y) + f ′′(χ )
(t – y)2

2
, χ ∈ (y, t),

∣∣f (t) – f (y)
∣∣ ≤ W1|t – y| +

1
2

W2(t – y)2,

where

W1 = sup
y∈[0,∞)

∣∣f ′(y)
∣∣ =

∥∥f ′∥∥
CB[0,∞) ≤ ‖f ‖Cκ

B[0,∞),

W2 = sup
y∈[0,∞)

∣∣f ′′(y)
∣∣ =

∥∥f ′′∥∥
CB[0,∞) ≤ ‖f ‖Cκ

B[0,∞).

Therefore,

∣∣f (t) – f (y)
∣∣ ≤

(
|t – y| +

(t – y)2

2

)
‖f ‖Cκ

B[0,∞)

and

∣∣Lum ,vm
m (f , y) – f (y)

∣∣ =
∣∣Lum ,vm

m
(
f (t) – f (y); y

)∣∣ ≤ Lum ,vm
m

(∣∣f (t) – f (y)
∣∣; y

)
.

Thus, we get

∣∣Lum ,vm
m (f ; y) – f (y)

∣∣ ≤
(

Lum ,vm
m

(|t – y|; y
)

+
Lum ,vm

m ((t – y)2; y)
2

)
‖f ‖Cκ

B[0,∞)

≤
(

Ψm +
(Ψm)2

2

)
‖f ‖Cκ

B[0,∞),

where

Lum ,vm
m

(|t – y|; y
) ≤

√
Lum ,vm

m
(
(t – y)2; y

)
=

√
Lum ,vm

m (Υ2; y).

Hence the result. �

Theorem 5.2 For every h ∈ CB[0,∞) and m > 2, m ∈ N, we have

∣∣Lum ,vm
m (h; y) – h(y)

∣∣

≤ 2M
{
ω◦

2

(
h;

√
2Ψm +

(Ψm)2

4

)
+ min

(
1, 2Ψm +

(Ψm)2

4

)
‖h‖CB[0,∞)

}
.
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Proof As previously, we easily conclude that

∣∣Lum ,vm
m (h; y) – h(y)

∣∣ ≤ ∣∣Lum ,vm
m (h – f ; y)

∣∣ +
∣∣Lum ,vm

m (f ; y) – f (y)
∣∣ +

∣∣h(y) – f (y)
∣∣

≤ 2‖h – f ‖CB(R+) +
(

Ψm +
(Ψm)2

2

)
‖f ‖Cκ

B[0,∞)

≤ 2
(

‖h – f ‖CB[0,∞) +
(

2Ψm +
(Ψm)2

4

)
‖f ‖Cκ

B[0,∞)

)
.

By taking infimum and using (5.3), we get

∣∣Lum ,vm
m (h; y) – h(y)

∣∣ ≤ 2K2

(
h; 2Ψm +

(Ψm)2

4

)
.

Now, for an absolute constant M > 0 [10], we use the relation

K◦
2
(
h; δ◦) ≤ M

{
ω◦

2
(
h;

√
δ◦) + min

(
1, δ◦)‖h‖}.

This completes the proof. �

6 Conclusion
We have constructed an integral type modification of Jakimovski–Leviatan operators by
using beta function and two sequences of unbounded and increasing functions {um}, {vm}
such that limm→∞ um

vm
= 1 + O( 1

vm
) and limm→∞ 1

vm
= 0. We derived some uniform conver-

gence results of these operators via Korovkin’s theorem and obtained the rate of conver-
gence by using the modulus of continuity and Lipschitz class. Furthermore, we obtained
some direct theorems with the help of Peetre’s K-functional.
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