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Abstract
In this paper, we investigate the existence of positive solutions for a class of fractional
boundary value problems involving q-difference. By using the fixed point theorem of
cone mappings, two existence results are obtained. Examples are given to illustrate
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1 Introduction
The theory of q-calculus or quantum calculus was initially developed by [6, 7] and it has
many applications in the fields of hypergeometric series, particle physics, quantum me-
chanics and complex analysis. For a general introduction of q-calculus or quantum calcu-
lus, we refer to [1, 2, 8]. Recently, fractional boundary value problems with q-difference
have been investigated by many authors; see [3, 4, 9–11] and the references therein. In
[3], Ferreira considered the existence of positive solutions for the nonlinear q-fractional
boundary value problem (BVP)

⎧
⎨

⎩

Dα
q u(t) = –f (t, u(t)), t ∈ I := (0, 1),

u(0) = Dqu(0) = 0, Dqu(1) = β ≥ 0,
(1.1)

where 0 < q < 1, 2 < α ≤ 3, f : I∗ × R
+ → R

+ is a continuous function, I∗ = [0, 1], R+ =
[0, +∞). By utilizing a fixed point theorem in cones, he obtained the following existence
theorem.

Theorem A Let τ = qn with n ∈ N. Suppose that f (t, u) is a nonnegative continuous func-
tion on [0, 1] ×R

+. If there exist two positive constants r2 > r1 > 0 such that the function f
satisfies

(P1) β

[α–1]q
+ M max(t,u)∈[0,1]×[0,r1] f (t, u) ≤ r1;

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02849-w
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02849-w&domain=pdf
mailto:liangyuegsau@163.com


Liang et al. Advances in Difference Equations        (2020) 2020:416 Page 2 of 11

(P2) β

[α–1]q
+ N max(t,u)∈[τ ,1]×[τα–1r2,r2] f (t, u) ≥ r2,

where

[α – 1]q =
1 – qα–1

1 – q
,

M =
∫ 1

0
G(1, qs) dqs,

N = max
t∈[0,1]

∫ 1

τ

G(t, qs) dqs,

G(t, qs) is the Green’s function which will be specified later, then the BVP (1.1) has a solution
satisfying u(t) > 0 for t ∈ (0, 1].

Clearly, the conditions (P1) and (P2) are strong in application. In 2015, Li et al. [9] stud-
ied a class of fractional Schrödinger equations with q-difference of the form

Dα
q u(t) +

n
�

(ℵ – ρ(t)
)
u(t) = 0, t ∈ I, (1.2)

where ρ(t) is the trapping potential, n is the mass of a particle, � is the Planck constant, ℵ
is the energy of a particle. Let λ = n

�
and h(t) = ℵ – ρ(t). They transformed Eq. (1.2) to

Dα
q u(t) + λh(t)f

(
u(t)

)
= 0, t ∈ I, (1.3)

subject to the boundary conditions

u(0) = Dqu(0) = Dqu(1) = 0, (1.4)

where 0 < q < 1, 2 < α ≤ 3, f : I∗ ×R → (0,∞) is continuous, h : I → (0,∞) is continuous.
By applying a fixed point theorem in cones, they proved several theorems for the existence
of positive solutions of the problem (1.3)–(1.4). Here, we just list two important results of
[9].

Theorem B Suppose that (H1) and one of (H2) and (H3) hold, where
(H1) h(t) is continuous for t ∈ (0, 1) such that

∫ 1
0 h(t) dqt < +∞;

(H2) limu→0
f (u)

u = ∞;
(H3) limu→∞ f (u)

u = ∞.
Then the problem (1.3)–(1.4) has at least one positive solution provided that

0 < λ <
supr>0

r
max0≤u≤r f (u)

maxt∈[0,1]
∫ 1

0 G(t, qs)h(s) dqs
, (1.5)

where r > 0 is constant.

Theorem C Suppose that (H1) and one of (H4) and (H5) hold, where
(H4) limu→0

f (u)
u = 0;

(H5) limu→∞ f (u)
u = 0.
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Then the problem (1.3)–(1.4) has at least one positive solution provided that

infr>0
r

minτ r≤u≤r f (u)

mint∈[τ ,1]
∫ 1
τ

G(t, qs)h(s) dqs
< λ < ∞, (1.6)

where r > 0 is constant.

It is obvious that the conditions (H2)–(H5) are weaker than (P1)–(P2), but (1.5) and
(1.6) are not easy to verify in application.

In the present work, we consider the fractional boundary value problem (Fr-BVP) with
q-difference of the form

⎧
⎨

⎩

Dα
q u(t) + ω(t)f (t, δ(t)u(t)) = 0, t ∈ I,

u(0) = Dqu(0) = Dqu(1) = 0,
(1.7)

where 0 < q < 1, 2 < α ≤ 3, ω ∈ C[0, 1], δ ∈ C(I∗, (0, +∞)), f ∈ C(I × R
+,R+), f may be

singular at t = 0 and/or 1. Here, δ(t) is a scaling function of u in the nonlinearity f .
For the sake of simplicity, denote

δm = min
t∈I∗

δ(t), δM = max
t∈I∗

δ(t).

Throughout this paper, we always assume that the functions f and ω satisfy the following
conditions.

(A1) ω ∈ C[0, 1] and there exists ξ > 0 such that ω(t) ≥ ξ for t ∈ I ;
(A2)

∫ 1
0 G(1, qs)f (s, δM) dqs < +∞;

(A3) f (t, δm) > 0 for any t ∈ I and there exist constants σ1 ≥ σ2 > 1 such that, for every
τ ∈ (0, 1],

τσ1 f (t, x) ≤ f (t, τx) ≤ τσ2 f (t, x) (1.8)

for any t ∈ I and x ∈R
+;

(A4) f (t, δm) > 0 for any t ∈ I and there exist constants 0 < σ3 ≤ σ4 < 1 such that, for every
τ ∈ (0, 1],

τσ4 f (t, x) ≤ f (t, τx) ≤ τσ3 f (t, x) (1.9)

for any t ∈ I and x ∈R
+.

Remark 1.1
(1) If f satisfies the assumption (A3) or (A4), then f (t, x) is non-decreasing with respect

to x ∈R
+ for every t ∈ I .

(2) The condition (1.8) is equivalent to

τσ2 f (t, x) ≤ f (t, τx) ≤ τσ1 f (t, x), ∀τ ≥ 1. (1.10)

(3) The condition (1.9) is equivalent to

τσ3 f (t, x) ≤ f (t, τx) ≤ τσ4 f (t, x), ∀τ ≥ 1.
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Remark 1.2 The assumptions (A3) and (A4) are order conditions. They are much easier
to verify in application than the conditions (H2)–(H5) and (1.5), (1.6).

Remark 1.3 If δ(t) ≡ 1 for t ∈ [0, 1] and f (t, u) = f (u), then the Fr-BVP (1.7) becomes to the
problem (1.3)–(1.4) with ω(t) = λh(t). Therefore, the Fr-BVP (1.7) is more general than the
problem (1.3)–(1.4).

By using the fixed point theorem of cone mappings, we obtain the following theorems.

Theorem 1.1 Let the assumptions (A1)–(A3) hold. Then the Fr-BVP (1.7) has at least one
positive solution u ∈ C[0, 1].

Theorem 1.2 Let the assumptions (A1), (A2) and (A4) hold. Then the Fr-BVP (1.7) has at
least one positive solution u ∈ C[0, 1].

The rest of this paper is organized as follows. In Sect. 2 we introduce some preliminaries
and notations which are useful in our proof. In Sect. 3, we will prove Theorems 1.1 and 1.2.
Examples are given in Sect. 4 to illustrate the abstract results.

2 Preliminaries
In this section, we introduce some definitions and notations on fractional q-difference
equations. Some related lemmas are also given in this section. For q ∈ (0, 1) and a, b,α ∈R,
we denote

[α]q :=
1 – qα

1 – q

and

(a – b)(α) := aα

∞∏

n=0

a – bqn

a – bqn+α
.

The q-analogue of the power function (a – b)n is defined by

(a – b)0 = 1

and

(a – b)n =
∞∏

k=1

(
a – bqk), n ∈N.

The q-gamma function is given by

Γq(α) =
(1 – q)(α–1)

(1 – q)α–1 , α ∈R \ {0, –1, –2, . . .},

and it satisfies Γq(α + 1) = [α]qΓq(α).
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Let � be a function defined on [0, 1]. The q-derivative of � is

(Dq�)(t) =
�(t) – �(qt)

(1 – q)t
, t > 0,

and

(Dq�)(0) = lim
t→0

(Dq�)(t).

The q-derivative of � of high order is given by

(
D0

q�
)
(t) = �(t), t ∈ [0, 1],

and

(
Dn

q�
)
(t) = Dq

(
Dn–1

q �
)
(t), t ∈ [0, 1], n ∈N.

The following definitions of fractional q-calculus are cited from [3].

Definition 2.1 The fractional q-integral of the Riemann–Liouville type of order α ≥ 0 for
the function � is defined by

(
I0

q�
)
(t) = �(t), t ∈ [0, 1],

and

(
Iα

q �
)
(t) =

1
Γq(α)

∫ t

0
(t – qs)(α–1)�(s) dqs, α > 0, t ∈ [0, 1].

Definition 2.2 The fractional q-derivative of the Riemann–Liouville type of order α ≥ 0
for the function � is defined by

(
D0

q�
)
(t) = �(t), t ∈ [0, 1],

and

(
Dα

q�
)
(t) =

(
Dm

q Im–α
q �

)
(t)α > 0, t ∈ [0, 1],

where m := �α� is the smallest integer greater than or equal to α.

We refer the reader to the papers [3, 10] and the monographs [1, 2] for more details on
the definitions of fractional q-calculus.

In order to prove the existence of positive solutions of the Fr-BVP (1.7), for any h ∈
C[0, 1], we first consider the linear Fr-BVP

⎧
⎨

⎩

Dα
q u(t) + h(t) = 0, t ∈ I,

u(0) = Dqu(0) = Dqu(1) = 0.
(2.1)
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Lemma 2.1 ([3]) Let 0 < q < 1 and 2 < α ≤ 3. For any h ∈ C[0, 1], the linear Fr-BVP (2.1)
has a unique solution expressed by

u(t) =
∫ 1

0
G(t, qs)h(s) dqs,

where

G(t, qs) =
1

Γq(α)

⎧
⎨

⎩

(1 – qs)(α–2)tα–1 – (t – qs)(α–1), 0 ≤ qs ≤ t < 1,

(1 – qs)(α–2)tα–1, 0 ≤ t ≤ qs < 1,
(2.2)

is the Green’s function of the linear Fr-BVP (2.1).

Lemma 2.2 ([3]) The Green’s function G(t, qs) has the following properties:
(i) G(t, qs) ≥ 0 for all t, s ∈ I∗;

(ii) tα–1G(1, qs) ≤ G(t, qs) ≤ G(1, qs) for all t, s ∈ I∗.

By Lemma 2.1, we can define the solution of the Fr-BVP (1.7) as follows.

Definition 2.3 A function u ∈ C[0, 1] is called a solution of the Fr-BVP (1.7) if it satisfies
the integral equation

u(t) =
∫ 1

0
G(t, qs)ω(s)f

(
s, δ(s)u(s)

)
dqs, t ∈ I∗.

If u(t) > 0 for t ∈ I , then it is called a positive solution of the Fr-BVP (1.7).

Let E := C[0, 1]. Then E is a Banach space endowed with the norm

‖u‖ = max
t∈I∗

∣
∣u(t)

∣
∣, ∀u ∈ E.

Let η ∈ (0, 1). Define a cone K in E by

K =
{

u ∈ E : u(t) ≥ 0, t ∈ I∗, min
t∈[η,1]

u(t) ≥ ηα–1‖u‖
}

.

Then K is a nonempty closed convex cone of E.
Define an operator Q : K → E by

(Qu)(t) =
∫ 1

0
G(t, qs)ω(s)f

(
s, δ(s)u(s)

)
dqs, t ∈ I∗. (2.3)

Lemma 2.3 Let the assumptions (A1)–(A3) hold. Then Q : K → E is well defined, and
u ∈ E is a positive solution of the Fr-BVP (1.7) if and only if u is a positive fixed point
of Q.
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Proof For fixed u ∈ E with u(t) ≥ 0 for all t ∈ I∗, choosing a constant a ∈ (0, 1) such that
a‖u‖ < 1. Then, for any t ∈ I∗, by (1.8) and (1.10), we have

f
(
t, δ(t)u(t)

) ≤
(

1
a

)σ1

f
(
t, aδ(t)u(t)

)

≤
(

1
a

)σ1[
au(t)

]σ2 f
(
t, δ(t)

)

≤ aσ2–σ1‖u‖σ2 f (t, δM).

So, for any t ∈ I∗, by (2.2), we have

0 <
∫ 1

0
G(t, qs)ω(s)f

(
s, δ(s)u(s)

)
dqs

≤
∫ 1

0
G(1, qs)ω(s)f

(
s, δ(s)u(s)

)
dqs

≤ aσ2–σ1‖u‖σ2‖ω‖
∫ 1

0
G(1, qs)f (s, δM) dqs

< +∞.

This implies that the operator Q : K → E is well defined. By Definition 2.3, u ∈ E is a
positive solution of the Fr-BVP (1.7) if and only if u is a positive fixed point of Q. �

Lemma 2.4 If the assumptions (A1), (A2) and (A4) hold, then Q : K → E is well defined,
and u ∈ E is a positive solution of the Fr-BVP (1.7) if and only if u is a positive fixed point
of Q.

Lemma 2.5 Q : K → K is a completely continuous operator.

Proof For any u ∈ K and t ∈ I∗, by Lemma 2.2 and (1.10), we have (Qu)(t) ≥ 0 on I∗ and

min
t∈[η,1]

(Qu)(t) ≥ min
t∈[η,1]

∫ 1

0
tα–1G(1, qs)ω(s)f

(
s, δ(s)u(s)

)
dqs

= ηα–1
∫ 1

0
G(1, qs)ω(s)f

(
s, δ(s)u(s)

)
dqs

≥ ηα–1‖Qu‖.

Hence, Q : K → K . By the Ascoli–Arzela theorem, one can prove that Q : K → K is com-
pletely continuous. �

At last, we state a fixed point theorem of cone mapping to end this section, which is
useful in the proof of our main results.

Lemma 2.6 ([5]) Let E be a Banach space, P ⊂ E a cone in E. Assume that Ω1 and Ω2 are
two bounded and open subset of E with θ ∈ Ω1, Ω1 ⊂ Ω2. If

Q : P ∩ (Ω2 \ Ω1) → P



Liang et al. Advances in Difference Equations        (2020) 2020:416 Page 8 of 11

is a completely continuous operator such that either
(i) ‖Qu‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂Ω1 and ‖Qu‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω2, or

(ii) ‖Qu‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω1 and ‖Qu‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂Ω2,
Then Q has at least one fixed point in P ∩ (Ω2 \ Ω1).

3 Proof of the main results
In this section, we will apply Lemma 2.6 to prove the existence of positive solutions of the
Fr-BVP (1.7). For any 0 < r < R, let

Ωr =
{

u ∈ E : ‖u‖ < r
}

, ΩR =
{

u ∈ E : ‖u‖ < R
}

.

Then ∂Ωr = {u ∈ E : ‖u‖ = r}, ∂ΩR = {u ∈ E : ‖u‖ = R}.

Proof of Theorem 1.1 On the one hand, defining an operator Q : K → E as in (2.3), we
prove that there exists a constant r ∈ (0, 1] such that

‖Qu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ωr .

In fact, for u ∈ K with ‖u‖ ≤ 1, we have

f
(
t, δ(t)u(t)

) ≤ uσ2 (t)f
(
t, δ(t)

) ≤ ‖u‖σ2 f (t, δM), ∀t ∈ I∗.

So, by Lemma 2.2, we have

‖Qu‖ = max
t∈I∗

∣
∣
∣
∣

∫ 1

0
G(t, qs)ω(s)f

(
s, δ(s)u(s)

)
dqs

∣
∣
∣
∣

≤ ‖u‖σ2‖ω‖
∫ 1

0
G(1, qs)f (s, δM) dqs

= β1‖u‖σ2 ,

where β1 = ‖ω‖ ∫ 1
0 G(1, qs)f (s, δM) dqs.

If β1 > 1, choosing r = ( 1
β1

)
1

σ2–1 , then r ∈ (0, 1). For any u ∈ K ∩ ∂Ωr , we have

‖Qu‖ ≤ β1‖u‖σ2 = β
1– σ2

σ2–1
1 = r = ‖u‖.

If β1 ≤ 1, choosing r = 1, then, for any u ∈ K ∩ ∂Ωr , we have

‖Qu‖ ≤ β1‖u‖σ2 = β1 ≤ 1 = r = ‖u‖.

On the other hand, we prove that there exists a constant R > 1 such that

‖Qu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂ΩR.

In fact, for u ∈ K with u(t) ≥ 1 for t ∈ I∗, we have

f
(
t, δ(t)u(t)

) ≥ uσ2 (t)f
(
t, δ(t)

) ≥ uσ2 (t)f (t, δm), ∀t ∈ I∗.
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Thus, for every u ∈ K ∩ ∂ΩR, by Lemma 2.5, we have Qu ∈ K and, for any η ∈ (0, 1),

‖Qu‖ ≥ min
t∈[η,1]

(Qu)(t)

= min
t∈[η,1]

∫ 1

0
G(t, qs)ω(s)f

(
s, δ(s)u(s)

)
dqs

≥ min
t∈[η,1]

∫ 1

0
G(t, qs)ω(s)uσ2 (s)f (s, δm) dqs

≥ min
t∈[η,1]

tα–1ξ

∫ 1

η

G(1, qs)uσ2 (s)f (s, δm) dqs

≥ η(σ2+1)(α–1)ξ‖u‖σ2

∫ 1

η

G(1, qs)f (s, δm) dqs

= β2‖u‖σ2 ,

where β2 = η(σ2+1)(α–1)ξ
∫ 1
η

G(1, qs)f (s, δm) dqs.

If β2 < 1, choosing R = ( 1
β2

)
1

σ2–1 , then R > 1 ≥ r. For any u ∈ K ∩ ∂ΩR, we have

‖Qu‖ ≥ β2‖u‖σ2 = β
1– σ2

σ2–1
2 = R = ‖u‖.

If β2 ≥ 1, choosing R = β2 + 1, then R > 1 ≥ r. For u ∈ K ∩ ∂ΩR, we have

‖Qu‖ ≥ β2‖u‖σ2 ≥ β2‖u‖ ≥ ‖u‖.

Hence, by Lemma 2.6, Q has at least one fixed point u∗ ∈ K ∩ (ΩR \Ωr) satisfying 0 < r ≤
‖u∗‖ ≤ R. Hence for η ∈ (0, 1), mint∈[η,1] u∗(t) ≥ ηα–1‖u∗‖ > 0 and it is a positive solution
of the Fr-BVP (1.7). �

Proof of Theorem 1.2 Similar to the proof of Theorem 1.1, we can prove this theorem. So
we omit the details here. �

Remark 3.1 If ω ∈ L∞[0, T], the results in Theorem 1.1 and 1.2 are still true.

4 Examples
Example 4.1 Consider the following BVP:

⎧
⎨

⎩

D
5
2
1
2

u(t) + 5–sinπ t2

t(1–t) (e3tu3(t) + e2tu2(t)) = 0, t ∈ (0, 1),

u(0) = 0, D 1
2

u(0) = D 1
2

u(1) = 0.
(4.1)

Let q = 1
2 , α = 5

2 , f (t, δ(t)u(t)) = 1
t(1–t) (e3tu3(t) + e2tu2(t)) and ω(t) = 5 – sinπ t2, where

δ(t) = et > 0. Then ξ = 4, δm = 1 and δM = e. Clearly, f (t, δm) = 2
t(1–t) > 0 and

∫ 1

0
G

(

1,
1
2

s
)

f (s, δM) d 1
2

s ≤
∫ 1

0

(1 – 1
2 s)( 1

2 )(e2 + e3)
Γ 1

2
( 5

2 )s(1 – s)
d 1

2
s < +∞,

where Γ 1
2

( 5
2 ) = ( 1

2 )( 3
2 )

( 1
2 )

3
2

. Hence the conditions (A1) and (A2) hold.
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For τ ∈ (0, 1], since

τ 3

t(1 – t)
(
x3 + x2) ≤ f (t, τx) =

1
t(1 – t)

(
τ 3x3 + τ 2x2) ≤ τ 2

t(1 – t)
(
x3 + x2),

then the condition (A3) is satisfied with σ1 = 3, σ2 = 2. Hence, by Theorem 1.1, the BVP
(4.1) has at least one positive solution u ∈ C[0, 1].

Example 4.2 Consider the following BVP:

⎧
⎨

⎩

D
5
2
1
2

u(t) + cos 3t2+2
t(1–t) (e t

3 u 1
3 (t) + e t

4 u 1
4 (t)) = 0, t ∈ (0, 1),

u(0) = 0, D 1
2

u(0) = D 1
2

u(1) = 0.
(4.2)

Let q = 1
2 , α = 5

2 , f (t, δ(t)u(t)) = 1
t(1–t) (e t

3 u 1
3 (t) + e t

4 u 1
4 (t)) and ω(t) = cos 3t2 + 2, where

δ(t) = et > 0. Then ξ = 1, δm = 1 and δM = e. Only we verify (A4). For τ ∈ (0, 1], since

τ
1
3

t(1 – t)
(
x

1
3 + x

1
4
) ≤ f (t, τx) =

1
t(1 – t)

(
τ

1
3 x

1
3 + τ

1
4 x

1
3
) ≤ τ

1
4

t(1 – t)
(
x

1
3 + x

1
4
)
,

then the condition (A4) is satisfied with σ3 = 1
4 , σ4 = 1

3 . Hence, by Theorem 1.2, the BVP
(4.2) has at least one positive solution u ∈ C[0, 1].
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