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Abstract
The main objective of this paper is to concern with a new category of the sequential
hybrid inclusion boundary value problem with three-point integro-derivative
boundary conditions. In this direction, we employ various novel analytical techniques
based on α-ψ -contractive mappings, endpoints, and the fixed points of the product
operators to obtain the main results. Finally, we provide two examples to illustrate our
main results.
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1 Introduction
Every day that passes, the human needs for studying natural phenomena is increasing.
One of the possible methods for achieving this goal is using mathematical operators and
computer modeling. The fractional operators were developed over the years, and their
importance has become more and more apparent to researchers today. Instances of the
application of such fractional operators can be found in various sciences such as biomath-
ematics, electrical circuits, medicine, and so on [1–6]. All these items have led researchers
to find many aspects of the structure of the fractional boundary value problems and hered-
itary properties of their solutions. In this regard, many researchers investigated advanced
fractional modelings [7, 8] and related theoretical results and qualitative behaviors of such
fractional boundary value problems [9–22].

There have been appeared different versions of fractional operators during these years.
In monograph [23], Miller and Ross defined another type of fractional derivative called se-
quential derivatives, which ares a combination of the existing derivative operators. Later,
the attention of some researchers was attracted to finding a connection between the usual
Riemann–Liouville derivative and the sequential fractional derivative [24, 25]. These use-
ful results have led to publishing some papers on the sequential fractional boundary value
problems (see, e.g., [26–30]). In 2015, Alsaedi et al. studied the sequential problem
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where α∗ ∈ (2, 3], ξ ∈ (η, 1), with η,β > 0, a, k ∈ R
+, and g : [0, 1] × R → R is a continu-

ous function [31]. On the other hand, hybrid differential problems with different kinds of
boundary conditions have gained extensive attention of many researchers [32–34]. This
area begins with a joint work presented by Dhage and Lakshmikantham [35] in 2010. The
authors addressed a novel differential equation entitled a hybrid differential equation and
investigated the extremal solutions of this new BVP by deriving some useful fundamen-
tal differential inequalities [35]. Later, Zhao et al. [36] gave an abstract extension for the
problem mentioned in [35] to fractional order and defined a boundary value problem of
fractional hybrid differential equations. Until now, the limited research papers have been
published on various properties of solutions for hybrid boundary value problems of frac-
tional order. In 2016, Ahmad et al. [37]performed an important existence analysis for the
nonlocal fractional BVP of hybrid inclusion problem given by

cD�

0+

[w(s) –
∑k

j=1
RI�j

0+ hj(s, w(s))
g(s, w(s))

]

∈ G
(
s, w(s)

)
, s ∈ I = [0, 1],

with boundary conditions w(0) = β(s) and w(1) = α ∈R, where cD�

0+ is the Caputo deriva-
tive of order � ∈ (1, 2], and RIϕ

0+ is the Riemann–Liouville integral of order ϕ > 0 such that
ϕ ∈ {β1,β2, . . . ,βm}. After that, Baleanu et al. [38] developed some existence theorems and
arrived at some findings on the dimension of the set of all solutions for the hybrid inclusion
problem

cD�

0+

[
w(s)

Λ(s, w(s), RI�1
0+ w(s), . . . , RI�n

0+ w(s))

]

∈ G
(
s, w(s), RIα1

0+ w(s), . . . , RIαm
0+ w(s)

)

with boundary conditions w(0) = w∗
0 and w(1) = w∗

1, where s ∈ [0, 1], � ∈ (1, 2], cD�

0+ and
RIγ

0+ denote the Caputo derivative operator of order � and the Riemann–Liouville inte-
gral operator of order γ ∈ {�i,αj} ⊂ (0,∞) for i = 1, . . . n and j = 1, . . . , m, respectively. In
2019, Baleanu et al. [39] introduced a new hybrid problem in which, for the first time, the
boundary conditions were considered as hybrid type. Indeed, the authors formulated the
following fractional three-point hybrid problem:

cD�

0+

[
w(s)

ρ(s, w(s))

]

= κ
(
s, w(s)

)
, s ∈ [0, 1],

with three-point mixed integral hybrid conditions

⎧
⎪⎪⎨

⎪⎪⎩

w(0) = 0,

[ w(s)
ρ(s,w(s)) ]|s=0 + RI�∗

o+ [ w(s)
ρ(s,w(s)) ]|s=η = 0,

[ w(s)
ρ(s,w(s)) ]|s=0 + RI�∗

0+ [ w(s)
ρ(s,w(s)) ]|s=1 = 0,

where � ∈ (2, 3], �∗ > 0, and η ∈ (0, 1). The function κ : [0, 1] × R → R is continuous,
and ρ ∈ C([0, 1] ×R,R \ {0}). In 2020, Baleanu et al. [7] designed a new fractional hybrid
model of thermostat in which the thermostat controls an amount of heat based on the
temperature detected by sensors. This hybrid model is illustrated by

cD�

0+

[
w(s)

h(s, w(s))

]

+ Φ
(
s, w(s)

)
= 0, � ∈ (1, 2], s ∈ [0, 1],
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with fractional hybrid boundary value conditions

⎧
⎨

⎩

D[ w(s)
h(s,w(s)) ]|s=0 = 0,

λcD�–1
0+ [ w(s)

h(s,w(s)) ]|s=1 + [ w(s)
h(s,w(s)) ]|s=η = 0,

where λ > 0 is a parameter, η ∈ [0, 1], and � – 1 ∈ (0, 1]. Also, D = d
ds , cDγ

0+ is the Caputo
derivative of fractional order γ ∈ {�,� – 1}, the function Φ : [0, 1] ×R →R is continuous,
and h ∈ C([0, 1] ×R,R \ {0}).

Now by combining ideas of these works, we firstly turn to the sequential fractional hy-
brid differential inclusion of Caputo type

p1
(cD�

0+ + p2
cD�–1

0+
)
[

w(s)
ζ (s, w(s), RIγ

0+ w(s))

]

∈ S
(
s, w(s)

)
, s ∈ [0, 1], (1)

with three-point hybrid integro-derivative boundary conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[ w(s)
ζ (s,w(s),RIγ0+ w(s)) ]|s=0 = 0,

cD1
0+ [ w(s)

ζ (s,w(s),RIγ0+ w(s)) ]|s=0 + cD2
0+ [ w(s)

ζ (s,w(s),RIγ0+ w(s)) ]|s=0 = 0,

[ w(s)
ζ (s,w(s),RIγ0+ w(s)) ]|s=1 + RIξ

0+ [ w(s)
ζ (s,w(s),RIγ0+ w(s)) ]|s=p = 0,

(2)

where � ∈ (2, 3], p ∈ (0, 1), p1, p2,γ , ξ > 0, cD(·)
0+ and RI(·)

0+ denote the Caputo fractional
derivative and the Riemann–Liouville fractional integral, respectively. Note that cD1

0+ = d
ds

and cD2
0+ = d2

ds2 . The nonzero continuous real-valued function ζ is supposed to be defined
on [0, 1] ×R×R, and S : [0, 1] ×R →P(R) is a set-valued map equipped via some prop-
erties. Also, we investigate the special case of the sequential hybrid inclusion BVP

p1
(cD�

0+ + p2
cD�–1

0+
)
w(s) ∈ S

(
s, w(s)

)
, s ∈ [0, 1], (3)

with three-point integro-derivative boundary conditions

w(0) = 0, w′(0) + w′′(0) = 0, w(1) + RIξ

0+ w(p) = 0, (4)

where � ∈ (2, 3], p ∈ (0, 1), p1, p2 > 0, and RIξ

0+ denotes the Riemann–Liouville fractional
integral of order ξ > 0. It is obvious that the sequential inclusion problem (3)–(4) is derived
whenever ζ (s, w(s), RIγ

0+ w(s)) = 1.

2 Preliminaries
Let � > 0. The definition of the Riemann–Liouville integral of a function w : [0, +∞) → R

is of the form of RI�

0+ w(s) =
∫ s

0
(s–r)�–1

Γ (�) w(r) dr, provided that the value of the integral is finite
[40, 41]. Let � ∈ (n – 1, n) be such that n = [�] + 1. For a function w ∈ AC(n)

R
([0, +∞)), the

fractional derivative of Caputo type is given by cD�

0+ w(s) =
∫ s

0
(s–r)n–�–1

Γ (n–�) w(n)(r) dr, provided
that the integral is finite-valued [40, 41]. Moreover, for a sufficiently smooth function w :
[0, +∞) →R, the sequential fractional derivative is defined by

D�

0+ w(s) =
(
D�1

0+ D�2
0+ . . . D�n

0+
)
w(s),
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where � = (�1,�2, . . . ,�n) is a multiindex [23]. Note that, in general, the sequential deriva-
tive operator D�

0+ can be Riemann–Liouville, Caputo, Hadamard, Caputo–Hadamard,
or any other version of derivative operators. In this research, we employ the sequential
derivative of Caputo type defined as follows. For n – 1 < � < n, the Caputo sequential frac-
tional derivative for a sufficiently smooth function w : [0, +∞) →R is given by

cD�

0+ w(s) = D–(n–�)
0+

(
d
ds

)n

w(s),

where D–(n–�)
0+ w(s) = RI(n–�)

0+ w(s) is the Riemann–Liouville fractional integral of order n – �

[40]. It has been verified that the general solution for the homogeneous differential equa-
tion cD�

0+ w(s) = 0 is given by w(s) = m̃0 + m̃1s + m̃2s2 + · · · + m̃n–1sn–1 and

RI�

0+
(cD�

0+ w(s)
)

= w(s) +
n–1∑

k=0

m̃ksk = w(s) + m̃0 + m̃1s + m̃2s2 + · · · + m̃n–1sn–1,

where m̃0, . . . , m̃n–1 are real numbers with n = [�] + 1 [23]. Here we recall some impor-
tant and required properties in the Banach spaces. For this purpose, consider the normed
space (W ,‖ · ‖W ). For convenience, we denote by P(W), Pcls(W), Pbnd(W), Pcmp(W),
and Pcvx(W) the collections of all subsets, all closed subsets, all bounded subsets, all com-
pact subsets, and all convex subsets of W , respectively. The element w∗ ∈ W is a fixed
point for a given set-valued map S : W → P(W) whenever w∗ ∈ S(w∗) [42]. We de-
note the family of all fixed points of S by FIX (S) [42]. The Pompeiu–Hausdorff metric
PHdW : P(W) ×P(W) → R

∗ = R∪ {∞} is defined by

PHdW (A1, A2) = max
{

sup
a1∈A1

dW (a1, A2), sup
a2∈A2

dW (A1, a2)
}

,

where dW (A1, a2) = infa1∈A1 dW (a1, a2) and dW (a1, A2) = infa2∈A2 dW (a1, a2) [42]. A set-
valued map S : W → Pcls(W) is Lipschitzian with positive constant λ̂ if PHdW (S(w),
S(w′)) ≤ λ̂dW (w, w′) for all w, w′ ∈ W . A Lipschitz map S is a contraction if λ̂ ∈ (0, 1)
[42]. A map S is said to be completely continuous if S(K) is relatively compact for each
K ∈Pbnd(W), whereasS : [0, 1] →Pcls(R) is called measurable if s �−→ dW (υ,S(s)) is mea-
surable for any υ ∈ R [42, 43]. Also, S is an upper semicontinuous if for every w∗ ∈W , the
set S(w∗) belongs to Pcls(W) and for each open set U containing S(w∗), there is a neigh-
borhood O∗

0 of w∗ such that that S(O∗
0) ⊆ U [42]. We construct the graph of the set-valued

map S : W → Pcls(Z) by Graph(S) = {(w, z) ∈ W ×Z : z ∈ S(w)}. The Graph(S) is closed
if for two arbitrary convergent sequences {wn}n≥1 in W and {zn}n≥1 in Z with wn → w0,
zn → z0, and zn ∈ S(wn), we have the inclusion z0 ∈ S(w0) [42, 43]. In view of [42], it is de-
duced that if the set-valued map S : W →Pcls(Z) is upper semicontinuous, then Graph(S)
is a closed subset of W×Z . On the contrary, if S is completely continuous and closed (i.e.,
has a closed graph), then S is upper semicontinuous [42]. In addition, S has convex values
if S(k) ∈ Pcvx(W) for each w ∈ W . Furthermore, a collection of selections of S at point
w ∈ CR([0, 1]) is represented by (SEL)S ,w := {ϑ̂ ∈ L1

R
([0, 1]) : ϑ̂(s) ∈ S(s, w(s))} for (a.e.)

s ∈ [0, 1] [42, 43]. Note that ifS is an arbitrary set-valued map, then for each w ∈ CW ([0, 1]),
we have (SEL)S ,w �= ∅ whenever dim(W) < ∞ [42]. We say that S : [0, 1] × R → P(R)
is Carathéodory if s �→ S(s, w) is measurable for every w ∈ R and w �→ S(s, w) is upper
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semicontinuous for (a.e.) w ∈ [0, 1] ([42, 43]). Besides, a Carathéodory set-valued map
S : [0, 1] ×R→P(R) is called L1-Carathéodory if for each μ > 0, there is ϕμ ∈L1

R+ ([0, 1])
such that ‖S(s, w)‖ = sups∈[0,1]{|q| : q ∈ S(s, w)} ≤ ϕμ(s) for all |w| ≤ μ and for almost every
s ∈ [0, 1] [42, 43].

Samet et al. [44] introduced a new collection of nondecreasing nonnegative functions
ψ : [0,∞) → [0,∞) with

∑∞
n=1 ψn(s) < ∞, which is represented by Ψ . By considering the

properties of these functions it is obvious that ψ(s) < s for all s > 0 [44]. Later, Mohammadi
et al. [45] constructed a new structure for set-valued maps with the following definition.
A set-valued map S : W →Pcls,bnd(W) is said to be α-ψ-contraction if

α
(
w, w′)PHdW

(
Sw,Sw′) ≤ ψ

(
dW

(
w, w′))

for all w, w′ ∈W [45]. In addition, we say that W has property (Cα) if for every convergent
sequence {wn} in W with wn → w and α(wn, wn+1) ≥ 1 for all n ∈ N, there is a subsequence
{wnj} of {wn} such that α(wnj , w) ≥ 1 for all j ∈ N. Also, S is called α-admissible if for all
w ∈ W and w′ ∈ S(w) with α(w, w′) ≥ 1, we have α(w′, w′′) ≥ 1 for all w′′ ∈ S(w′) [45].
Finally, w ∈ W is called the endpoint of S : W → P(W) if S(w) = {w} [46]. Besides, we
say that S has an approximate endpoint property if infw∈W supz∈Sw dW (w, z) = 0 [46]. We
need the following results.

Theorem 1 ([47]) Let W be a separable Banach space, let S : [0, 1] × W → Pcmp,cvx(W)
be an L1-Carathéodory set-valued map, and let Ξ : L1

W ([0, 1]) → CW ([0, 1]) be a linear
continuous map. Then the composition Ξ ◦ (SEL)S : CW ([0, 1]) → Pcmp,cvx(CW ([0, 1])) is
a new operator in CW ([0, 1])×CW ([0, 1]) with action w �→ (Ξ ◦(SEL)S )(w) = Ξ ((SEL)S ,w)
having the closed-graph property.

Theorem 2 ([48]) Let W be a Banach algebra. Assume that the following statements for a
single-valued map Φ∗

1 : W →W and a set-valued map Φ∗
2 : W →Pcmp,cvx(W) are valid:

(i) Φ∗
1 is Lipschitzian with constant l∗;

(ii) Φ∗
2 is upper semicontinuous and compact;

(iii) 2l∗�̂ < 1, where �̂ = ‖Φ∗
2 (W)‖.

Then either (a) the set O∗ = {v∗ ∈ W |α0v∗ ∈ (Φ∗
1 v∗)(Φ∗

2 v∗),α0 > 1} is not bounded, or (b)
there is an element belonging to W satisfying the inclusion w ∈ (Φ∗

1 w)(Φ∗
2 w).

Theorem 3 ([45]) Let (W , dW ) be a complete metric space. Assume that α is a nonnegative
map on W × W , ψ ∈ Ψ is a strictly increasing map, and S : W → Pcls,bnd(W) is an α-
admissible and α-ψ-contractive set-valued map such that α(w, w′) ≥ 1 for some w ∈ W
and w′ ∈ S(w). Then S has a fixed point whenever the space W has the property (Cα).

Theorem 4 ([46]) Let (W , dW ) be a complete metric space, and let ψ : [0,∞) → [0,∞)
be upper semicontinuous such that ψ(s) < s and lim infs→∞(s – ψ(s)) > 0 for each s > 0.
Also, suppose that S : W → Pcls,bnd(W) is such that PHdW (Sw,Sw′) ≤ ψ(dW (w, w′)) for
all w, w′ ∈W . Then S has a unique endpoint if and only if S has the approximate endpoint
property.
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3 Main results
Now we are ready to state and prove our main results. Consider the Banach space W =
{w(s) : w(s) ∈ CR([0, 1])} with norm ‖w‖W = sups∈[0,1] |w(s)|. Note that (W ,‖·‖W ) with mul-
tiplication given by (w · w′)(s) = w(s)w′(s) is a Banach algebra. Now consider the nonzero
constants

Ω̃1 := 1 – e–p2 +
pξ

Γ (ξ + 1)
–

∫ p

0

(p – r)ξ–1

Γ (ξ )
e–p2r dr �= 0,

Ω̃2 := p2 – 1 + e–p2 +
p2pξ+1

Γ (ξ + 2)
–

pξ

Γ (ξ + 1)
+

∫ p

0

(p – r)ξ–1

Γ (ξ )
e–p2r dr �= 0,

�∗ := Ω̃1 + Ω̃2 = p2

(

1 +
pξ+1

Γ (ξ + 2)

)

�= 0.

(5)

Lemma 5 Let ã ∈ W . Then w0 is a solution function for the fractional sequential hybrid
differential equation

p1
(cD�

0+ + p2
cD�–1

0+
)
[

w(s)
ζ (s, w(s), RIγ

0+ w(s))

]

= ã(s), s ∈ [0, 1],� ∈ (2, 3], (6)

with three-point hybrid integro-derivative boundary conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[ w(s)
ζ (s,w(s),RIγ0+ w(s)) ]|s=0 = 0,

cD1
0+ [ w(s)

ζ (s,w(s),RIγ0+ w(s)) ]|s=0 + cD2
0+ [ w(s)

ζ (s,w(s),RIγ0+ w(s)) ]|s=0 = 0,

[ w(s)
ζ (s,w(s),RIγ0+ w(s)) ]|s=1 + RIξ

0+ [ w(s)
ζ (s,w(s),RIγ0+ w(s)) ]|s=p = 0,

(7)

if and only if w0 is a solution of the integral equation

w(s) = ζ
(
s, w(s), RIγ

0+ w(s)
)
(

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ã(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ã(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ã(m) dm dτ dr

])

, (8)

where Ω̃1, Ω̃2, and �∗ are given in (5).

Proof First, suppose that w0 is a solution for the sequential hybrid equation (6). Then

p1
cD�

0+
(
1 + p2

cD–1
0+

)
[

w0(s)
ζ (s, w0(s), RIγ

0+ w0(s))

]

= ã(s).

By taking the �th-order Riemann–Liouville integral on this equality, we obtain

p1
(
1 + p2

cD–1
0+

)
[

w0(s)
ζ (s, w0(s), RIγ

0+ w0(s))

]

= RI�

0+ ã(s) + m̃0 + m̃1s + m̃2s2.
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Hence

p1

[
w0(s)

ζ (s, w0(s), RIγ

0+ w0(s))

]

= – p1p2

∫ s

0

[
w0(r)

ζ (r, w0(r), RIγ

0+ w0(r))

]

dr

+ RI�

0+ ã(s) + m̃0 + m̃1s + m̃2s2. (9)

The last equality yields p1[ w0(0)
ζ (s,w0(0),RIγ0+ w0(0)) ] = m̃0. On the other hand, taking the first-order

Caputo derivative of Equation (9) with respect to s, we get

p1
cD1

0+

[
w0(s)

ζ (s, w0(s), RIγ

0+ w0(s))

]

= –p1p2

[
w0(s)

ζ (s, w0(s), RIγ

0+ w0(s))

]

+ RI�–1
0+ ã(s) + m̃1 + 2m̃2s.

Now we multiply both sides of the last equality by ep2s:

p1
cD1

0+

[
w0(s)

ζ (s, w0(s), RIγ

0+ w0(s))

]

ep2s + p1p2

[
w0(s)

ζ (s, w0(s), RIγ

0+ w0(s))

]

ep2s

= ep2sRI�–1
0+ ã(s) + m̃1ep2s + 2m̃2sep2s.

By direct computations, after some simplifications, we get

w0(s)
ζ (s, w0(s), RIγ

0+ w0(s))
=

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ã(m) dm dr

+
m̃0

p1
e–p2s +

m̃1

p1p2

(
1 – e–p2s) +

2m̃2

p1p2
2

(
p2s – 1 + e–p2s). (10)

Finally, in view of three-point hybrid boundary conditions, we obtain m̃0 = 0,

m̃1 =
p2

2

Ω̃2 – p2�∗

(∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ã(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ã(m) dm dτ dr

)

,

and

m̃2 = –
p2

2(1 – p2)
2(Ω̃2 – p2�∗)

(∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ã(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ã(m) dm dτ dr

)

.
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If we insert the values m̃0, m̃1, and m̃2 into Equation (10), then

w0(s) = ζ
(
s, w0(s), RIγ

0+ w0(s)
)
(

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ã(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ã(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ã(m) dm dτ dr

])

. (11)

This shows that the function w0 satisfies the integral equation (8). For the next part, it is
easy to check that w0 is a solution for the sequential BVP (6)–(7) whenever w0 satisfies the
integral equation (8). �

Now, in the following theorem, we deal with some useful estimates.

Theorem 6 Let ã : [0, 1] → R be a continuous function such that ‖ã‖ = sups∈[0,1] |ã(s)|.
Then we have:

(A1) | ∫ p
0

(p–r)ξ–1

Γ (ξ )
∫ r

0 e–p2(r–τ ) ∫ τ

0
(τ–m)�–2

Γ (�–1) ã(m) dm dτ dr| ≤ p�+ξ–1(p2p+e–p2p–1)
p2

2Γ (�)Γ (ξ ) ‖ã‖,

(A2) | ∫ s
0 e–p2(s–r) ∫ r

0
(r–m)�–2

Γ (�–1) ã(m) dm dr| ≤ 1
p2Γ (�) (1 – e–p2 )‖ã‖,

(A3) | ∫ 1
0 e–p2(1–r) ∫ r

0
(r–m)�–2

Γ (�–1) ã(m) dm dr| ≤ 1
p2Γ (�) (1 – e–p2 )‖ã‖.

Proof (A1) First of all, an easy computation yields

∫ τ

0

(τ – m)�–2

Γ (� – 1)
dm = –

(τ – m)�–1

Γ (�)

∣
∣
∣
∣

τ

0
=

τ�–1

Γ (�)
. (12)

We further have
∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
dm dτ =

∫ r

0
e–p2(r–τ ) τ�–1

Γ (�)
dτ

≤ r�–1

Γ (�)

∫ r

0
e–p2(r–τ ) dτ

=
r�–1

Γ (�)

(

–
1
p2

e–p2(r–τ )
)∣

∣
∣
∣

r

0

= –
r�–1

p2Γ (�)
(
1 – e–p2r).

Now combining the obtained results, we get

∣
∣
∣
∣

∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ã(m) dm dτ dr

∣
∣
∣
∣

≤ ‖ã‖
∫ p

0

(p – r)ξ–1

Γ (ξ )
r�–1(1 – e–p2r)

p2Γ (�)
dr

≤ ‖ã‖ 1
p2Γ (ξ )Γ (�)

∫ p

0
pξ–1p�–1(1 – e–p2r)dr

≤ ‖ã‖ p�+ξ–1

p2Γ (ξ )Γ (�)

∫ p

0

(
1 – e–p2r)dr
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= ‖ã‖ p�+ξ–1

p2Γ (ξ )Γ (�)

(

p +
1
p2

e–p2p –
1
p2

)

=
p�+ξ–1

p2
2Γ (ξ )Γ (�)

(
p2p + e–p2p – 1

)‖ã‖.

This completes the proof of (A1).
(A2) Similarly to Equation (12), we have

∫ r
0

(r–m)�–2

Γ (�–1) dm = r�–1

Γ (�) . Hence

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
dm dr =

∫ s

0
e–p2(s–r) r�–1

Γ (�)
dr

≤ s�–1

Γ (�)

∫ s

0
e–p2(s–r) dr

≤ 1
Γ (�)

(

–
1
p2

e–p2(s–r)
)∣

∣
∣
∣

s

0
= –

1
p2Γ (�)

(
1 – e–p2s).

Thus | ∫ s
0 e–p2(s–r) ∫ r

0
(r–m)�–2

Γ (�–1) ã(m) dm dr| ≤ 1
p2Γ (�) (1 – e–p2 )‖ã‖.

(A3) The proof of this estimate is similar to that of (A2) and so is omitted. �

Definition 7 A function w ∈ ACR([0, 1]) is said to be a solution for the sequential hy-
brid inclusion BVP (1)–(2) if there is an integrable function ϑ̂ ∈ L1

R
([0, 1]) along with

ϑ̂(s) ∈ S(s, w(s)) for almost all s ∈ [0, 1] satisfying the three-point hybrid integro-derivative
boundary conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[ w(s)
ζ (s,w(s),RIγ0+ w(s)) ]|s=0 = 0,

cD1
0+ [ w(s)

ζ (s,w(s),RIγ0+ w(s)) ]|s=0 + cD2
0+ [ w(s)

ζ (s,w(s),RIγ0+ w(s)) ]|s=0 = 0,

[ w(s)
ζ (s,w(s),RIγ0+ w(s)) ]|s=1 + RIξ

0+ [ w(s)
ζ (s,w(s),RIγ0+ w(s)) ]|s=p = 0,

and

w(s) = ζ
(
s, w(s), RIγ

0+ w(s)
)
(

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂(m) dm dτ dr

])

for all s ∈ [0, 1].

Theorem 8 Suppose that ζ is a nonzero continuous real-valued map on [0, 1] × R × R

and S : [0, 1] ×R →Pcmp,cvx(R) is a set-valued map. Moreover,
(Hyp1) there is a bounded real-valued map ν : [0, 1] →R

+ such that

∣
∣ζ

(
s, w1(s), w2(s)

)
– ζ

(
s, w′

1(s), w′
2(s)

)∣
∣ ≤ ν(s)

2∑

i=1

∣
∣wi(s) – w′

i(s)
∣
∣

for all w1, w2, w′
1, w′

2 ∈R and s ∈ [0, 1],
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(Hyp2) the set-valued map S : [0, 1] ×R →Pcmp,cvx(R) is L1-Carathéodory,
(Hyp3) there is a positive mapping θ ∈L1

R+ ([0, 1]) such that

∥
∥S(s, w)

∥
∥ = sup

{|ϑ̂ | : ϑ̂ ∈ S
(
s, w(s)

)} ≤ θ (s)

for all w ∈R and almost all s ∈ [0, 1], and
(Hyp4) there is q ∈R

+ such that

q >
ζ ∗M‖θ‖L1

1 – ν∗(1 + 1
Γ (γ +1) )M‖θ‖L1

, (13)

where ‖θ‖L1 =
∫ 1

0 |θ (r)|dr, ζ ∗ = sups∈[0,1] |ζ (s, 0, 0)|, ν∗ = sups∈[0,1] |ν(s)|, and

M =
(1 – e–p2 )
p1p2Γ (�)

+
|1 – e–p2 | + |p2

2 – p2|
p1|Ω̃2 – p2�∗|

×
(

(1 – e–p2 )
p2Γ (�)

+
p�+ξ–1(p2p + e–p2p – 1)

p2
2Γ (�)Γ (ξ )

)

. (14)

If ν∗(1 + 1
Γ (γ +1) )M‖θ‖L1 < 1

2 , then the sequential hybrid inclusion BVP (1)–(2) has a solu-
tion.

Proof Let w ∈W . Consider the following family of selections of the operator S :

(SEL)S ,w =
{
ϑ̂ ∈L1([0, 1]

)
: ϑ̂(s) ∈ S

(
s, w(s)

)
for almost all s ∈ [0, 1]

}
.

Define G : W →P(W) by G(w) = {g ∈W : g(s) = ρ(s) for s ∈ [0, 1]}, where

ρ(s) = ζ
(
s, w(s), RIγ

0+ w(s)
)
(

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂(m) dm dτ dr

])

for some ϑ̂ ∈ (SEL)S ,w. It is known that an element g0 of W is a solution of the sequential
hybrid inclusion BVP (1)–(2) if and only if g0 is a fixed point of G . As we said in the light
of Lemma 5, we introduce two mappings Φ∗

1 : W → W and Φ∗
2 : W → P(W) defined by

(Φ∗
1 w)(s) = ζ (s, w(s), RIγ

0+ w(s)) and (Φ∗
2 w)(s) = {v ∈W : v(s) = b(s) for s ∈ [0, 1]}, where

b(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂(m) dm dτ dr

]
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for some ϑ̂ ∈ (SEL)S ,w. Then we can express the product equation G(w) = Φ∗
1 wΦ∗

2 w. The
main objective herein is to show that Φ∗

1 and Φ∗
2 satisfy all assumptions of Theorem 2.

We first proceed by proving that the operator Φ∗
1 is Lipschitzian on W . Let w1, w2 ∈W be

arbitrary elements. Under hypothesis (Hyp1), it follows that

∣
∣
(
Φ∗

1 w1
)
(s) –

(
Φ∗

1 w2
)
(s)

∣
∣ =

∣
∣ζ

(
s, w1(s), RIγ

0+ w1(s)
)

– ζ
(
s, w2(s), RIγ

0+ w2(s)
)∣
∣

≤ ν(s)
(

∣
∣w1(s) – w2(s)

∣
∣ +

1
Γ (γ + 1)

∣
∣w1(s) – w2(s)

∣
∣

)

= ν(s)
(

1 +
1

Γ (γ + 1)

)
∣
∣w1(s) – w2(s)

∣
∣

for all s ∈ [0, 1]. Therefore we hqve ‖Φ∗
1 w1 – Φ∗

1 w2‖W ≤ ν∗(1 + 1
Γ (γ +1) )‖w1 – w2‖W for

all w1, w2 ∈W , that is, the single-valued operator Φ∗
1 is Lipschitzian with constant ν∗(1 +

1
Γ (γ +1) ). In the subsequent step, we will check that the set-valued map Φ∗

2 is convex-valued.
Let w1, w2 ∈ Φ∗

2 w. We choose ϑ̂1, ϑ̂2 ∈ (SEL)S ,w such that

wi(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂i(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂i(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂i(m) dm dτ dr

]

for almost all s ∈ [0, 1] and i = 1, 2. Let λ ∈ (0, 1). Then we can write

λw1(s) + (1 – λ)w2(s)

=
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
[
λϑ̂1(m) + (1 – λ)ϑ̂2(m)

]
dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

×
[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
[
λϑ̂1(m) + (1 – λ)ϑ̂2(m)

]
dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
[
λϑ̂1(m) + (1 – λ)ϑ̂2(m)

]
dm dτ dr

]

for almost all s ∈ [0, 1]. Since S has convex values, (SEL)S ,w is a convex set. By this point
we find that λϑ̂1(s) + (1 – λ)ϑ̂2(s) ∈ (SEL)S ,w for any s ∈ [0, 1], and so Φ∗

2 w belongs to
Pcvx(W) for all w ∈W .

Now we prove the complete continuity of Φ∗
2 on W . We need to prove the equi-

continuity and uniform boundedness of the set Φ∗
2 (W). To this aim, we first show that

Φ∗
2 maps each bounded set to a bounded subset of W . For ε̃ ∈ R

+, consider the bounded
ball Vε̃ = {w ∈ W : ‖w‖W ≤ ε̃}. For w ∈ Vε̃ and v ∈ Φ∗

2 w, choose ϑ̂ ∈ (SEL)S ,w such
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that

v(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂(m) dm dτ dr

]

for all s ∈ [0, 1]. Then we can estimate the function v by

∣
∣v(s)

∣
∣ ≤ 1

p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dr

+
|1 – e–p2s| + |p2

2 – p2|s
p1|Ω̃2 – p2�∗|

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dτ dr

]

≤ 1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
θ (m) dm dr

+
|1 – e–p2s| + |p2

2 – p2|s
p1|Ω̃2 – p2�∗|

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
θ (m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
θ (m) dm dτ dr

]

≤
[

(1 – e–p2 )
p1p2Γ (�)

+
|1 – e–p2 | + |p2

2 – p2|
p1|Ω̃2 – p2�∗|

×
(

(1 – e–p2 )
p2Γ (�)

+
p�+ξ–1(p2p + e–p2p – 1)

p2
2Γ (�)Γ (ξ )

)]

‖θ‖L1 = M‖θ‖L1 ,

where M is given in (14). Consequently, ‖v‖ ≤ M‖θ‖L1 , which means that Φ∗
2 (W)

is uniformly bounded. Now we claim that the operator Φ∗
2 maps each bounded set

to an equicontinuous subset. Let w ∈ Vε̃ and v ∈ Φ∗
2 w. Select ϑ̂ ∈ (SEL)S ,w such

that

v(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂(m) dm dτ dr

]

for all s ∈ [0, 1]. Let s1, s2 ∈ [0, 1] be such that s1 < s2. Then we have

∣
∣v(s2) – v(s1)

∣
∣ ≤

∣
∣
∣
∣

1
p1

∫ s2

0
e–p2(s2–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

–
1
p1

∫ s1

0
e–p2(s1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

∣
∣
∣
∣
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+
(e–p2s1 – e–p2s2 ) + |p2

2 – p2|(s2 – s1)
p1|Ω̃2 – p2�∗|

×
[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dτ dr

]

.

Thus we observe that the limit of the right-hand side is zero without considering w ∈ Vε̃

as s1 → s2. Therefore by the Arzelà–Ascoli theorem we conclude that Φ∗
2 : CR([0, 1]) →

P(CR([0, 1]) is completely continuous. We further prove that Φ∗
2 has a closed graph, which

implies the upper semicontinuity of this operator. Let wn ∈ Vε̃ and vn ∈ Φ∗
2 wn be such

that wn → w∗ and vn → v∗. We show the inclusion v∗ ∈ Φ∗
2 w∗. For each index n ≥ 1 and

vn ∈ Φ∗
2 wn, we select ϑ̂n ∈ (SEL)S ,wn such that

vn(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂n(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂n(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂n(m) dm dτ dr

]

for all s ∈ [0, 1]. We need to prove the existence of a function ϑ̂∗ ∈ (SEL)S ,w∗ such
that

v∗(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂∗(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂∗(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂∗(m) dm dτ dr

]

for all s ∈ [0, 1]. To arrive at the desired conclusion, we define the continuous linear map
Ξ : L1

R
([0, 1]) →W = CR([0, 1]) as

Ξ (ϑ̂)(s) = w(s)

=
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂(m) dm dτ dr

]

for all s ∈ [0, 1]. We can directly verify that

∥
∥vn(s) – v∗(s)

∥
∥

=
∥
∥
∥
∥

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
(
ϑ̂n(m) – ϑ̂∗(m)

)
dm dr
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+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
(
ϑ̂n(m) – ϑ̂∗(m)

)
dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
(
ϑ̂n(m) – ϑ̂∗(m)

)
dm dτ dr

]∥
∥
∥
∥ → 0.

Hence by Theorem 2, Ξ ◦ (SEL)S has a closed graph. Since vn ∈ Ξ ((SEL)S ,wn ) and
wn → w∗, there is a function ϑ̂∗ ∈ (SEL)S ,w∗ such that

v∗(t) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂∗(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂∗(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂∗(m) dm dτ dr

]

for all s ∈ [0, 1]. Thus v∗ ∈ Φ∗
2 w∗, and so Φ∗

2 has a closed graph. This implies that Φ∗
2 is

upper semicontinuous. On the other hand, note that the operator Φ∗
2 has compact val-

ues. Hence Φ∗
2 is a compact and upper semicontinuous. In the next step, in addition to

hypothesis (Hyp3), by a similar argument we get

�̂ =
∥
∥Φ∗

2 (W)
∥
∥

= sup
s∈[0,1]

{∣
∣Φ∗

2 w
∣
∣ : w ∈W

}

≤
[

(1 – e–p2 )
p1p2Γ (�)

+
|1 – e–p2 | + |p2

2 – p2|
p1|Ω̃2 – p2�∗|

×
(

(1 – e–p2 )
p2Γ (�)

+
p�+ξ–1(p2p + e–p2p – 1)

p2
2Γ (�)Γ (ξ )

)]

‖θ‖L1

= M‖θ‖L1 ,

and so �̂ ≤ M‖θ‖L1 . Hence ν∗(1 + 1
Γ (γ +1) )�̂ ≤ ν∗(1 + 1

Γ (γ +1) )M‖θ‖L1 < 1
2 . Set l∗ =

ν∗(1 + 1
Γ (γ +1) ). It is clear that l∗�̂ < 1

2 . We see that all three assumptions of Theo-
rem 2 are satisfied for the operators Φ∗

1 and Φ∗
2 . Now we only need to show that one

of conditions (a) or (b) is valid. We claim that the invalid condition is (b). To ob-
serve this, by Theorem 2 and hypothesis (Hyp4) we may assume that w is an arbi-
trary element belonging to O∗ with ‖w‖ = q. Obviously, α0w(s) ∈ Φ∗

1 w(s)Φ∗
2 w(s) for any

α0 > 1. We select the corresponding function ϑ̂ ∈ (SEL)S ,w. Then for each α0 > 1, we
have

w(s) =
1
α0

ζ
(
s, w0(s), RIγ

0+ w0(s)
)
(

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂∗(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂∗(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂∗(m) dm dτ dr

])
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for all s ∈ [0, 1]. Thus we can write

∣
∣w(s)

∣
∣ =

1
α0

∣
∣ζ

(
s, w(s), RIγ

0+ w(s)
)∣
∣

×
(

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dr

+
|1 – e–p2s| + |p2

2 – p2|s
p1|Ω̃2 – p2�∗|

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dτ dr

])

=
[∣
∣ζ

(
s, w(s), RIγ

0+ w(s)
)

– ζ (s, 0, 0)
∣
∣ +

∣
∣ζ (0, 0, 0)

∣
∣
]

×
(

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dr

+
|1 – e–p2s| + |p2

2 – p2|s
p1|Ω̃2 – p2�∗|

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
∣
∣ϑ̂(m)

∣
∣dm dτ dr

])

≤
[

ν∗
(

1 +
1

Γ (γ + 1)

)

‖w‖ + ζ ∗
]

×
(

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
θ (m) dm dr

+
|1 – e–p2 | + |p2

2 – p2|
p1|Ω̃2 – p2�∗|

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
θ (m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
θ (m) dm dτ dr

])

≤
[

ν∗
(

1 +
1

Γ (γ + 1)

)

‖w‖ + ζ ∗
]

M‖θ‖L1

for all s ∈ [0, 1]. Hence q ≤ ζ∗M‖θ‖L1
1–ν∗(1+ 1

Γ (γ +1) )M‖θ‖L1
. According to (13), the impossibility of con-

dition (b) of Theorem 2 follows. Consequently, we have w ∈ Φ∗
1 wΦ∗

2 w. Hence the existence
of a fixed point for the operator G is proved, and thus the sequential hybrid inclusion BVP
(1)–(2) has a solution. This completes the proof. �

In this position, we continue our process to reach the existence results for the sequential
nonhybrid inclusion BVP (3)–(4) by using two new theoretical theorems.

Definition 9 A function w ∈ ACR([0, 1]) is a solution of the sequential inclusion BVP
(3)–(4) if there is an integrable function ϑ̂ ∈ L1

R
([0, 1]) with ϑ̂ ∈ S(s, w(s)) for almost all

s ∈ [0, 1] satisfying the three-point integro-derivative boundary conditions

w(0) = 0, w′(0) + w′′(0) = 0,

w(1) + RIξ

0+ w(p) = 0,
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and

w(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂(m) dm dτ dr

]

for any s ∈ [0, 1].

Now, for each w ∈W , we introduce the following family of selections of S :

(SEL)S ,w =
{
ϑ̂ ∈ L1([0, 1]

)
: ϑ̂(s) ∈ S

(
s, w(s)

)
) for almost all s ∈ [0, 1]

}
.

Define the operator K : W →P(W) by

K(w) =
{

z ∈W : there is ϑ̂ ∈ (SEL)S ,w such that z(s) = h(s) for any s ∈ [0, 1]
}

, (15)

where

h(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂(m) dm dτ dr

]

.

Theorem 10 Let S : [0, 1] ×W →Pcmp(W) be a compact set-valued map. Assume that:
(Hyp5) The bounded operator S is integrable, and S(·, w) : [0, 1] →Pcmp(W) is

measurable for all w ∈W ;
(Hyp6) There are ψ ∈ Ψ and σ ∈ CR≥0 ([0, 1]) such that

PHdW
(
S(s, w),S

(
s, w′)) ≤ σ (s)ψ

(∣
∣w – w′∣∣) 1

M‖σ‖ (16)

for all s ∈ [0, 1] and w, w′ ∈W , where sups∈[0,1] |σ (s)| = ‖σ‖, and the constant M
is given by (14);

(Hyp7) There is a function ζ̃ : R×R→R such that ζ̃ (w, w′) ≥ 0 for all w, w′ ∈W ;
(Hyp8) If the sequence {wn}n≥1 in W converges to w and ζ̃ (wn(s), wn+1(s)) ≥ 0 for all

s ∈ [0, 1] and n ≥ 1, then there is a subsequence {wnl }l≥1 of {wn} such that
ζ̃ (wnl (s), w(s)) ≥ 0 for all s ∈ [0, 1] and l ≥ 1;

(Hyp9) There are two elements w0 ∈W and z ∈K(w0) such that ζ̃ (w0(s), z(s)) ≥ 0 for
all s ∈ [0, 1], where K : W →P(W) is the operator defined by (15);

(Hyp10) For all w ∈W and z ∈K(w) with ζ̃ (w(s), z(s)) ≥ 0, there is h ∈K(w) such that
ζ̃ (z(s), h(s)) ≥ 0 for all s ∈ [0, 1].

Then the three-point sequential inclusion BVP (3)–(4) has a solution.
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Proof In a similar manner, each fixed point of the operatorK : W →P(W) given by (15) is
a solution of the sequential inclusion BVP (3)–(4). Due to assumption (Hyp5), the measur-
ability of the set-valued map s �→ S(s, w(s)) is clear, and so it is closed-valued for all w ∈W .
Hence S has a measurable selection, and (SEL)S ,w �= ∅. Now we want to prove that K(w)
is a closed subset of W for all w ∈W . To this end, we consider a sequence {wn}n≥1 of K(w)
such that wn → w. For each n, choose ϑ̂n ∈ (SEL)S ,w such that

wn(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂n(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂n(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂n(m) dm dτ dr

]

for almost all s ∈ [0, 1]. Because of the compactness of the set-valued map S , we may pass
to a convergent subsequence {ϑ̂n}n≥1 (if necessary), which tends to some ϑ̂ ∈ L1([0, 1]).
Therefore we have ϑ̂ ∈ (SEL)S ,w, and so

lim
n→∞ wn(s) =

1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂(m) dm dτ dr

]

= w(s)

for all s ∈ [0, 1]. Hence w ∈ K(w), and so K has closed values. By the assumptions of the
theorem we know thatS is a compact set-valued map. Thus we can easily check that the set
K(w) is bounded for all w ∈W . In this position, we are going to prove that the operatorK is
an α-ψ-contraction. To see this, define the nonnegative function α : W ×W → [0,∞) by
α(w, w′) = 1 if ζ̃ (w(s), w′(s)) ≥ 0 and α(w, w′) = 0 otherwise. Let w, w′ ∈ W and z1 ∈ K(w′).
Choose ϑ̂1 ∈ (SEL)S ,w′ such that

z1(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂1(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂1(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂1(m) dm dτ dr

]

for all s ∈ [0, 1]. Under condition (16), we get

PHdW
(
S

(
s, w(s)

)
,S

(
s, w′(s)

)) ≤ σ (s)ψ
(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖σ‖

for all w, w′ ∈ W such that ζ̃ (w(s), w′(s)) ≥ 0 for s ∈ [0, 1]. Therefore there is h ∈ S(s, w(s))
such that |ϑ̂1(s) – h| ≤ σ (s)ψ(|w(s) – w′(s)|) 1

M‖σ‖ . We further introduce the new set-valued
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map B∗ : [0, 1] →P(W) defined by

B∗(s) =
{

h ∈W :
∣
∣ϑ̂1(s) – h

∣
∣ ≤ σ (s)ψ

(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖σ‖
}

for s ∈ [0, 1]. Since ϑ̂1 and � = σψ(|w – w′|) 1
M‖σ‖ are measurable, the intersection of two

set-valued maps B∗(·) ∩S(·, w(·)) is measurable. In this direction, we choose ϑ̂2 belonging
to S(s, w(s)) such that |ϑ̂1(s) – ϑ̂2(s)| ≤ σ (s)ψ(|w(s) – w′(s)|) 1

M‖σ‖ for all s ∈ [0, 1]. Define the
element z2 ∈K(w) by

z2(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂2(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂2(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂2(m) dm dτ dr

]

for s ∈ [0, 1]. Then we can compute the following estimate:

∣
∣z1(s) – z2(s)

∣
∣

≤ 1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
∣
∣ϑ̂1(m) – ϑ̂2(m)

∣
∣dm dr

+
|1 – e–p2s| + |p2

2 – p2|s
p1|Ω̃2 – p2�∗|

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
∣
∣ϑ̂1(m) – ϑ̂2(m)

∣
∣dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
∣
∣ϑ̂1(m) – ϑ̂2(m)

∣
∣dm dτ dr

]

≤
[

(1 – e–p2 )
p1p2Γ (�)

+
|1 – e–p2 | + |p2

2 – p2|
p1|Ω̃2 – p2�∗|

(
(1 – e–p2 )
p2Γ (�)

+
p�+ξ–1(p2p + e–p2p – 1)

p2
2Γ (�)Γ (ξ )

)]

× ‖σ‖ψ(∥
∥w – w′∥∥) 1

M‖σ‖ = M‖σ‖ψ(∥
∥w – w′∥∥) 1

M‖σ‖ = ψ
(∥
∥w – w′∥∥)

for s ∈ [0, 1]. Hence ‖z1 – z2‖ = sups∈[0,1] |z1(s) – z2(s)| ≤ ψ(‖w – w′‖), and so

α
(
w, w′)PHdW

(
K(w),K

(
w′)) ≤ ψ

(∥
∥w – w′∥∥)

for all w, w′ ∈ W . This shows that the set-valued map K is an α-ψ-contraction. Consider
two elements w ∈ W and w′ ∈ K(w) with α(w, w′) ≥ 1. Then ζ̃ (w(s), w′(s)) ≥ 0, and so
there is a function h ∈K(w′) such that ζ̃ (w′(s), h(s)) ≥ 0. Consequently, α(w′, h) ≥ 1, which
means that K is α-admissible. Now assume that w0 ∈ W and w′ ∈ K(w0) are such that
ζ̃ (w0(s), w′(s)) ≥ 0 for all s. Then α(w0, w′) ≥ 1. Consider the sequence {wn}n≥1 of W with
wn → w and α(wn, wn+1) ≥ 1 for each n. Then we have ζ̃ (wn(s), wn+1(s)) ≥ 0. By assumption
(Hyp8) there is a subsequence {wnl }l≥1 of {wn} such that ζ̃ (wnl (s), w(s)) ≥ 0 for all s ∈ [0, 1].
Thus α(wnl , w) ≥ 1 for all l ≥ 1, and so W has property (Cα). Now by Theorem 3 the set-
valued map K has a fixed point, which is as a solution of the sequential inclusion BVP
(3)–(4). �
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Now we prove another existence result under a new condition due to Amini-Harandi
[46]. In this direction, we utilize the approximate endpoint property for K given by (15).

Theorem 11 Let S : [0, 1] ×W →Pcmp(W) be a compact set-valued map. Assume that:
(Hyp11) The nondecreasing nonnegative function ψ : [0,∞) → [0,∞) has the upper

semicontinuity property such that lim infs→∞(s – ψ(s)) > 0 and ψ(s) < s for all
s > 0;

(Hyp12) The compact bounded operator S : [0, 1] ×W →Pcmp(W) is integrable, and
for each w ∈W , S(·, w) : [0, 1] →Pcp(W) is measurable;

(Hyp13) There is a nonnegative function δ ∈ CR≥0 ([0, 1]) such that

PHdW
(
S(s, w) – S

(
s, w′)) ≤ δ(s)ψ

(∣
∣w – w′∣∣) 1

M‖δ‖ (17)

for all s ∈ [0, 1] and w, w′ ∈W , where sups∈[0,1] |δ(s)| = ‖δ‖, and M is defined by
(14);

(Hyp14) The operator K defined by (15) has the approximate endpoint property.
Then the sequential inclusion BVP (3)–(4) has a solution.

Proof First, we prove the existence of an endpoint for the set-valued map K : W →P(W).
In this way, we must show that the set K(w) is closed for all w ∈ W . Since the map s �→
S(s, w(s)) is measurable and closed for all w ∈ W , S has a measurable selection, and so
(SEL)S ,w �= ∅ for all w ∈ W . By using a proof similar to that of Theorem 10, we easily to
check that K(w) is a closed subset of W . Also, we know that the set K(w) is bounded for all
w ∈W due to the compactness ofS . Now we prove that PHdW (K(w),K(w′)) ≤ ψ(‖w–w′‖)
for every two elements of W . To see this, assume that w, w′ ∈ W and z1 ∈ K(w′). Choose
ϑ̂1 ∈ (SEL)S ,w′ such that

z1(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂1(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂1(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂1(m) dm dτ dr

]

for almost all s ∈ [0, 1]. By considering inequality (17) in hypothesis (Hyp13) we get
PHdW (S(s, w(s)),S(s, w′(s))) ≤ δ(s)ψ(|w(s) – w′(s)|) 1

M‖δ‖ for all s ∈ [0, 1]. Thus there is
h∗ ∈ S(s, w(s)) such that |ϑ̂1(s) – h∗| ≤ δ(s)ψ(|w(s) – w′(s)|) 1

M‖δ‖ for all s ∈ [0, 1]. Now define
the set-valued map Q : [0, 1] →P(W) by

Q(s) =
{

h∗ ∈W :
∣
∣ϑ̂1(s) – h∗∣∣ ≤ δ(s)ψ

(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖δ‖
}

.

We know that ϑ̂1 and � = δψ(|w – w′|) 1
M‖δ‖ are measurable. Hence we can easily deduce

that the intersection set-valued map Q(·) ∩ S(·, w(·)) is measurable. Now choose ϑ̂2(s) ∈
S(s, w(s)) such that |ϑ̂1(s) – ϑ̂2(s)| ≤ δ(s)ψ(|w(s) – w′(s)|) 1

M‖δ‖ for all s ∈ [0, 1]. Choose z2 ∈
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K(w) such that

z2(s) =
1
p1

∫ s

0
e–p2(s–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂2(m) dm dr

+
1 – e–p2s + (p2

2 – p2)s
p1(Ω̃2 – p2�∗)

[∫ 1

0
e–p2(1–r)

∫ r

0

(r – m)�–2

Γ (� – 1)
ϑ̂2(m) dm dr

+
∫ p

0

(p – r)ξ–1

Γ (ξ )

∫ r

0
e–p2(r–τ )

∫ τ

0

(τ – m)�–2

Γ (� – 1)
ϑ̂2(m) dm dτ dr

]

for all s ∈ [0, 1]. By repeating a process similar to that in the proof of Theorem 10 we
conclude that

‖z1 – z2‖ = sup
s∈[0,1]

∣
∣z1(s) – z2(s)

∣
∣ ≤ M‖δ‖ψ(∥

∥w – w′∥∥) 1
M‖δ‖ = ψ

(∥
∥w – w′∥∥)

,

and so PHdW (K(w),K(w′)) ≤ ψ(‖w – w′‖) for all w, w′ ∈ W . Furthermore, hypothesis
(Hyp14) states that K has approximate endpoint property. Now by Theorem 4 the op-
erator K has a unique endpoint, that is, there is w∗ ∈W such that K(w∗) = {w∗}. Hence w∗

is as a solution of the three-point sequential inclusion BVP (3)–(4). �

Now we provide two examples to illustrate our main results.

Example 1 Consider the fractional sequential hybrid differential inclusion

0.08
(cD2.53

0+ + 0.12cD1.53
0+

)
(

w(s)
0.0007 + s

1000 (arcsin w(s) + sin(RI0.04
0+ w(s)))

)

∈
[

0,
(

s +
1
4

)

sin w(s) +
1
2

]

(18)

with three-point hybrid integro-derivative boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( w(s)
0.0007+ s

1000 (arcsin w(s)+sin(RI0.04
0+ w(s)))

)|s=0 = 0,
cD1

0+ ( w(s)
0.0007+ s

1000 (arcsin w(s)+sin(RI0.04
0+ w(s)))

)|s=0

+ cD2
0+ ( w(s)

0.0007+ s
1000 (arcsin w(s)+sin(RI0.04

0+ w(s)))
)|s=0 = 0,

( w(s)
0.0007+ s

1000 (arcsin w(s)+sin(RI0.04
0+ w(s)))

)|s=1

+ RI0.23
0+ ( w(s)

0.0007+ s
1000 (arcsin w(s)+sin(RI0.04

0+ w(s)))
)|s=0.5 = 0,

(19)

where s ∈ [0, 1], � = 2.53, p1 = 0.08, p2 = 0.12, p = 0.5, γ = 0.04, and ξ = 0.23. Hence we
obtain Ω̃1 � 0.1576, Ω̃2 � 0.008, and �∗ � 0.1656. Now we define the nonzero contin-
uous map ζ : [0, 1] × R × R → R \ {0} by ζ (s, w1(s), w2(s)) = 0.0007 + s

1000 (arcsin w1(s) +
sin(RI0.04

0+ w2(s))) with ζ ∗ = sups∈[0,1] |ζ (s, 0, 0)| = 0.0007. Let w, w′ ∈ R. Then we have

∣
∣ζ

(
s, w(s), RIγ

0+ w(s)
)

– ζ
(
s, w′(s), RIγ

0+ w′(s)
)∣
∣ ≤ ν(s)

[

1 +
sγ

Γ (γ + 1)

]
∣
∣w(s) – w′(s)

∣
∣

=
s

1000

[

1 +
s0.04

Γ (1.04)

]
∣
∣w(s) – w′(s)

∣
∣,
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where ν(s) = s
1000 and ν∗ = sups∈[0,1] |ν(s)| = 1

1000 . Note that the Lipschitz constant of the
function ζ is ν∗[1 + 1

Γ (γ +1) ] = 1
1000 [1 + 1

Γ (1.04) ] � 0.002022 > 0. Consider the set-valued map
S : [0, 1] ×R →P(R) defined by S(s, w(s)) = [0, (s + 1

4 ) sin w(s) + 1
2 ]. Since

|v| ≤ max

[

0,
(

s +
1
4

)

sin w(s) +
1
2

]

≤ s + 0.75

for each v ∈ S(s, w(s)), ‖S(s, w(s))‖ = sup{|ϑ̂ | : ϑ̂ ∈ S(s, w(s))} ≤ s + 0.75. Now put θ (s) =
s + 0.75 for s ∈ [0, 1]. Then ‖θ‖L1 =

∫ 1
0 |θ (r)|dr =

∫ 1
0 (r + 0.75) dr = 1.25 and M � 171.7012.

Choose q > 0.2654259. Then

ν∗
[

1 +
1

Γ (γ + 1)

]

M‖q‖L1 � (0.002022)(171.7012)(1.25) � 0.433974 <
1
2

.

By Theorem 8 the sequential hybrid inclusion BVP (18)–(19) has a solution.

Example 2 Consider the sequential fractional hybrid differential inclusion

0.08
(cD2.53

0+ + 0.12cD1.53
0+

)
w(s) ∈

[

0,
5es

7
| arctan w(s)|

1 + | arctan w(s)|
]

(20)

with three-point integro-derivative boundary conditions

w(0) = 0, w′(0) + w′′(0) = 0, w(1) + RI0.23
0+ w(0.5) = 0 (21)

for s ∈ [0, 1], where cDj
0+ is the Caputo derivative of order j ∈ {2.53, 1.53}, and RI0.23

0+ is
the Riemann–Liouville integral. Put � = 2.53, p1 = 0.08, p2 = 0.12, p = 0.5, and ξ = 0.23.
Then Ω̃1 � 0.1576, Ω̃2 � 0.008, �∗ � 0.1656, and M � 171.7012. Define the set-valued
map S : [0, 1] × W → P(W) by S(s, w(s)) = [0, 5es

7
| arctan w(s)|

1+| arctan w(s)| ] for s ∈ [0, 1]. Consider the
function δ ∈ CR≥0 ([0, 1]) defined by δ(s) = 5es

7 for all s with ‖δ‖ = 5e
7 � 1.93571. Define the

nondecreasing nonnegative function ψ : [0,∞) → [0,∞) by ψ(s) = s
2 for all s > 0. Note

that ψ is upper semicontinuous, lim infs→∞(s – ψ(s)) > 0, and ψ(s) < s for all s > 0. For
every w, w′ ∈W , we have

PHdW
(
S

(
s, w(s)

)
,S

(
s, w′(s)

)) ≤ 5es

7
1
2
(∣
∣w – w′∣∣)

=
5es

7
ψ

(∣
∣w – w′∣∣) ≤ δ(s)ψ

(∣
∣w – w′∣∣) 1

M‖δ‖ ,

where 1
M‖δ‖ � 0.003008. Consider the operator K : W →P(W) defined by

K(w) =
{

z ∈W : there is ϑ̂ ∈ (SEL)S ,w such that z(s) = h(s) for any s ∈ [0, 1]
}

,

where

h(s) =
1

0.08

∫ s

0
e–0.12(s–r)

∫ r

0

(r – m)2.53–2

Γ (2.53 – 1)
ϑ̂(m) dm dr

+
1 – e–0.12s + ((0.12)2 – 0.12)s
0.08(0.008 – (0.12)(0.1656))
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×
[∫ 1

0
e–0.12(1–r)

∫ r

0

(r – m)2.53–2

Γ (2.53 – 1)
ϑ̂(m) dm dr

+
∫ 0.5

0

(0.5 – r)0.23–1

Γ (0.23)

∫ r

0
e–0.12(r–τ )

∫ τ

0

(τ – m)2.53–2

Γ (2.53 – 1)
ϑ̂(m) dm dτ dr

]

.

Now by Theorem 11 the sequential fractional inclusion (20) has a solution.

4 Conclusions
Nowadays we need to study more natural phenomena to obtain more abilities for model-
ing. The fractional operators were developed over the years, and today their importance
has become more and more apparent to researchers. In this way, it is necessary to design
different and complicated modelings by utilizing the fractional differential problems. In
this work, we review sequential fractional hybrid differential inclusions with three-point
integro-derivative boundary value conditions. We employ some analytical tools to study
the existence results corresponding to problems (1)–(2) and (3)–(4). We use some notions
such as approximate endpoint, (Cα), and the compactness property in this regard. Finally,
we provide two examples to illustrate our main results.
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