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Abstract
In this paper, we aim to investigate the spectrum of the nonselfadjoint operator L
generated in the Hilbert space l2(N,C2) by the discrete Dirac system

{
y(2)n+1 – y

(2)
n + pny(1)n = λy(1)n ,

–y(1)n + y(1)n–1 + qny(2)n = λy(2)n ,
n ∈ N,

and the general boundary condition

∞∑
n=0

hnyn = 0,

where λ is a spectral parameter, � is the forward difference operator, (hn) is a
complex vector sequence such that hn = (h(1)n ,h(2)n ), where h(i)n ∈ l1(N)∩ l2(N), i = 1, 2,
and h(1)0 �= 0. Upon determining the sets of eigenvalues and spectral singularities of L,
we prove that, under certain conditions, L has a finite number of eigenvalues and
spectral singularities with finite multiplicity.
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1 Introduction
Along with the invention of the Schrödinger equation, the physical scope of mathematical
problems connected with the spectra of differential equations with prescribed boundary
conditions was enormously enlarged. The types of equations that previously had appli-
cations only to mechanical vibrations now were to be used for the description of atoms
and molecules. There are important and altogether astonishing applications of the results
obtained in the spectral theory of linear operators in Hilbert spaces to scattering theory,
inverse problems, and quantum mechanics. For instance, the Hamiltonian of a quantum
particle confined to a box involves a choice of boundary conditions at the box ends. Since
different choices of boundary conditions imply different physical models, spectral theory
of operators with boundary conditions constitues a progressing field of investigation [1, 2].
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Let T denote a matrix operator

T =

(
p11(x) p12(x)
p21(x) p22(x)

)
, p12(x) = p21(x),

where pik(x) (i, k = 1, 2) are real continuous functions on the interval [0,π ]. Let also y(x)
denote a two-component vector function

y(x) =

(
y1(x)
y2(x)

)
.

If

B =

(
0 1

–1 0

)
, I =

(
1 0
0 1

)
,

and λ is a parameter, then the equation

(
B

d
dx

+ T – λI
)

y = 0

is equivalent to a system of two simultaneous first-order ordinary differential equations

dy2

dx
+ p11(x)y1 + p12(x)y2 = λy1,

–
dy1

dx
+ p21(x)y1 + p22(x)y2 = λy2.

(1.1)

In the case of p12(x) = p21(x) = 0, p11(x) = V (x) + m, and p22(x) = V (x) – m, where V (x)
is a potential function, and m is the mass of a particle, system (1.1) is called a stationary
one-dimensional Dirac system in relativistic quantum theory. Levitan and Sargsjan [1]
have introduced some basic concepts regarding the general spectral theory of self-adjoint
Sturm–Liouville and Dirac operators and presented a discrete analogue of system (1.1)
using the method of finite differences. If the functions pik(x) (i, k = 1, 2) are complex val-
ued, then the operator T is called nonselfadjoint. Also, if the operator T is defined on an
infinite interval, then it is said to be singular. The structure of the spectrum of the oper-
ator T differs drastically in the nonselfadjoint singular case. The basic spectral theory of
nonselfadjoint singular second-order operators consisting of Sturm–Liouville theory was
begun by Naimark, whose works initiated a deep study of spectral theory of nonselfadjoint
operators [3, 4]. He proved that the spectrum of a nonselfadjoint Sturm–Liouville oper-
ator consists of the continuous spectrum, the eigenvalues, and the spectral singularities.
He also showed that these eigenvalues and spectral singularities are of finite number with
finite multiplicities under certain conditions.

Later developments in this area concerned spectral analysis of the boundary value prob-
lems of the differential and discrete operators including Sturm–Liouville, Klein–Gordon,
quadratic pencils of Schrödinger and Dirac-type operators within the context of determi-
nation of Jost solution and providing suffcient conditions guaranteeing the finiteness of
the eigenvalues and spectral singularities [5–19].
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In particular, boundary value problems including the integral boundary condition were
first considered by Krall [20, 21]. He extended the work of Naimark [3] by applying a suit-
able integral boundary condition and generated the ordinary and nonhomogeneous ex-
pansion of a Sturm–Liouville operator.

Note that investigation of discrete analogues of ordinary differential operators is an im-
portant research area since difference equtions are well suited to find solutions with the
aid of computers and can model many contemporary problems arising in control theory,
biology, and engineering [7–11].

Let us denote by l2(N,C2) the Hilbert space of all complex vector sequences y =
( y(1)

n

y(2)
n

)
n∈N

with the inner product

〈y, u〉 =
∑
n∈N

(
y(1)

n u(1)
n + y(2)

n u(2)
n

)
.

Consider the nonselfadjoint singular operator L0 generated in the Hilbert space l2(N,C2)
by the discrete Dirac system

⎧⎨
⎩y(2)

n+1 – y(2)
n + pny(1)

n = λy(1)
n ,

–y(1)
n + y(1)

n–1 + qny(2)
n = λy(2)

n ,
n ∈N, (1.2)

and the boundary condition

y(1)
0 = 0, (1.3)

where λ is a spectral parameter, � is the forward difference operator, and pn, qn ∈C. In [9]
the integral representation for the Weyl function of L0 and spectral expansion of the oper-
ator L0 in terms of principal functions have been investigated in detail. Some generaliza-
tion problems of the nonselfadjoint discrete Dirac operator have been subject to extensive
studies in the literature. For instance, in [13] the general form of the operator L0 has been
considered for n ∈ Z. Also, some authors investigated the problem with eigenparameter-
dependent boundary conditions [10, 14, 15].

In this paper, we consider the operator L generated in the Hilbert space l2(N,C2) by the
nonselfadjoint discrete Dirac equation (1.2) and boundary condition

∞∑
n=0

hnyn = 0, (1.4)

where (hn) is complex vector sequence such that hn = (h(1)
n , h(2)

n ), h(i)
n ∈ l1(N)∩ l2(N), i = 1, 2,

h(1)
0 �= 0. Clearly, L0 is a particular case of L for hn = (0, 0), n ∈N = {1, 2, . . .}. Differently from

other studies, rather than considering an eigenparameter dependent boundary condition,
we generalize the boundary condition (1.3) by using the orthogonality properties of (yn)
with respect to vectors (hn). Therefore the conditions required for the finiteness of the
eigenvalues and spectral singularities of the operator L differ from the studies mentioned.
Thus this paper presents the results in a more general and different approach.

The main objective of this paper is investigating the quantitative properties of the spec-
trum of the operator L. We apply and adopt the Naimark and Pavlov conditions on the
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potential and examine the eigenvalues and spectral singularities of the operator L using
the boundary uniqueness theorems of analytic functions.

Although the tools we use in this paper are basicly functional analysis techniques, the
paper may lay the groundwork for future studies concerning the topics in direct and in-
verse problems, scattering theory, and applied physics.

The paper contains three sections. The first two are introductory, surveying all necessary
results of the BVP (1.2)–(1.4). The last section focuses on the quantitative properties of
the spectrum of the operator L.

2 Jost solution of the operator L
We will assume that

∞∑
n=1

n
(|pn| + |qn|

)
< ∞. (2.1)

It is known from [9] that equation (1.2) has the solution

f (1)
0 (z) = ei z

2

[
1 +

∞∑
m=1

K11
0meimz

]
– i

∞∑
m=1

K12
0meimz,

f (2)
0 (z) = 0,

and

fn(z) =

(
f (1)
n (z)

f (2)
n (z)

)
n∈N

=

{[
E2 +

∞∑
m=1

Knmeimz

](
ei z

2

–i

)
einz

}
, n = 1, 2, 3, . . . , (2.2)

for λ = 2 sin z
2 , E2 =

( 1 0
0 1

)
, Knm =

( K11
nm K12

nm
K21

nm K22
nm

)
, z ∈ C+. Note that the expressions Kij

nm, i, j = 1, 2,
can be written uniquely in terms of {pn}n∈N and {qn}n∈N. Moreover, the inequality

∣∣Kij
nm

∣∣ ≤ C
∞∑

k=n+[| m
2 |]

(|pk| + |qk|
)

(2.3)

is satisfied for i, j = 1, 2, where [|m
2 |] is the integer part of m

2 , and C > 0 is a constant. Hence
fn(z) is analytic in C+ := {z ∈ C : Im z > 0} and continuous in C+ := {z ∈ C : Im z ≥ 0}. The
function fn(z) is called the Jost solution of equation (1.2). Also, the following asymptotics
hold [9]:

(
f (1)
n (z)

f (2)
n (z)

)
n∈N

=
[
E2 + o(1)

](
ei z

2

–i

)
einz, z ∈C+, n → ∞,

(
f (1)
n (z)

f (2)
n (z)

)
n∈N

=
[
E2 + o(1)

](
ei z

2

–i

)
einz, n ∈ N, z ∈C+, Im z → ∞.

Let ϕn(z) be a solution of (1.2) subject to the initial conditions

ϕ
(1)
0 (z) = 0, ϕ

(2)
1 (z) = 1,
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where

ϕn(z) = ϕ̃n(λ) =
{
ϕ̃n

(
2 sin

z
2

)}
, z ∈C+, n ∈ N∪ {0}.

Then ϕ is an entire function, and

ϕ(z) = ϕ(z + 4π ).

The Wronskian of two solutions

yn =

(
cy(1)

n

y(2)
n

)
n∈N

, un =

(
cu(1)

n

u(2)
n

)
n∈N

of (1.2) is defined by

W [y, u] = y(1)
n u(2)

n+1 – y(2)
n+1u(1)

n .

Using the usual definition of Wronskian, we have

W
[
fn(z),ϕn(z)

]
= f (1)

0 (z), z ∈C+.

Let us define the semistrips P0 := {z : z ∈C, = x + iy, 0 ≤ x < 4π , y > 0} and P = P0 ∪ [0, 4π ).
Let us define

N(z) :=
∞∑

n=0

hnfn(z), (2.4)

and also the functions,

Ñ(z) :=
∞∑

n=0

hnϕn(z),

ϕ̂n(z) :=
(
ϕ(1)

n (z),ϕ(2)
n+1(z)

)
,

f̂n(z) :=
(
f (1)
n (z), f (2)

n+1(z)
)
,

Ω̂n(z) :=

(
Ω

(1)
n (z)

Ω
(2)
n+1(z)

)
,

Sk(z) :=
–1

W [f ,ϕ]

{
N(z)ϕ̂k(z) + N̂(z)̂fk(z) – ϕ̂k(z)

∞∑
n=k+1

hnfn(z) – f̂k(z)
∞∑

n=k+1

hnϕn(z)

}
.

For all z ∈ P and f (1)
0 (z) �= 0, the Green’s function of the operator L is obtained by standard

techniques as

Gnk(z) = G(1)
nk (z) + G(2)

nk (z),

where

G(1)
nk (z) =

Sk(z)fn(z)
N(z)

, (2.5)
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and

G(2)
nk (z) =

⎧⎨
⎩

0, k < n,
f̂k (z)ϕn(z)+ϕ̂k (z)fn(z)

f (1)
0 (z)

, k ≥ n.
(2.6)

Obviously, for Ω = Ωn =
( Ω

(1)
n

Ω
(2)
n

) ∈ l2(N,C2),

Rλ(L)Ωn :=
∞∑

k=0

Gnk(z)Ω̂k , n ∈N∪ {0}, (2.7)

is the resolvent of the operator L.
It is also clear that N(z) is the Jost function of the operator L defined by using the Jost

solution and boundary condition (1.4). The determination of Jost solutions plays an im-
portant role in spectral theory of discrete and differential operators. We refer the reader
to books [1–4] for further details, which explain how this single function contains all the
information about the spectrum of operators.

3 Eigenvalues and spectral singularities of L
Let us denote the set of eigenvalues and spectral singularities of the operator L by σd and
σss, respectively. From (2.5)–(2.7) and the definition of the eigenvalues and spectral singu-
larities we have

σd =
{
λ : λ = 2 sin

z
2

, z ∈ P0, N(z) = 0
}

, (3.1)

σss =
{
λ : λ = 2 sin

z
2

, z ∈ [0, 4π ), N(z) = 0
}

. (3.2)

Let us define the sets

M1 :=
{

z : z ∈ P0, N(z) = 0
}

,

M2 :=
{

z : z ∈ [0, 4π ), N(z) = 0
}

.

We also denote the set of all limit points of M1 and M2 by M3 and M4, respectively, and
the set of all zeros in P of N(z) with infinite multiplicity by M5. It then also follows that

M1 ∩ M5 = ∅, M3 ⊂ M2, M4 ⊂ M2, M5 ⊂ M2,

and the linear Lebesgue measures of M2, M3, M4, and M5 are zero. From the continuity of
all derivatives of N(z) on the real axis we have

M3 ⊂ M5 and M4 ⊂ M5. (3.3)

It is convenient to rewrite the sets of eigenvalues and spectral singularities of L as

σd =
{
λ : λ = 2 sin

z
2

, z ∈ M1

}
,

σss =
{
λ : λ = 2 sin

z
2

, z ∈ M2

}
.
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Theorem 3.1 Under conditions (2.1) and h(i)
n ∈ l1(N) ∩ l2(N), i = 1, 2, we have:

(i) The set of eigenvalues of L is bounded and countable, and its limit points lie in [–2, 2].
(ii) σss ⊂ [–2, 2], σss = σss, and μ(σss) = 0, where μ stands for the linear Lebesgue

measure.

Proof From (2.3) and (2.4) we have the analyticity of N(z) in the upper half-plane and the
continuity of N(z) on the real axis. For β(z) := e–i z

2 N(z), we have the asymptotics

β(z) = h(1)
0 + o(1), Im z > 0, Im z → ∞. (3.4)

Note that β(z) and N(z) have the same zeros except at infinity. Using (3.1), (3.2), and (3.4)
and boundary uniqueness theorems of analytic functions [22], we arrive at (i) and (ii). �

Definition 3.1 The multiplicity of a zero of N(z) in the region P is introduced as the
multiplicity of the corresponding eigenvalue or spectral singularity of the operator L.

Now let us consider the condition

∞∑
n=1

eεn(|pn| + |qn| +
∣∣h(i)

n
∣∣) < ∞, ε > 0, i = 1, 2. (3.5)

Theorem 3.2 Under condition (3.5), the operator L has a finite number of eigenvalues and
spectral singularities, and each of them is of finite multiplicity.

Proof From (2.3) and (3.5) we observe that N(z) has analytic continuation to the half-plane
Im z > –ε

2 . Since N(z) is a 4π-periodic function, the limit points of its zeros in P cannot lie
in [0, 4π ). Hence, using Theorem 3.1, we obtain the finiteness of eigenvalues and spectral
singularities of L. �

Note that condition (3.5), which is also known as Naimark’s condition in the literature,
ensures the analytic continuation of N(z) from the real axis to the lower half-plane.

Now we will consider the Pavlov condition

∞∑
n=1

eεnβ (|pn| + |qn| +
∣∣h(i)

n
∣∣) < ∞, ε > 0, i = 1, 2,

1
2

≤ β < 1, (3.6)

which is weaker than (3.5). Clearly, the function N(z) is analytic in the upper half-plane
and infinitely differentiable on the real axis. It is essential to notice at this point that N(z)
has no analytic continuation from the real axis to the lower half-plane. For this reason, we
need to use a different method to investigate the finiteness of the eigenvalues and spectral
singularities of L. We will benefit from the following lemma.

Lemma 3.3 ([9]) Suppose that the 4π -periodic function ξ is analytic in the open half-
plane, all of its derivatives are continuous in the closed upper half-plane, and

sup
z∈P

∣∣ξ (k)(z)
∣∣ ≤ ηk , k ∈N∪ {0}. (3.7)
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If the set G with linear Lebesgue measure zero is the set of all zeros of the function ξ with
infinite multiplicity in P, and

∫ ω

0
ln t(s) dμ(Gs) > –∞,

where t(s) = infk
ηk sk

k! , k ∈ N ∪ {0}, μ(Gs) is the Lebesgue measure of the s-neighborhood of
G, and ω ∈ (0, 4π ) is an arbitrary constant, then ξ ≡ 0.

Theorem 3.4 Assume that (3.6) holds. Then M5 = ∅.

Proof Under conditions (3.6), (2.2), (2.3), and (2.4), we obtain that

∣∣N (k)(z)
∣∣ ≤ ηk , k ∈N∪ {0},

where

ηk = 2kC
∞∑

m=1

mk exp
(
–εmβ

)
,

and C > 0 is a constant. We have the following estimate:

ηk ≤ 2kC
∫ ∞

0
xke–εxβ

dx ≤ Ddkk!kk 1–β
β , (3.8)

where D and d are constants depending C, ε, and β .
Applying the previous lemma to our case, we get that

∫ ω

0
ln t(s) dμ(M5,s) > –∞, (3.9)

where t(s) = infk
ηk sk

k! , k ∈N∪ {0}, μ(M5,s) is the Lebesgue measure of the s-neighborhood
of M5 and ηk is defined by (3.8).

Now we have

t(s) ≤ D exp

{
–

1 – β

β
e–1d– β

1–β s– β
1–β

}
. (3.10)

From (3.9) and (3.10) we get

∫ ω

0
s– β

1–β dμ(M5,s) > –∞. (3.11)

Since 1–β

β
≥ 1, (3.11) holds for arbitrary s if and only if μ(M5,s) = 0 or M5 = ∅. �

Theorem 3.5 If condition (3.6) is satisfied, then the operator L has a finite number of eigen-
values and spectral singularities, and each of them is of finite multiplicity.

Proof We have to show that the function N(z) has a finite number of zeros with finite mul-
tiplicities in P. From (3.3) and the previous theorem we obtain that M3 = M4 = ∅. Hence
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the bounded sets M1 and M2 have no accumulation points, that is, N(z) has only a finite
number of zeros in P. Since M5 = ∅, these zeros are of finite multiplicity. �
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