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Abstract
The dynamical attitude of the transmission for the nerve impulses of a nervous
system, which is mathematically formulated by the Atangana–Baleanu (AB)
time-fractional FitzHugh–Nagumo (FN) equation, is computationally and numerically
investigated via two distinct schemes. These schemes are the improved Riccati
expansion method and B-spline schemes. Additionally, the stability behavior of the
analytical evaluated solutions is illustrated based on the characteristics of the
Hamiltonian to explain the applicability of them in the model’s applications. Also, the
physical and dynamical behaviors of the gained solutions are clarified by sketching
them in three different types of plots. The practical side and power of applied
methods are shown to explain their ability to use on many other nonlinear evaluation
equations.
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1 Introduction
Nowadays, the study of bio-mathematical models is considered as an original icon in the
investigation of the dynamical and physical behavior of many biological models such as
DNA [1], viruses [2, 3], the nerve system, the bacteria cell [4, 5] and their distribution,
and the transmission of their impulses, and so on. These models are mathematically for-
mulated depending on laboratory experiments and statistics [6–8]. These bio-models are
expressed in nonlinear evaluation equations and system with integer and fractional order.
However, studying the fractional bio-models is more important than the models with an
integer order because of the nonlocal property that appears only in the fractional models
[9–11].

The nervous system is one of these bio-models that are attractive to many researchers;
it is a sophisticated collection of neurons and nerves [12–14]. The neuron cells transmit
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signals between different parts of the body. It mostly looks like an electrical wiring system
in the human body. According to the National Institute of Health, this system contains two
essential components which are the peripheral nervous system and the central nervous
system. The brain, nerves, and spinal cord are primary components of the central nervous
system [15].

In contrast, the ganglia (clusters of neurons), the sensory neurons, and nerves are pri-
mary components of the peripheral nervous system [16, 17]. These nerve cells contact
each other and the central nervous system. Functionally, the nervous system has two main
subdivisions: the somatic, or voluntary, component and the autonomic, or involuntary,
part. There are two types of movement performed by the living body, namely the voluntary
action and the inadvertent movement such as blood pressure, respiratory rate, heartbeat,
etc., and all these movements are regulated by the autonomic nervous system, according
to Merck Manuals [18, 19]. The somatic system is full of nerves that connect the spinal
cord and muscles with the brain that are considered to be a sensory receptor in the skin
[20].

The patients with nerve disorders experience functional difficulties according to the
Mayo Clinic, which result in conditions such as [ epilepsy, multiple sclerosis (MS), amy-
otrophic lateral sclerosis (ALS), Huntington’s disease, Alzheimer’s disease, stroke, tran-
sient ischemic attack (TIA), and sub-arachnoid hemorrhage ] [21]. The mathematical
model of the transmission for the nerve impulses of a nervous system is the FN equation
[22–24] which looks like another form of the Hodgkin–Huxley model [25]

⎧
⎪⎪⎨

⎪⎪⎩

Qi = ϕi(Em – Ei),

Q = Mm
dEm

dt + ϕμ(Em – Eμ) + ϕνa (Em – Eνa ) + ϕi(Em – Eνi ),

Qc = Tm
dLm

dt ,

(1)

where Eνa , Em, ϕE , Tm, Eμ, ϕi, Ei respectively describe sodium reversal potentials, ion
pumps, leak channels, the lipid bilayer, the potassium, the leak conductance per unit area,
and membrane potential.

In this context, we study the AB time-fractional FN equation [26, 27]

Nxx – N (1 – N )(ρ – N ) – Dα
t N = 0, 0 < α < 1, (2)

where ρ is an arbitrary constant. Equation (2) takes the Newell–Whitehead (NW) equa-
tion’s form when ρ = 0.

Recently, many research papers have investigated the analytical and numerical solutions
of the time fractional FN equation [28–37] for discovering novel properties of the trans-
mission for the nerve impulses of a nervous system. These solutions are very useful tools
for better understanding of the transmission attitude.

In this research paper, the improved Riccati expansion method is applied to the ner-
vous biological fractional FN equation to investigate the analytical solutions of it. Many
novel computational solutions are obtained, then they are used to evaluate the initial and
boundary conditions. These conditions are employed to handle the numerical solutions of
this biological model to show the accuracy of the obtained analytical solutions by calculat-
ing the absolute value of error. The obtained solutions are successfully sketched to show
the physical and dynamical behavior of these solutions. Moreover, the stability feature of
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solutions is investigated to demonstrate their applicability in its applications where many
analytical and numerical schemes have been derived to construct the exact and numerical
schemes of this kind of nonlinear evolutions equations [38–49].

The rest of paper is as follows. Section 2 applies computational and numerical schemes
[50–56] to the AB time-fractional FN equation for constructing exact and numerical wave
solutions. Section 3 illustrates the stability characteristic of the evaluated computational
solutions. Section 4 shows, explains, and discusses the relation between our calculated so-
lutions and previously gained solutions by other schemes. Section 5 gives the conclusion.

2 Application
This section employs the improved Riccati expansion method and B-spline schemes to
find the analytical and numerical solutions. Using the following AB wave transformation
N = N (x, t) = Q(k), k = (1–ϑ)(ωt–mϑ )

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
+ kx, where λ, k [56–58] are arbitrary con-

stants, yields

k2Q′′ – Q(1 – Q)(ρ – Q) – ωQ′ = 0. (3)

Employing the homogeneous balance principles for Eq. (3) yields Q′′,Q3 ⇒ n + 2 = 3n ⇒
n = 1.

2.1 Analytical explicit wave solution
The general solutions of Eq. (3) based on the improved Riccati expansion method are given
by [57, 58]

Q(k) =
n∑

i=1

aiΛ(k)i + a0 = a1Λ(k) + a0, (4)

where ai, (i = 0, 1) are arbitrary constants to be determined later. Also, Λ(k) satisfies the
following ODE:

Λ′(k) = δΛ(k) + σΛ(k)2 + 
,

where σ , 
, δ are arbitrary constants. Substituting Eq. (4) into Eq. (3), gathering all coef-
ficients with the same power of Λ(k)i (i = –3, –2, –1, 0, 1, 2, 3), and equating them to zero
lead to a system of algebraic equations. Solving this system to get the above-mentioned
parameters yields:

Family I:

[

a0 =
1
2

(
√

2δk + 1), a1 =
√

2kσ ,ω =
1
2

(2
√

2kρ –
√

2k),
 =
2δ2k2 – 1

8k2σ
.
]

Consequently, the computational solutions of the AB time-fractional FN equation are
given by the following:
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For [δ2 – 4σ
 > 0 & δσ �= 0],

N1(x, t) =
1
2

–
k
√

δ2 – 4σ
√
2

× tanh

(
1
2
√

δ2 – 4σ


(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

))

, (5)

N2(x, t) =
1
2

–
k
√

δ2 – 4σ
√
2

× coth

(
1
2
√

δ2 – 4σ


(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

))

. (6)

For [δ2 – 4σ
 < 0 & δσ �= 0],

N3(x, t) = k
√

2σ
 –
δ2

2

× tan

(
1
2
√

4σ
 – δ2
(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

))

+
1
2

, (7)

N4(x, t) =
1
2

– k
√

2σ
 –
δ2

2

× cot

(
1
2
√

4σ
 – δ2
(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

))

. (8)

For [δ2 – 4σ
 > 0 & σ
 �= 0],

N5(x, t)

=
k√
2

(

δ –
4σ


δ –
√

δ2 – 4σ
 tanh( 1
2

√
δ2 – 4σ
(kx – k(2ρ–1)(ϑ–1)t–mϑ√

2B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
))

)

+
1
2

, (9)

N6(x, t)

=
k√
2

(

δ –
4σ


δ –
√

δ2 – 4σ
 coth( 1
2

√
δ2 – 4σ
(kx – k(2ρ–1)(ϑ–1)t–mϑ√

2B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
))

)

+
1
2

. (10)

For [δ2 – 4σ
 < 0 & σ
 �= 0],

N7(x, t)

=
δk√

2
+

1
2

–
[(

2
√

2kσ
 cos

(
1
2
√

4σ
 – δ2
(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

)))
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/ (
√

4σ
 – δ2 sin

(
1
2
√

4σ
 – δ2
(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

))

+ δ cosh

(
1
2
√

4σ
 – δ2
(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

)))]

, (11)

N8(x, t)

=
δk√

2
+

1
2

+
[(

2
√

2kσ
 sin

(
1
2
√

4σ
 – δ2
(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

)))

/ (
√

4σ
 – δ2 cos

(
1
2
√

4σ
 – δ2
(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

))

– δ sinh

(
1
2
√

4σ
 – δ2
(

kx –
k(2ρ – 1)(ϑ – 1)t–mϑ

√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1 – mϑ)

)))]

. (12)

For [δ2 – 4σ
 = 0 & δσ �= 0],

N9(x, t) =
δk(exp( δk(2ρ–1)(ϑ–1)t–mϑ√

2B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
) – Ωeδkx)

√
2(exp( δk(2ρ–1)(ϑ–1)t–mϑ√

2B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
) + Ωeδkx)

+
1
2

, (13)

N10(x, t) =
δk√

2

(
2Ω

exp(δ(kx – k(2ρ–1)(ϑ–1)t–mϑ√
2B(ϑ)

∑∞
m=0(– ϑ

1–ϑ
)mΓ (1–mϑ)

)) + Ω
– 1

)

+
1
2

. (14)

Family II:

[

a1 = –
√

2kσ ,ω = k
(√

2(a0 – 1) + δk
)
,ρ = 2a0 +

√
2δk,
 =

(–
√

2)a0δk – a2
0

2k2σ
.
]

Consequently, the computational solutions of the AB time-fractional FN equation are
given by the following:

For [δ2 – 4σ
 > 0 & δσ �= 0],

N11(x, t)

=
k√
2

(
√

δ2 – 4σ


× tanh

(
1
2

k
√

δ2 – 4σ


(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

+ δ

)

+ a0, (15)

N12(x, t)

=
k√
2

(
√

δ2 – 4σ


× coth

(
1
2

k
√

δ2 – 4σ


(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

+ δ

)

+ a0. (16)
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For [δ2 – 4σ
 < 0 & δσ �= 0],

N13(x, t)

=
k√
2

(

δ –
√

4σ
 – δ2

× tan

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))

+ a0, (17)

N14(x, t)

=
k√
2

(
√

4σ
 – δ2

× cot

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

+ δ

)

+ a0. (18)

For [δ2 – 4σ
 > 0 & σ
 �= 0],

N15(x, t) =
2
√

2kσ


δ –
√

δ2 – 4σ
 tanh( 1
2 k

√
δ2 – 4σ
(x – (ϑ–1)(

√
2(a0–1)+δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
))

+ a0, (19)

N16(x, t) =
2
√

2kσ


δ –
√

δ2 – 4σ
 coth( 1
2 k

√
δ2 – 4σ
(x – (ϑ–1)(

√
2(a0–1)+δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
))

+ a0. (20)

For [δ2 – 4σ
 < 0 & σ
 �= 0],

N17(x, t)

= a0 +
[(

2
√

2kσ
 cos

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))

/ (
√

4σ
 – δ2 sin

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

+ δ cosh

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))]

, (21)

N18(x, t)

= a0 +
[(

2
√

2kσ
 sin

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))

/ (

δ sinh

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

–
√

4σ
 – δ2 cos

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2(a0 – 1) + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))]

.

(22)
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For [δ2 – 4σ
 = 0 & δσ �= 0],

N19(x, t) =
√

2δkΩ

exp(δ(–k)(x – (ϑ–1)(
√

2(a0–1)+δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
)) + Ω

+ a0, (23)

N20(x, t) =
√

2δk
(

1 –
Ω

exp(δk(x – (ϑ–1)(
√

2(a0–1)+δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
)) + Ω

)

+ a0. (24)

Family III:

[

a1 = –
√

2kσ ,ω = k(
√

2a0 + δk),ρ = 2a0 +
√

2δk – 1,
 = –
(a0 – 1)(a0 +

√
2δk – 1)

2k2σ
.
]

Consequently, the computational solutions of the AB time-fractional FN equation are
given by the following:

For [δ2 – 4σ
 > 0 & δσ �= 0],

N21(x, t)

=
k√
2

(
√

δ2 – 4σ


× tanh

(
1
2

k
√

δ2 – 4σ


(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

+ δ

)

+ a0, (25)

N22(x, t)

=
k√
2

(
√

δ2 – 4σ


× coth

(
1
2

k
√

δ2 – 4σ


(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

+ δ

)

+ a0. (26)

For [δ2 – 4σ
 < 0 & δσ �= 0],

N23(x, t)

=
k√
2

(

δ –
√

4σ
 – δ2

× tan

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))

+ a0, (27)

N24(x, t)

=
k√
2

(
√

4σ
 – δ2

× cot

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

+ δ

)

+ a0. (28)
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For [δ2 – 4σ
 > 0 & σ
 �= 0],

N25(x, t) =
2
√

2kσ


δ –
√

δ2 – 4σ
 tanh( 1
2 k

√
δ2 – 4σ
(x – (ϑ–1)(

√
2a0+δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
))

+ a0, (29)

N26(x, t) =
2
√

2kσ


δ –
√

δ2 – 4σ
 coth( 1
2 k

√
δ2 – 4σ
(x – (ϑ–1)(

√
2a0+δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
))

+ a0. (30)

For [δ2 – 4σ
 < 0 & σ
 �= 0],

N27(x, t)

= a0 +
[(

2
√

2kσ
 cos

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))

/ (
√

4σ
 – δ2 sin

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

+ δ cosh

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))]

, (31)

N28(x, t)

= a0 +
[(

2
√

2kσ
 sin

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))

/ (

δ sinh

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

))

–
√

4σ
 – δ2 cos

(
1
2

k
√

4σ
 – δ2
(

x –
(ϑ – 1)(

√
2a0 + δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1 – mϑ)

)))]

.

(32)

For [δ2 – 4σ
 = 0 & δσ �= 0],

N29(x, t) =
√

2δkΩ

exp(δ(–k)(x – (ϑ–1)(
√

2a0+δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
)) + Ω

+ a0, (33)

N30(x, t) =
√

2δk
(

1 –
Ω

exp(δk(x – (ϑ–1)(
√

2a0+δk)t–mϑ

B(ϑ)
∑∞

m=0(– ϑ
1–ϑ

)mΓ (1–mϑ)
)) + Ω

)

+ a0. (34)

2.2 Numerical simulation
In this section, the B-spline scheme is applied to the fractional biological FN equation to
evaluate the numerical solution of it and also to show the accuracy of the gained analyti-
cal solutions that are evaluated in Sect. 2.1 by employing the improved Riccati expansion
method under the following conditions on Eq. (5):

[

δ = 5, k =
1√
2

,ρ = –1,σ = 1,ω = –
3
2

,
 = 6.
]

These conditions allow applying the B-spline family in the following forms.
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Table 1 Analytical, numerical, and absolute values in different values of k via cubic B-spline scheme,
showing the accuracy of the obtained analytical solution

Value of k Approximate values Analytical values Absolute values of error

0 0.5 0.5 5.55112× 10–17

0.001 0.499751 0.49975 8.45294× 10–7

0.002 0.499502 0.4995 1.50299× 10–6

0.003 0.499252 0.49925 1.97301× 10–6

0.004 0.499002 0.499 2.25524× 10–6

0.005 0.498752 0.49875 2.3496× 10–6

0.006 0.498502 0.4985 2.25598× 10–6

0.007 0.498252 0.49825 1.97431× 10–6

0.008 0.498002 0.498 1.50449× 10–6

0.009 0.497751 0.49775 8.46413× 10–7

0.01 0.4975 0.4975 5.55112× 10–17

2.2.1 Cubic-spline
This scheme formulates the general solution of Eq. (2) in the form

N (k) =
m+1∑

j=–1

�jðj , (35)

where �j , ðj are given in the following mathematical forms, respectively:

LN (k) = f
(
kj ,V(kj )

)
, (j = 0, 1, . . . , m)

and

ðj (k)

=
1

6�3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k – kj–2)3, k ∈ [kj–2,kj–1],

–3(k – kj–1)3 + 3�(k – kj–1)2 + 3�2(k – kj–1) + �
3, k ∈ [kj–1,kj ],

–3(kj+1 – k)3 + 3�(kj+1 – k)2 + 3�2(ki+1 – k) + �
3, k ∈ [ki,ki+1],

(ki+2 – k)3, k ∈ [ki+1,ki+2],

0, Otherwise,

(36)

where j ∈ [–2, m + 2]. Thus, we obtain

Nj (k) = �j–1 + 4�j + �j+1. (37)

Substituting Eq. (37) into Eq. (3) yields (m + 3) of equations. Using Mathematica 11.3 to
solve this system to get the value of �j leads to the following analytical, numerical values
under the different values of k in Table 1.

2.2.2 Quantic-spline
This scheme formulates the general solution of Eq. (2) in the form

N (k) =
m+1∑

j=–1

�jðj , (38)
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Table 2 Analytical, numerical, and absolute values in different values of k via quantic B-spline
scheme, showing the accuracy of the obtained analytical solution

Value of k Approximate values Analytical values Absolute values of error

0 0.5 0.5 0
0.001 0.499751 0.49975 5.70289× 10–7

0.002 0.499501 0.4995 1.30164× 10–6

0.003 0.499252 0.49925 1.75184× 10–6

0.004 0.499002 0.499 2.03943× 10–6

0.005 0.498752 0.49875 2.13195× 10–6

0.006 0.498502 0.4985 2.0401× 10–6

0.007 0.498252 0.49825 1.75299× 10–6

0.008 0.498001 0.498 1.30293× 10–6

0.009 0.497751 0.49775 5.71006× 10–7

0.01 0.4975 0.4975 5.55112× 10–17

where �j , ðj are given in the following mathematical forms, respectively:

LN (k) = f
(
kj ,N (kj )

)
, (j = 0, 1, . . . , n)

and

ðj (k) =
1
�5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k – kj–3)5, k ∈ [kj–3,kj–2],

(k – kj–3)5 – 6(k – kj–2)5, k ∈ [kj–2,kj–1],

(k – kj–3)5 – 6(k – kj–2)5 + 15(k – kj–1)5, k ∈ [kj–1,kj ],

(kj+3 – k)5 – 6(kj+2 – k)5 + 15(kj+1 – k)5, k ∈ [kj ,kj+1],

(kj+3 – k)5 – 6(kj+2 – k)5, k ∈ [kj+1,kj+2],

(kj+3 – k)5, x ∈ [kj+2,kj+3],

0, Otherwise,

(39)

where j ∈ [–2, m + 2]. Thus, we obtain

Nj (k) = �j–2 + 26�j–1 + 66�j + 26�j+1 + �j+2. (40)

Substituting Eq. (40) into Eq. (3) yields (m + 5) of equations. Using Mathematica 11.3 to
solve this system to get the value of �j leads to the following analytical, numerical values
under the different values of k in Table 2.

2.2.3 Septic-spline
This scheme formulates the general solution of Eq. (2) in the form

N (k) =
n+1∑

j=–1

�jðj , (41)

where �j , ðj are given in the following mathematical forms, respectively:

LN (k) = F
(
kj ,N (kj )

)
, (j = 0, 1, . . . , m)
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Table 3 Analytical, numerical, and absolute values in different values of k via septic B-spline scheme,
showing the accuracy of the obtained analytical solution

Value of k Approximate values Analytical values Absolute values of error

0 0.5 0.5 0
0.001 0.499751 0.49975 7.50007× 10–7

0.002 0.499502 0.4995 1.59591× 10–6

0.003 0.499252 0.49925 1.97751× 10–6

0.004 0.499002 0.499 2.30056× 10–6

0.005 0.498752 0.49875 2.37162× 10–6

0.006 0.498502 0.4985 2.30133× 10–6

0.007 0.498252 0.49825 1.9788× 10–6

0.008 0.498002 0.498 1.59754× 10–6

0.009 0.497751 0.49775 7.50962× 10–7

0.01 0.4975 0.4975 5.55112× 10–17

and

ðj (k) =
1
�5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k – kj–4)7, k ∈ [kj–4,kj–3],

(k – kj–4)7 – 8(k – kj–3)7, k ∈ [kj–3,ki–2],

(k – kj–4)7 – 8(k – kj–3)7 + 28(k – kj–2)7, k ∈ [kj–2,kj–1],

(k – kj–4)7 – 8(k – kj–3)7 + 28(k – kj–2)7

+ 56(k – kj–1)7, k ∈ [kj–1,kj ],

(kj+4 – k)7 – 8(kj+3 – k)7 + 28(kj+2 – k)7

+ 56(kj+1 – k)7, k ∈ [kj ,kj+1],

(kj+4 – k)7 – 8(kj+3 – k)7 + 28(kj+2 – k)7, k ∈ [kj+1,kj+2],

(kj+4 – k)7 – 8(kj+3 – k)7, k ∈ [kj+2,ki+3],

(kj+4 – k)7, k ∈ [kj+3,ki+4],

0, Otherwise,

(42)

where j ∈ [–3, m + 3]. Thus, we obtain

Nj (k) = �j–3 + 120�j–2 + 1191�j–1 + 2416�j + 1191�j+1 + 120�j+2 + �j+3. (43)

Substituting Eq. (43) into Eq. (3) yields (m + 7) of equations. Using Mathematica 11.3 to
solve this system to get the value of �j leads to the following analytical, numerical values
under the different values of k in Table 3.

3 Stability characteristic
Investigation of the stability of the obtained analytical solutions by employing the proper-
ties of the Hamiltonian system that gives the momentum Ξ in the form

Ξ =
1
2

∫ ν

–ν

N 2(k) dk (44)

leads to the stable condition of the solution given by

Re
(

∂Ξ

∂ω

)

> 0, (45)
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where ω is the wave velocity. Thus, the investigation of the stability characteristic for
Eq. (5) is formulated as follows:

Ξ =
1
ω2

[
(
√

2 – i
√

10ω)Li2
(
–eiω

√
5+ 5√

2
)

–
√

2Li3
(
–eω

√
5+ 5√

2
)

–
√

2Li3
(
–ei

√
5ω– 5√

2
)

+
√

2(
√

5ω – 1)Li2
(
–eω

√
5+ 5√

2
)

+
√

2(1 –
√

5ω)Li2
(
–e

√
5ω– 5√

2
)

+
√

2(–1 + i
√

5ω)Li2
(
–ei

√
5ω– 5√

2
)

+
√

2Li3
(
–e

√
5ω– 5√

2
)

+
√

2Li3
(
–eiω

√
5+ 5√

2
)

+ 50ω2 +
√

5ω
(

– i
√

2 log
(
e

5√
2 + ei

√
5ω

)
–

√
2 log

(
e
√

5ω+ 5√
2 + 1

)

+
√

2 log
(
e
√

5ω + e
5√
2
)

+ i
√

2 log
(
1 + e

5√
2

+i
√

5ω)
+ (–5 + 5i)

)]
, (46)

and thus

Re
(

∂Ξ

∂ω
|ω=– 3

2

)

= 70.4226 > 0. (47)

This result shows that the stable property of Eq. (5) is accomplished. Therefore, applying
the same steps to the other analytical solution explains the stability characteristic of each
of them.

4 Discussion
Studying the novelty of our solutions is shown in this section by giving more explanation
of them and confirming the comparison between our solutions and those obtained in the
previous article. Our investigation has two main steps, which are studying the analytical
solutions and then surveying the numerical solutions. This process takes the following
steps:

1. Obtained analytical solutions
• Using a new fractional operator [ Atangana–Baleanu derivative operator ] for

the first time to transform the nervous biological fractional FN equation into
the ordinary differential equation.

• Applying the improved Riccati expansion method to the obtained ODE leads to
many analytical solutions of this model.

• Comparing the obtained solutions with the previous ones in the following
steps:
(a) In [26], Dumitru Baleanu et al. used the extended simplest equation

method and the sinh-cosh expansion method to find the analytical wave
solutions of the FN model with the integer order. Some of their solutions are
equal to our obtained solutions such as [26, Eq. (10)] is equal to Eq. (5) when

[ϑ = 1, k =
√

2(δ2–4σ
)
2 .]

(b) In [27], Abdel-Haleem Abdel-Aty et al. employed the modified Khater
(mK) method and B-spline schemes to find the analytical and numerical
schemes of the FitzHugh–Nagumo (FN) equation with the integer order.
Some of their solutions are equal to our obtained solutions such as Eq. (7,

[27]) is equal to Eq. (5) when [ϑ = 1, k =
√

2(δ2–4σ
)
2 .]

2. Obtained numerical solutions
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Applying the B-spline schemes on the fractional biological FN model shows the
accuracy of the obtained analytical solutions, but it also explains the superiority of
the cubic B-spline scheme over the other two applied methods: the absolute value
of error obtained by using it is smaller than the absolute value of error calculated by
the other two applied schemes. This accuracy of the cubic-B-spline is shown in
Fig. 6.

5 Conclusion
This paper has successfully performed the improved Riccati expansion method for con-
structing the exact traveling wave solutions of the nervous biological fractional FN equa-
tion that have been represented in Figs. 1, 2. These solutions have been used to evalu-
ate the initial and boundary conditions that have allowed applying the B-spline collection
schemes (cubic, quantic, and septic). Referring to these numerical schemes has shown the
absolute value of error between the obtained exact and numerical solutions. These values
have explained the accuracy of the obtained solutions as shown in Figs. 3, 4, 5. The stability
property of the obtained solutions has been investigated based on the Hamiltonian sys-
tem’s features and their ability to use into the biological model’s applications. Three- and
two-dimensional and contour plots have been given for the obtained exact and numerical
solutions to show the physical and dynamical behavior of these solutions. The compari-
son between the obtained solutions and the previous solutions was shown to explain the
novelty of our research.

Figure 1 Breath solitary wave of Eq. (5) in three distinct plots (three- and two-dimensional and contour plot)
when [δ = 5, k = 1√

2
,ρ = –1,σ = 1,ω = – 3

2 ,
 = 6]

Figure 2 Solitary wave of Eq. (6) in three distinct plots (three- and two-dimensional and contour plot) when
[δ = 5, k = 1√

2
,ρ = –1,σ = 1,ω = – 3

2 ,
 = 6]
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Figure 3 A comparison representation between analytical and numerical solutions of Eq. (2) according to the
cubic-B-spline simulation

Figure 4 A comparison representation between analytical and numerical solutions of Eq. (1) according to the
quantic-B-spline simulation

Figure 5 A comparison representation between analytical and numerical solutions of Eq. (1) according to the
septic-B-spline simulation

Figure 6 A comparison representation of absolute value of error of Eq. (2) according to the obtained values
via cubic, quantic, and septic B-spline schemes
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