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1 Introduction
In recent years, there has been subject so far-reaching of research in derivative and dif-
ferential equation because of its performance in numerous branches of pure and applied
mathematics. The standards of differential equation have been unlimited and characterize
physical models of many phenomena in various fields (see [1]).

As we all know, the main difficulty to find exact solution of such equation is very crucial,
and the form of the exact solution (if it exists) is often so arduous that it is not appropriate
for numerical calculation. In view of this, it is imperative to discuss approximate solution
and ask whether it lies near the exact solution. Mostly, we say that a differential equation
is stable in the Hyers–Ulam sense if, for every solution of the differential equation, there
exists an approximate solution of the perturbed equation that is close to it.

The history of Hyers–Ulam stability starts from the middle of the nineteenth century.
The class of stability was first formulated by Ulam [2] for functional equation which was
solved by Hyers [3] for an additive function defined on a Banach space. After this result, the
stability concept was investigated and generalized by Rassias [4], which is called Hyers–
Ulam–Rassias stability. Further, Alsina and Ger [5] established the Hyers–Ulam stability
of differential equations by replacing functional equation. Rezaei and Jung and Rassias
[6] investigated the Hyers–Ulam stability of linear differential equation by applying the
Laplace transform method. In [7], Algifiary and Jung gave Hyers–Ulam stability of nth
order linear differential equation with the help of the Laplace transform method.

Using the Hyers–Ulam method, Wu and Baleanu [8] proved the Mittag-Leffler stabil-
ity of impulsive fractional difference equations; Wu, Baleanu, and Huang [9] proved the
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Mittag-Leffler stability of linear fractional delay difference equations with impulse, and
Wu et al. [10] investigated the Mittag-Leffler stability analysis of fractional discrete-time
neural networks via the fixed point technique.

In this paper, we introduce some new concepts concerning the stability of differen-
tial equation in the Mittag-Leffler–Hyers–Ulam sense by the Fourier transform method.
The Fourier transform and Mittag-Leffler function are effective tools for analytic expres-
sion for the solution of linear differential equation of integer or noninteger order. The
Mittag-Leffler function Eα(zα) was introduced by Mittag-Leffler [11] in connection with
the method of divergent series. The generalization and properties of Eα(zα) were studied
and discussed in [12–15]. The Fourier transform is a kind of integral transform, and it was
used by Fourier in 1807. It converts differential equation into simple algebraic equation.
After solving the algebraic equation, we can find the solution of the original equation by
inverse Fourier transform. For more details, see [16, 17].

At present, some remarkable results to Hyers–Ulam–Mittag-Leffler stability of differ-
ential equation have been reported in [18–28]. In particular, Kalvandi, Eghbali, and Ras-
sias [18] discussed Mittag-Leffler–Hyers–Ulam stability for the second-order differential
equation

y′′ + αy′ + βy = 0

and also proved the stability of Lane–Emden equation of second order. Existence and
uniqueness of Mittag-Leffler–Ulam stable solution for fractional integro-differential equa-
tion with nonlocal initial condition have been proved in [22]. In 2020, Liu et al. studied
Hyers–Ulam stability and existence of solutions for fractional differential equation with
Mittag-Leffler kernel [20]. To the best of our knowledge, there are few results on Mittag-
Leffler–Hyers–Ulam stability of differential equation by the Fourier transform method.

Motivated by ongoing research on the stability of differential equation, in this paper, we
discuss the existence and the Mittag-Leffler–Hyers–Ulam stability of linear homogeneous
differential equation

Hn(x) +
n–1∑

j=0

ajHj(x) = 0, lim|x|→∞H(x) = 0 (1.1)

with the help of Fourier transform.
The contribution of the paper is outlined as follows: In Sect. 2, some definitions, lem-

mas, and theorems are introduced. In Sect. 3, the Hyers–Ulam–Mittag-Leffler stability
of differential equation of first, second, and nth order is presented. The conclusion and
examples are given in Sects. 4 and 5, respectively.

2 Preliminaries
In this section, we recall some basic definitions, notations, and theorems for further work.
Throughout this paper, let F be either a real field R or a complex field C.

Definition 2.1 ([16]) If a function H : R → F is piecewise continuous in each finite inter-
val and is absolutely integrable in R, then the Fourier transform associated with H ∈ L′(R)
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is a mapping Ĥ(ξ ) : R→ F given by the integral

Ĥ(ξ ) =
∫ ∞

–∞
H(x)eiξx dx ∀x ∈ R. (2.1)

Also the inverse Fourier transform associated with Ĥ(ξ ) is given by

H(x) =
1

2π

∫ ∞

–∞
Ĥ(ξ )e–iξx dξ (2.2)

for any x ∈R, and the relation F–1F(H) = H holds true almost everywhere on R.

In the following, we give some properties of the Fourier transform which are closely
related to solution process.

Lemma 2.2 ([29, 30]) Let H ∈ L′(R), F(H)(x) = Ĥ(ξ ), and θ (x) be the Heaviside step func-
tion defined by θ (x) = 1 for x ≥ 0 and θ (x) = 0 for x < 0. Then

1. F(H(x ± a)) = e±iaĤ(ξ );
2. F(e–zxθ (x))(ξ ) = 1

iξ+z provided that Re(z) > 0;
3. F((–ix)n(H(x))(ξ ) = Fn(ξ );
4. F((H)n(x))(ξ ) = (–iξ )nĤ(ξ ).

The convolution of two functions H1(x) and H2(x) is defined as

H1(x) ∗H2(x) =
∫ ∞

–∞
H1(μ)H2(x – μ) dμ.

We have the following theorem.

Theorem 2.3 ([30]) Let H1, H2 ∈ L1(R). Then
1. F(H1 ∗H2) = F(H1)F(H2);
2. F–1(H1H2) = F–1(H1) ∗ F–1(H2).

Notice that if θ (x) is the Heaviside step function, then

(h ∗ θ )(x) = (θ ∗ h)(x) =
∫ ∞

∞
θ (x – μ)h(μ) dμ =

∫ ∞

0
h(μ) dμ.

Definition 2.4 ([11]) The Mittag-Leffler function of one parameter is defined as

Eα(z) =
∞∑

k=0

1
Γ αk + 1

zk ,

where Re(α) > 0 and z,α ∈C.

Definition 2.5 The two-parameter Mittag-Leffler function is denoted by Eα,β (z) and is
defined as

Eα,β (z) =
∞∑

k=0

1
Γ αk + β

zk .
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When α = β = 1, the above equation becomes

E1,1(z) =
∞∑

k=0

1
Γ k + 1

zk .

Theorem 2.6 For any x,α ∈Cwith Re(α) > 0, the Fourier transform of Mittag-Leffler func-
tion is

F
(
Eα(x)

)
=

∞∑

k=0

k!
Γ αk + 1

i–k–1ξ–(k+1).

Proof By Mittag-Leffler function of one parameter for x ∈R, we get

Eα(x) =
∞∑

k=0

1
Γ αk + 1

xk . (2.3)

Taking Fourier transform of (2.3), we have

F
(
Eα(x)

)
=

∫ ∞

–∞
Eα(x)eiξx dx =

∞∑

k=0

1
Γ αk + 1

∫ ∞

–∞
xkeiξx dx.

Letting iξx = –z, iξ dx = –dz, we get

F
(
Eα(x)

)
=

∞∑

k=0

1
Γ αk + 1

∫ ∞

0

(
z
iξ

)k

e–z dz
iξ

=
∞∑

k=0

1
Γ αk + 1

i–k–1ξ–(k+1)
∫ ∞

0
zke–z dz.

Since
∫ ∞

0 zke–z dz = Γ (k + 1) = k!, we obtain

F
(
Eα(x)

)
=

∞∑

k=0

k!
Γ αk + 1

i–k–1ξ–(k+1).

This completes the proof. �

3 Main results
In this section, we study the existence and stability for differential equation (1.1). More-
over, we derive the stability constant for Eq. (1.1).

3.1 Mittag-Leffler–Hyers–Ulam stability of linear differential equation of first
order

In this subsection, by means of Fourier transform and convolution principle, we establish
the stability of the homogeneous first-order differential equation

H′(x) + aH(x) = 0, lim|x|→∞H(x) = 0, (3.1)

where H(x) is a continuously differentiable function and a is a constant.
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Definition 3.1 We say that linear differential equation (3.1) is said to have Mittag-Leffler–
Hyers–Ulam stability if there exists a constant K > 0 with the following: for every ε > 0 and
a continuously differentiable function H(x) satisfying the inequality

∣∣H′(x) + aH(x)
∣∣ ≤ εEα

(
xα

)
, (3.2)

there exists some Ho(x) satisfying differential equation (3.1) such that

∣∣H(x) – Ho(x)
∣∣ ≤ KεEα

(
xα

)
,

where K is a Mittag-Leffler–Hyers–Ulam stability constant.

Remark 1 If ε and Kε are replaced by continuous functions φ(x) and Φ(x) in the above
definition, then we say that Eq. (3.1) has Hyers–Ulam–Mittag-Leffler–Rassias stability.

Theorem 3.2 Let a be a scalar in F. Assume that, for every ε > 0, there exists K > 0 such
that H(x) ∈ L′(R) satisfying the differential inequality

∣∣H′(x) + aH(x)
∣∣ ≤ εEα

(
xα

)
(3.3)

for all x ∈ R. Then there exists a solution H(x) ∈ L′(R) of differential equation (3.1) such
that

∣∣H(x) – Ho(x)
∣∣ ≤ KεEα

(
xα

)

for all x ∈ R.

Proof Assume that a continuously differentiable function H(x) satisfies inequality (3.3).
First, let us find the classic solution of (3.1). Apply the derivative of Fourier transform

F
(
H′(x)

)
= (–iξ )Ĥ(ξ )

with respect to the variable x. Here Ĥ(ξ ) is the Fourier transform of H(x). Then (3.1)
reduces to

(–iξ + a)Ĥ(ξ ) = 0. (3.4)

Thus the solution of transformed equation (3.4) is

Ho(x) = Ceax, ∀x ∈R, (3.5)

where C is a constant. Introduce a function η : (–∞,∞) →F such that

η(x) = H′(x) + aH(x). (3.6)

Suppose that |η(x)| ≤ εEα(xα). By taking the Fourier transform of (3.6), it is transformed
into

(–iξ + a)Ĥ(ξ ) = Ĥ(ξ ). (3.7)
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The method of variation of constant gives the unique solution of (3.7), which is

H(x) = Ceax + F–1
(

η̂(x)
1

iξ – a

)

= Ceax + F–1(η̂(x)
) ∗ F–1

(
1

iξ – a

)
.

Applying the property of Fourier transform and the formula of convolution, we obtain

H(x) = Ceax + η(x) ∗ eaxθ (x) = Ceax +
∫ ∞

–∞
η(μ)ea(x–μ) dμ. (3.8)

It follows from (3.5) and (3.8) that

∣∣H(x) – Ho(x)
∣∣ ≤

∣∣∣∣
∫ ∞

–∞
η(μ)ea(x–μ)θ (x – μ) dμ

∣∣∣∣

≤ ε

∞∑

k=0

1
Γ (αk + 1)

∫ x

0
μαk dμ

≤ ε

∞∑

k=0

1
Γ (αk + 1)

xαk+1

αk + 1
,

and so

∣∣H(x) – Ho(x)
∣∣ ≤ εKEα,2

(
xα

)

for all x > 0. Clearly, this implies that the homogeneous linear differential equation (3.1)
has Mittag-Leffler–Hyers–Ulam stability. �

Similarly, we can explore Mittag-Leffler–Hyers–Ulam–Rassias stability of differential
equation (3.1).

Corollary 1 For every continuously differential function H(x) ∈ L′(R) satisfying the differ-
ential inequality

∣∣H′(x) + aH(x)
∣∣ ≤ φ(x)Eα

(
xα

) ∀x ∈R, (3.9)

there exists a solution Ho(x) ∈ L′(R) of differential equation (3.1) such that

∣∣H(x) – Ho(x)
∣∣ ≤ KΦ(x)Eα

(
xα

) ∀x ∈R.

3.2 Mittag-Leffler–Hyers–Ulam stability of linear differential equation of second
order

In this subsection, we are going to verify that the approximate solution is near the exact
solution for the linear differential equation of second order

H′′(x) + aH′(x) + bH(x) = 0, lim|x|→∞H(x) = 0 (3.10)

with the help of the Fourier transform method.
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Definition 3.3 The linear differential equation (3.10) is said to have Mittag-Leffler–
Hyers–Ulam stability if there exists a constant K > 0 with the following property: for every
ε > 0 and a continuously differentiable function H(x) ∈ L′(R) satisfying the inequality

∣∣H′′(x) + aH′(x) + bH(x)
∣∣ ≤ εEα

(
xα

)
, (3.11)

where Eα is a Mittag-Leffler function, there exists some Ho(x) ∈ L′(R) satisfying differen-
tial equation (3.10) such that

∣∣H(x) – Ho(x)
∣∣ ≤ KεEα

(
xα

)
.

Theorem 3.4 Assume that the characteristic equation of (3.10) has two different positive
roots. If, for every ε > 0, H(x) ∈ L′(R) satisfies the inequality

∣∣H′′(x) + aH′(x) + bH(x)
∣∣ ≤ εEα

(
xα

)
,

then there exist some Ho(x) ∈ L′(R) and K > 0 satisfying (3.10) such that

∣∣H(x) – H0(x)
∣∣ ≤ KεEα

(
xα

)
,

that is, Eq. (3.10) has Mittag-Leffler–Hyers–Ulam stability.

Proof Let ε > 0 and H(x) ∈ L′(R) such that

∣∣H(x) – H0(x)
∣∣ ≤ KεEα

(
xα

)
.

First, we will compute the classical solution of (3.10). Apply the Fourier transform with
respect to variable x defined by (2.1) to (3.10). By

F
(
H′(x)

)
= –iξĤ(ξ ), F

(
H′′(x)

)
= (–iξ )2Ĥ(ξ ),

where Ĥ(ξ ) is the Fourier transform of H(x), (3.10) reduces to

(
(–iξ )2 + (–iξ )a + b

)
Ĥ(ξ ) = 0. (3.12)

Let M1 and M2 be distinct roots of the characteristic equation of (3.12)

M2 + aM + b = 0.

Since a, b are constant in F such that

M1 + M2 = –a, M1M2 = b,

we have (–iξ )2 + (–iξ )a + b = (iξ – M1)(iξ – M2).
Thus the solution of transformed equation (3.12) is

Ho(x) = C1e–M1(x) + C2e–M2(x), (3.13)
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where C1 and C2 are constant. Now, we introduce the function

η(x) = H′′(x) + aH′(x) + bH(x). (3.14)

Next, we will show Mittag-Leffler–Hyers–Ulam stability of (3.10). By taking the Fourier
transform of (3.14), it is transformed into

(–iξ )2Ĥ(ξ ) + a(–iξ )Ĥ(ξ ) + bĤ(ξ ) = η̂(ξ ). (3.15)

The method of variation of constant gives the unique solution of (3.15), which is

H(x) = C1e–M1(x) + C2e–M2(x) + F–1
(

η̂(ξ )
1

(iξ – M1)(iξ – M2)

)

= C1e–M1(x) + C2e–M2(x) + F–1(η̂(ξ )
) ∗ F–1

(
1

(iξ – M1)(iξ – M2)

)
. (3.16)

Set Q̂(ξ ) = 1
(iξ–M1)(iξ–M2) = 1

M2–M1
( 1

(iξ–M1)(iξ–M2) ).
By the inverse Fourier transform, we get

F–1(Q̂(ξ )
)

= q(x) =
1

M2 – M1

(
F–1

(
1

(iξ – M1)

)
– F–1

(
1

(iξ – M2)

))
.

By taking account of the property of Fourier transform, we get

q(x) =
1

M2 – M1

(
eM1xθ (x) – eM2xθ (x)

)
,

where θ (x) is a Heaviside step function. (3.16) becomes

H(x) = C1e–M1(x) + C2e–M2(x) + η(x) ∗ q(x).

Applying the formula of convolution, we obtain

H(x) = C1e–M1(x) + C2e–M2(x) +
∫ ∞

–∞
η(μ)q(x – μ) dμ. (3.17)

It follows from (3.13) and (3.17) that

∣∣H(x) – Ho(x)
∣∣ =

∣∣η(μ)q(x – μ) dμ
∣∣

≤ ε

M2 – M1

∞∑

k=0

1
Γ (αk + 1)

∫ ∞

–∞
μαk(eM1(x–μ) – eM2(x–μ))θ (μ) dμ

≤ ε

M2 – M1

∞∑

k=0

1
Γ (αk + 1)

∫ ∞

0
μαk(eM1(x–μ) – eM2(x–μ))dμ
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for all x > 0, and so we get

∣∣H(x) – Ho(x)
∣∣ ≤ ε

M2 – M1

∞∑

k=0

1
Γ (αk + 1)

∫ x

0
μαk(eM1(x–μ) – eM2(x–μ))dμ

≤ ε

M2 – M1

∞∑

k=0

1
Γ (αk + 1)

∫ x

0
μαk dμ

=
ε

M2 – M1

∞∑

k=0

1
Γ (αk + 1)

xαk+1

αk + 1

and so

∣∣H(x) – Ho(x)
∣∣ ≤ KεEα,2

(
xα

)
.

This completes the proof of the theorem. �

Similarly, we can explore that Mittag-Leffler–Hyers–Ulam–Rassias stability of differen-
tial equation (3.10).

Corollary 2 Let a be a scalar in F and H(x) ∈ L′(R). Assume that there exists a constant
K > 0 such that H(x) ∈ L′(R) satisfies the differential inequality

∣∣H′′(x) + aH′(x) + bH(x)
∣∣ ≤ φ(x)Eα

(
xα

)

for all x ∈R. Then there exists a solution Ho(x) ∈ L′(R) of differential equation (3.10) such
that

∣∣H(x) – Ho(x)
∣∣ ≤ KΦ(x)Eα

(
xα

)

for all x ∈ R, i.e., Eq. (3.10) has Mittag-Leffler–Hyers–Ulam–Rassias stability.

3.3 Mittag-Leffler–Hyers–Ulam stability of linear differential equation of nth
order

Now, we give the proof of Mittag-Leffler–Hyers–Ulam stability of the linear differential
equation of nth order

Hn(x) +
n–1∑

j=0

ajHj(x) = 0, lim|x|→∞H(x) = 0. (3.18)

Definition 3.5 The linear differential equation (3.18) is said to have Mittag-Leffler–
Hyers–Ulam stability if there exists a constant K > 0 with the following property: for every
ε > 0 and a continuously differentiable function H(x) ∈ L′(R) satisfying the inequality

∣∣Hn(x) + an–1Hn–1(x) + · · · + a1H1(x) + a0H(x)
∣∣ ≤ εEα

(
xα

)
,

there exists some Ho(x) satisfying differential equation (1.1) such that

∣∣H(x) – Ho(x)
∣∣ ≤ KεEα

(
xα

)
.
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Theorem 3.6 Let ai ∈ F. Assume that the characteristic equation of (3.18) has n distinct
positive roots. If, for any ε > 0, H ∈ L′(R) satisfies the differential inequality

∣∣Hn(x) + an–1Hn–1(x) + · · · + a1H1(x) + a0H(x)
∣∣ ≤ εEα

(
xα

)

for all x > 0, then there exists a solution Ho ∈ L′(R) of differential equation (3.18) such that

∣∣H(x) – Ho(x)
∣∣ ≤ KεEα

(
xα

)

for all x ∈ R.

Proof Let ε > 0 and H(x) ∈ L′(R) such that

∣∣Hn(x) + an–1Hn–1(x) + · · · + a1H1(x) + a0H(x)
∣∣ ≤ εEα

(
xα

)
.

First, we will compute the classical solution of (3.18). By applying the Fourier transform
with respect to variable x by using

F
(
Hn(x)

)
= (–iξ )nĤ(ξ ),

where Ĥ(ξ ) is the Fourier transform of H(x), (3.18) reduces to

(
(–iξ )n + an–1(–iξ )n–1 + · · · + a1(–iξ ) + a0

)
Ĥ(ξ ) = 0. (3.19)

Let M1,M2, . . . ,Mn be distinct roots of the characteristic equation

Mn + an–1Mn–1 + · · · + a1M + a0 = 0.

Since ai are constant in F such that

M1 + M2 + · · · + Mn = –an–1,

M1M2 + M2M3 + · · · + Mn–1Mn = an–2,

M1M2M3 + M2M3M4 + · · · + Mn–2Mn–1Mn = –an–3,

...

M1M2 · · ·Mn = a0,

we have

(
(–iξ )n + an–1(–iξ )n–1 + · · · + a1(–iξ ) + a0

)
= (iξ – M1)(iξ – M2) · · · (iξ – Mn).

Thus the solution of transformed equation (3.19) is

Ho(x) = C1e–M1(x) + C2e–M2(x) + · · · + Cne–Mn(x) =
n∑

m=1

Cme–Mm(x), (3.20)
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where C1, C2, . . . , Cn are constant. Now we introduce the function

η(x) = Hn(x) + an–1Hn–1(x) + · · · + a1H1(x) + a0H(x). (3.21)

Next, we will show the Mittag-Leffler–Hyers–Ulam stability of (3.18). By taking the
Fourier transform of (3.21), it is transformed into

(
(–iξ )n + an–1(–iξ )n–1 + · · · + a1(–iξ ) + a0

)
Ĥ(ξ ) = η̂(ξ ). (3.22)

The method of variation of constant gives the unique solution of (3.22), which is

H(x) =
n∑

m=1

Cme–Mm(x) + F–1
(

η̂(ξ )
1

(iξ – M1)(iξ – M2) · · · (iξ – Mn)

)

=
n∑

m=1

Cme–Mm(x) + F–1(η̂(ξ )
) ∗ F–1

(
1

(iξ – M1)(iξ – M2) · (iξ – Mn)

)
. (3.23)

Set

Q̂(ξ ) =
1

(iξ – M1)(iξ – M2) · · · (iξ – Mn)

=
1

Mn – Mn–1 – · · · – M1

×
((

1
(iξ – M1)

)
–

(
1

(iξ – M2)

)
– · · · –

(
1

(iξ – Mn)

))
.

By the inverse Fourier transform, we get

F–1(Q̂(ξ )
)

=
1

Mn – Mn–1 – · · · – M1

×
(

F–1
(

1
(iξ – M1)

)
– F–1

(
1

(iξ – M2)

)
– · · · – F–1

(
1

(iξ – Mn)

))
.

By taking account of the property of Fourier transform, we get

q(x) =
1

Mn – Mn–1 – · · · – M1

(
eM1x – eM2x · · · · · eMnx)θ (x),

where θ (x) is a Heaviside step function. So (3.23) becomes

H(x) =
n∑

m=1

Cme–Mm(x) + η(x) ∗ q(x).

By applying the formula of convolution, we obtain

H(x) =
n∑

m=0

Cme–Mm(x) +
∫ ∞

–∞
η(μ)q(x – μ) dμ. (3.24)
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It follows from (3.20) and (3.24) that

∣∣H(x) – Ho(x)
∣∣ =

∣∣η(μ)q(x – μ) dμ
∣∣

≤ ε

Mn – Mn–1 – · · · – M1

∞∑

k=0

1
Γ (αk + 1)

×
∫ ∞

–∞
μαk(eM1(x–μ) – eM2(x–μ)–···–eMn(x–μ))

θ (x – μ) dμ

≤ ε

Mn – Mn–1 – · · · – M1

∞∑

k=0

1
Γ (αk + 1)

×
∫ ∞

0
μαk(eM1(x–μ) – eM2(x–μ) – · · · – eMn(x–μ))dμ

≤ ε

Mn – Mn–1 – · · · – M1

∞∑

k=0

1
Γ (αk + 1)

×
∫ x

0
μαk(eM1(x–μ) – eM2(x–μ) – · · · – eMn(x–μ))dμ

≤ ε

Mn – Mn–1 – · · · – M1

∞∑

k=0

1
Γ (αk + 1)

∫ x

0
μαk dμ

=
ε

Mn – Mn–1 – · · · – M1

∞∑

k=0

1
Γ (αk + 1)

xαk+1

αk + 1
,

and so

∣∣H(x) – Ho(x)
∣∣ ≤ KεEα,2

(
xα

)
.

Hence differential equation (3.18) has Mittag-Leffler–Hyers–Ulam stability. �

Similarly, we can prove the Mittag-Leffler–Hyers–Ulam–Rassias stability of Eq. (3.18).

Corollary 3 Assume that the characteristic equation of (3.18) has ‘n’ different positive
roots. If, for every ε > 0, H(x) ∈ L′(R) satisfies the inequality

∣∣Hn(x) + an–1Hn–1(x) + · · · + a1H1(x) + a0H(x)
∣∣ ≤ φ(x)Eα

(
xα

)
,

then there exist some Ho(x) ∈ L′(R) and K > 0 satisfying (3.18) such that

∣∣H(x) – H0(x)
∣∣ ≤ KΦ(x)Eα

(
xα

)
.

4 Numerical examples
Example 4.1 Consider the following differential equation:

H′(x) +
1√

(1 + exp(7))
H(x) = 0, lim|x|→∞H(x) = 0 (4.1)
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Figure 1 The solution of Eq. (4.1)

and the inequality

∣∣∣∣H
′(x) +

1√
(1 + exp(7))

H(x)
∣∣∣∣ ≤ εE1

(
x1) ∀x ∈ R,

where H ∈ L′(R).
Comparing with (3.1) and (3.3), we have, for α = 1, a = 1√

(1+exp(7))
.

The solution of Eq. (4.1) is computed and depicted in Fig. 1.
By Theorem 3.2, problem (4.1) has a solution and is Hyers–Ulam–Mittag-Leffler stable

with

∣∣H(x) – H0(x)
∣∣ ≤

∣∣∣∣
∫ ∞

0
η(μ)

1√
(1 + exp(7))

dμ

∣∣∣∣

≤ KεE1,2
(
x1).

Example 4.2 Consider the following differential equation:

H′′(x) + 4iH(x) = 0, lim|x|→∞H(x) = 0, (4.2)

and the inequality

∣∣H′′(x) + 4iH(x)
∣∣ ≤ εE2

(
x2) ∀x ∈R,

where H ∈ L′(R).
Comparing with (3.10) and (3.11), we have, for α = 2, a = 0 and b = 4i.
Using MATLAB, the solution of Eq. (4.2) is computed and depicted in Fig. 2.
By Theorem 3.4, problem (4.2) has a solution and is Hyers–Ulam–Mittag-Leffler stable

with

∣∣H(x) – H0(x)
∣∣ ≤ ε

2
√

2(1 – i)

∞∑

k=0

1
Γ (2k + 1)

∫ x

0
μ2k dμ

≤ KεE2,2
(
x2) ∀x ∈ R.
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Figure 2 The solution of Eq. (4.2)

Figure 3 The solution of Eq.(4.3)

Example 4.3 Consider the following differential equation:

H′′(x) +
1
6
H′(x) –

1
6
H(x) = 0, lim|x|→∞H(x) = 0, (4.3)

and the inequality

|H′′(x) +
1
6
H′(x) –

1
6
H(x) = 0| ≤ εE2

(
x2) ∀x ∈R,

where H ∈ L′(R).
Comparing with (3.10) and (3.11), we have, for α = 2, a = 1

6 and b = 1
6 .

Using MATLAB, the solution of Eq. (4.3) is computed and depicted in Fig. 3.
By Theorem 3.4, problem (4.3) has a solution and is Hyers–Ulam–Mittag-Leffler stable

with

∣∣H(x) – H0(x)
∣∣ ≤ 6ε

5

∞∑

k=0

1
Γ (2k + 1)

∫ x

0
μ2k(e

–1
2 (x–μ) – e

1
3 (x–μ))dμ

≤ KεE2,2
(
x2),

where K = 6
5 .
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5 Conclusion
This research has made an attempt to analyze the Mittag-Leffler–Hyers–Ulam and
Mittag-Leffler–Hyers–Ulam–Rassias stability of linear differential equation with constant
coefficients. Also we have showed that the Mittag-Leffler function and Fourier transform
play an immodest role to prove the stability of differential equation. This new method
of stability unifies different classes of differential equations, which may inspire further
research in this domain.
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