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Abstract
This paper is devoted to studying a stochastic patch structure Nicholson’s blowflies
system with mixed delays which is a new model for the generalization of classic
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Finally, numerical simulations verify theoretical results of the present paper.
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1 Introduction
Deterministic Nicholson’s blowflies models (including their various generalized forms)
have been extensively studied, see e.g. [1–6]. In [7], Wang studied a class of impulsive
stochastic Nicholson’s blowflies models with patch structure and nonlinear harvesting
terms on time scales and obtained the existence and exponential stability of piecewise
mean-square almost periodic solutions for the model by using the contraction mapping
principle and the Gronwall–Bellman inequality technique. The authors [8] considered a
class of impulsive stochastic Nicholson’s blowflies models. By applying Cauchy matrix,
they obtained the existence and exponential stability of square-mean almost periodic so-
lutions for the model with multiple nonlinear harvesting terms and delays. In recent years,
the research for stochastic Nicholson’s blowflies models has gradually become a hot topic.
In 2019, Wang et al. [9] studied a stochastic Nicholson’s blowflies delayed differential equa-
tion. After that, Zhu et al. [10] generalized the equation in [9] to the stochastic Nicholson’s
blowflies delay differential equation with regime switching.

Furthermore, behaviors of population model are influenced and determined by incor-
porating migration [11]. Hence, adding patch structure term in the Nicholson’s blowflies
models appears to be necessary. In 2001, Berezansky et al. [12] investigated a deterministic
Nicholson’s blowflies system with patch structure as follows:

⎧
⎨

⎩

x′
1(t) = –(a1 + b2)x1(t) + b1x2(t) + p1x1(t – τ )e–γ1x1(t),

x′
2(t) = –(a2 + b1)x2(t) + b2x1(t) + p2x2(t – τ )e–γ2x2(t).

(1.1)
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Then, in 2019, Wang, Shi, and Chen [13], Yi and Liu [14] generalized Nicholson’s blowflies
system in [12] to the following two-dimensional stochastic system:

⎧
⎨

⎩

dx1(t) = [–(a1 + b2)x1(t) + b1x2(t) + p1x1(t – τ )e–γ1x1(t)] dt + σ1x1(t) dB1(t),

dx2(t) = [–(a2 + b1)x2(t) + b2x1(t) + p2x2(t – τ )e–γ2x2(t)] dt + σ2x2(t) dB2(t).
(1.2)

For more results about Nicholson’s blowflies system, see e.g. [15–17].
Motivated by the above discussions, this paper is devoted to studying a stochastic

Nicholson’s blowflies system involving mixed delays and patch structure as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = [–a11(t) + b11(t)e–x1(t) + a12(t) – b12(t)e–x2(t)

+ α11(t)x1(t – τ11(t))e–β11(t)x1(t–γ11(t))

+ α12(t)x1(t – τ12(t))e–β12(t)x1(t–γ12(t))] dt + σ1(t)x1(t) dB1(t),

dx2(t) = [–a22(t) + b22(t)e–x2(t) + a21(t) – b21(t)e–x1(t)

+ α21(t)x2(t – τ21(t))e–β21(t)x2(t–γ21(t))

+ α22(t)x2(t – τ22(t))e–β22(t)x2(t–γ22(t))] + σ2(t)x2(t) dB1(t),

(1.3)

with the initial condition

xi(t) = φi(t) ∈ C
(
[–τ , 0],R+)

, t ∈ [–τ , 0], i = 1, 2, (1.4)

which has the maximum norm ‖ · ‖, where R
+ = (0,∞), τ = maxt≥0{τij(t),γij(t), i, j = 1, 2}.

For i, j = 1, 2, aij, bij, αij, βij, σi(t), τij(t), and γij(t), are all positive continuous func-
tions. When the case τij = γij (i, j = 1, 2), there exist lots of results, see [9–12]. For i, j =
1, 2, aii(t) – bii(t)e–xi(t) is a density-dependent mortality term in ith patch; αij(t)xi(t –
τij(t))e–βij(t)xi(t–γij(t)) is a birth function with maturation delay τij and feedback delay γij;
Bi(t) is the standard Brownian motion defined on a complete probability space (Ω ,F ,P)
with a filtration {Ft}t≥0. Throughout this paper, denote f + = supt≥0 f (t), f – = inft≥0 f (t).

The main highlights list as follows:
(1) We study a new stochastic model which is a generalization of the classic Nicholson’s

blowflies system;
(2) We develop a stochastic analysis technique for studying dynamic properties of the

stochastic Nicholson’s blowflies system.
The following sections are organized as follows: In Sect. 2, we obtain some sufficient

conditions for global existence and uniqueness to a positive solution of system (1.3). In
Sect. 3, we obtain stochastically ultimate boundedness positive solution of system (1.3).
Section 4 gives global asymptotic stability of system (1.3). In Sect. 5, a numerical example
verifies the accuracy of the results in the present paper. Section 6 contains some conclu-
sions of this paper and further research for the topic of this paper.

2 Existence and uniqueness of global positive solution
Theorem 2.1 For any given initial data (1.4), there is a unique positive solution (x1(t),
x2(t))� on [–τ ,∞) and the solution will remain in R

+ ×R
+ with probability one.

Proof The proof method of this theorem comes from Theorem 2.1 in Sect. 11.2 of [18].
Since the coefficients of (1.3) satisfy the local Lipschitz condition, then for any given initial
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condition (1.4), there exists a unique local solution x1(t) and x2(t) on [τ , τb), where τb is
explosion time. For showing this solution is global, we shall prove τb = ∞ a.s. Let k0 > 0 be
sufficiently large for initial values (1.4) in ( 1

k0
, k0). For each k > k0, define the stopping time

τn = inf

{

t ∈ [0, τb), xi(t) /∈
(

1
k0

, k0

)

, i = 1, 2
}

.

Obviously, τn is increasing as n → ∞ and τ∞ ≤ τb a.s. Set inf∅ = ∞, where ∅ is an empty
set. We claim that if τ∞ = ∞, then τb = ∞ and xi(t) ∈ R

+ for i = 1, 2, t ≥ 0. If not, there
exist constants T > 0 and ε ∈ (0, 1) such that P(τ∞ ≤ T) > ε. Thus, there exists a number
n1 > n0 such that P(τ∞ ≤ T) > ε for n > n1. Define a C2-function V : R+ × R

+ → R
+ by

V (x1, x2) =
∑2

i=1(xi – 1 – ln xi). Itô’s formula shows that

dV (x1, x2) =
[(

1 –
1
x1

)

F(x1, x2) +
σ 2

1
2

]

dt + σ1(x1 – 1) dB1(t)

+
[(

1 –
1
x2

)

G(x1, x2) +
σ 2

2
2

]

dt + σ2(x2 – 1) dB2(t), (2.1)

where

F(x1, x2) = –a11(t) + b11(t)e–x1(t) + a12(t) – b12(t)e–x2(t)

+ α11(t)x1
(
t – τ11(t)

)
e–β11(t)x1(t–γ11(t))

+ α12(t)x1
(
t – τ12(t)

)
e–β12(t)x1(t–γ12(t)),

G(x1, x2) = –a22(t) + b22(t)e–x2(t) + a21(t) – b21(t)e–x1(t)

+ α21(t)x2
(
t – τ21(t)

)
e–β21(t)x2(t–γ21(t))

+ α22(t)x2
(
t – τ22(t)

)
e–β22(t)x2(t–γ22(t)).

(2.2)

Compute the term in (2.1):

(

1 –
1
x1

)

F(x1, x2)

=
(

1 –
1
x1

)
[
–a11(t) + b11(t)e–x1(t) + a12(t) – b12(t)e–x2(t)

+ α11(t)x1
(
t – τ11(t)

)
e–β11(t)x1(t–γ11(t)) + α12(t)x1

(
t – τ12(t)

)
e–β12(t)x1(t–γ12(t))]

≤
(

1 –
1
x1

)
[
–a11 + a12 + b11e–x1 – b12e–x2

+ α11
(‖φ1‖ + x1

)
e–β11(t)x1 + α12

(‖φ1‖ + x1
)
e–β12(t)x1

]

≤ a+
12 + b+

11 + α+
11‖φ1‖ +

α+
11

β–
11e

+ α+
12‖φ1‖ +

α+
12

β–
12e

:= K1, (2.3)

where we use supx∈R+ xe–x = 1
e . Similar to the above proof, we gain

(

1 –
1
x2

)

G(x1, x2) ≤ a+
21 + b+

22 + α+
21‖φ2‖ +

α+
21

β–
21e

+ α+
22‖φ2‖ +

α+
22

β–
22e

:= K2. (2.4)



Yin et al. Advances in Difference Equations        (2020) 2020:386 Page 4 of 11

Let

LV(x1, x2) =
(

1 –
1
x1

)

F(x1, x2) +
σ 2

1
2

+
(

1 –
1
x2

)

G(x1, x2) +
σ 2

2
2

.

By (2.3) and (2.4), there is a constant K > 0 such that

LV(x1, x2) ≤ K . (2.5)

Integrating both sides of (2.5) from –τ to τn ∧ T and taking the expectation E, it follows
by (2.1) that

EV
(
x1(τn ∧ T), x2(τn ∧ T)

) ≤ V
(
x1(–τ ), x2(–τ )

)
+ K(t + τ ).

Let Θn = {τn ≤ T}, then P(Θn) ≥ ε. Then, for each ϑ ∈ Θn, x1(τn,ϑ) or x2(τn,ϑ) equals n
or 1

n Thus, V (x1(τn ∧ T), x2(τn ∧ T)) is no less than (n – 1 – ln n) ∧ ( 1
n – ln n). Thus,

V
(
x1(–τ ), x2(–τ )

)
+ K(t + τ ) ≥ E

[
1Θn V

(
x1(τn), x2(τn)

)]

≥ P(Θn)
[

(n – 1 – ln n) ∧
(

1
n

– ln n
)]

≥ ε

[

(n – 1 – ln n) ∧
(

1
n

– ln n
)]

,

where 1Θn is the indicator function of Θn. Letting n → ∞ leads to ∞ > V (x1(–τ ), x2(–τ )) +
KT = ∞, which is a contradiction. So we gain τ∞ = ∞ a.s. The proof is finished. �

3 Stochastically ultimate boundedness
Definition 3.1 System (1.3) is said to be stochastically ultimately bounded if, for ε ∈ (0, 1),
there exists a constant L(ε) such that, for any initial data (1.4), the solution x = (x1, x2)� of
(1.3) satisfies

lim
t→∞ supP

{∣
∣x(t)

∣
∣ ≤ L

} ≥ 1 – ε.

Lemma 3.1 Let γ ∈ (0, 1). There is a constant M(γ ) > 0 which is independent initial data
(1.4) such that the solution x = (x1, x2)� of (1.3) satisfies limt→∞ supE|x(t)|γ ≤ M.

Proof Let V (x1, x2) = xγ
1 + xγ

2 for γ ∈ (0, 1), x1, x2 > 0. Itô’s formula shows that

dV (x1, x2) = LV (x1, x2) dt + σ1γ xγ
1 dB1(t) + σ2γ xγ

2 dB2(t), (3.1)

where

LV (x1, x2) = γ xγ –1
1 F(x1, x2) + 0.5γ (γ – 1)σ 2

1 xγ
1

+ γ xγ –1
2 G(x1, x2) + 0.5γ (γ – 1)σ 2

2 xγ
2 , (3.2)
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F(x1, x2) and G(x1, x2) are defined by (2.2). Compute the term in (3.2):

γ xγ –1
1 F(x1, x2) = γ xγ –1

1
[
–a11(t) + b11(t)e–x1(t) + a12(t) – b12(t)e–x2(t)

+ α11(t)x1
(
t – τ11(t)

)
e–β11(t)x1(t–γ11(t))

+ α12(t)x1
(
t – τ12(t)

)
e–β12(t)x1(t–γ12(t))]

≤ γ b+
11 + γ a+

12 + γα+
11‖φ1‖ +

γα+
11

β–
11e

+ γα+
12‖φ1‖ +

γα+
12

β–
12e

:= M1, (3.3)

where we use supx∈R+ xe–x = 1
e . Similar to the above proof, we have

γ xγ –1
1 G(x1, x2) ≤ γ b+

22 + γ a+
21 + γα+

21‖φ1‖ +
γα+

21
β–

21e
+ γα+

22‖φ1‖ +
γα+

22
β–

22e
:= M2. (3.4)

In view of (3.1)–(3.4), we have

dV (x1, x2) = (M1 + M2) dt + σ1γ xγ
1 dB1(t) + σ2γ xγ

2 dB2(t). (3.5)

By (3.5) we gain

d
[
etV (x1, x2)

]
= et[V (x1, x2) dt + dV (x1, x2)

]

≤ et(M1 + M2) dt + etσ1γ xγ
1 dB1(t) + etσ2γ xγ

2 dB2(t),

and et
EV (x1, x2) ≤ V (x1(0), x2(0)) + (M1 + M2)et – M1 – M2, which implies

limt→∞ supEV (x1, x2) ≤ M1 + M2. Furthermore, |x|2 ≤ 2(max{x1, x2})2, which implies

|x|γ ≤ 2
γ
2
(
max{x1, x2}

)γ ≤ 2
γ
2 V (x1, x2).

Thus,

lim
t→∞ supE|x|γ ≤ 2

γ
2 (M1 + M2) := M. �

Theorem 3.1 System (1.3) is stochastically ultimately bounded.

Proof By Lemma 3.1, there exists a positive constant K > 0 such that

lim
t→∞ supE|x| 1

2 ≤ K .

Let H = K2

ε2 . Then, for any ε > 0, by Chebyshev’s inequality, we have

P
{∣
∣x(t)

∣
∣ > H

} ≤ E|x| 1
2

H 1
2

= ε.

Thus,

lim
t→∞ supP

{∣
∣x(t)

∣
∣ ≤ H

} ≥ 1 – ε. �
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4 Global asymptotic stability
Definition 4.1 For any two positive solutions (x1(t), x2(t))� and (y1(t), y2(t))� of system
(1.3), system (1.3) is said to be globally asymptotically stable if

lim
t→∞

∣
∣x1(t) – x2(t)

∣
∣ = lim

t→∞
∣
∣y1(t) – y2(t)

∣
∣ = 0 a.s.

Lemma 4.1 Let (x1(t), x2(t))� be a solution of (1.3) with initial data (1.4). Then there exist
constants L(p), G(p) > 0 such that

E
[
xp

1(t)
] ≤ L(p) and E

[
xp

2(t)
] ≤ G(p) for all p > 1, t ≥ –τ . (4.1)

Furthermore, each solution (x1(t), x2(t))� of system (1.3) is uniformly continuous on t ≥ 0.

Proof Define V (u) = up for u > 0 and p > 1. Itô’s formula shows that

dV (x1) =
[
pxp–1

1 F(x1, x2) + 0.5σ 2
1 p(p – 1)xp

1
]

dt + σ1pxp
1 dB1(t), (4.2)

where F(x1, x2) is defined by (2.2). Use Itô’s formula again to etV (x1) and (4.2), then

d
[
etV (x1)

]
= etV (x1) dt + et dV (x1)

=
[
etxp

1 + etpxp–1
1 F(x1, x2) + 0.5etσ 2

1 p(p – 1)xp
1
]

dt + etσ1pxp
1 dB1(t). (4.3)

Integrate both sides of (4.3) from –τ to t and and take expectations, then

E
[
etxp

1
] ≤ φ

p
1 (–τ ) + E

∫ t

–τ

esxp
1(s)

[
1 + pb11e–x1 + pa12 + pα11

(‖φ1‖ + x1
)
e–β11x1

+ pα12
(‖φ1‖ + x1

)
e–β12x1 + 0.5p(p – 1)σ 2

1
]

ds

≤ φ
p
1 (–τ ) + E

∫ t

–τ

esxp
1(s)

[

1 + pb+
11 + pa+

12 + pα+
11‖φ1‖ +

pα+
11

β–
11e

+ pα+
12‖φ1‖ +

pα+
12

β–
12e

+ 0.5p(p – 1)
(
σ 2

1
)+

]

ds.

Thus,

E
[
etxp

1
] ≤ φ

p
1 (–τ ) +

∫ t

–τ

L1(p)E
[
esxp

1
]

ds,

where

L1(p) = 1 + pb+
11 + pa+

12 + pα+
11‖φ1‖ +

pα+
11

β–
11e

+ pα+
12‖φ1‖ +

pα+
12

β–
12e

+ 0.5p(p – 1)
(
σ 2

1
)+.

By Gronwall’s inequality, we have E[etxp
1] ≤ φ

p
1 (–τ )eL1(p)(t+τ ). Hence, there exists a constant

T > 0 such that E[xp
1(t)] ≤ 2eL1(p) for all t ≥ T . Due to E[xp

1(t)] is continuous, there exists a
constant L2 > 0 such that E[xp

1(t)] ≤ L2 for all t ∈ [–τ , T]. Let L(p) = max{2eL1(p), L2,‖φ1‖},
thenE[xp

1(t)] ≤ L(p) for all t ≥ –τ . Similar to the above proof, there exists a constant G(p) >
0 such that E[xp

2(t)] ≤ G(p) for all t ≥ –τ . �
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Lemma 4.2 ([19]) Assume that an n-dimensional stochastic process X on t ≥ 0 satisfies
the condition

E
∣
∣X (t) – X (s)

∣
∣k1 ≤ c|t – s|1+k2 for t, s ≥ 0,

where k1, k2, and c are positive constants. Then there is a continuous modification X (t) of
X (t) such that

P

{

ω : sup
0<|t–s|<h(ω)

X (t) – X (t)
|t – s|θ ≤ 2

1 – 2–θ

}

= 1,

where h(ω) is a positive random variable, θ ∈ (0, k2
k1

). In other words, almost every sample
path of X (t) is locally but uniformly Hölder continuous with exponent θ .

Lemma 4.3 Let (x1(t), x2(t))� be a solution of (1.3) with initial data (1.4). Then almost
every sample path of (x1(t), x2(t))� is uniformly continuous on t ≥ 0.

Proof The first equation of system (1.3) is equivalent to the following stochastic integer
equation:

x1(t) = φ1(0) +
∫ t

0

[
–a11(s) + b11(s)e–x1(s) + a12(s) – b12(s)e–x2(s)

+ α11(s)x1
(
s – τ11(s)

)
e–β11(s)x1(s–γ11(s))

+ α12(s)x1
(
s – τ12(s)

)
e–β12(s)x1(s–γ12(s))]ds +

∫ t

0
σ1(s)x1(s) dB1(s). (4.4)

By (4.1), computing the term in (4.4), we gain

E
∣
∣F(x1, x2)

∣
∣p ≤ E

∣
∣a+

11 + b+
11 + a+

12 + b+
12 + α+

11‖φ1‖ + α+
11x1 + α+

12‖φ1‖ + α+
12x1

∣
∣p

≤ 2p–1[(a+
11 + b+

11 + a+
12 + b+

12 + α+
11‖φ1‖ + α+

12‖φ1‖
)p +

(
α+

11 + α+
12

)
Exp

1
]

≤ E
∣
∣a+

11 + b+
11 + a+

12 + b+
12 + α+

11‖φ1‖ + α+
11x1 + α+

12‖φ1‖ + α+
12x1

∣
∣p

≤ 2p–1[(a+
11 + b+

11 + a+
12 + b+

12 + α+
11‖φ1‖ + α+

12‖φ1‖
)p +

(
α+

11 + α+
12

)
L(p)

]

:= L1(p). (4.5)

Furthermore, by moment inequality for stochastic integrals, for 0 ≤ t1 ≤ t2 and p > 2, we
gain

E

∣
∣
∣
∣

∫ t2

t1

σ1(t)x1(t) dB1(t)
∣
∣
∣
∣

p

≤ [(
σ 2

1
)+]p[0.5p(p – 1)

] p
2 (t2 – t1)

p
2 –1

∫ t2

t1

E
∣
∣x1(t)

∣
∣p dt

≤ [(
σ 2

1
)+]p[0.5p(p – 1)

] p
2 (t2 – t1)

p
2 L(p). (4.6)

�



Yin et al. Advances in Difference Equations        (2020) 2020:386 Page 8 of 11

In view of (4.4)–(4.6), for 0 ≤ t1 ≤ t2, t2 – t1 ≤ 1, and p > 2, we have

E
∣
∣x1(t2) – x1(t1)

∣
∣p = E

∣
∣
∣
∣

∫ t2

t1

F
(
x1(t), x2(t)

)
dt +

∫ t2

t1

σ1(t)x1(t) dB1(t)
∣
∣
∣
∣

p

≤ 2p–1
E

∣
∣
∣
∣

∫ t2

t1

F
(
x1(t), x2(t)

)
dt

∣
∣
∣
∣

p

+ 2p–1
E

∣
∣
∣
∣

∫ t2

t1

σ1(t)x1(t) dB1(t)
∣
∣
∣
∣

p

≤ 2p–1L1(p)p(t2 – t1)p + 2p–1[(σ 2
1
)+]p[0.5p(p – 1)

] p
2 (t2 – t1)

p
2 L(p)

≤ (
2p–1L1(p)p + 2p–1[(σ 2

1
)+]p[0.5p(p – 1)

] p
2 L(p)

)
(t2 – t1)

p
2 .

By Lemma 4.2, almost every path of x1(t) is locally but uniformly Hölder continuous with
exponent θ ∈ (0, p–2

2p ). Similar to the above proof, almost every path of x2(t) is locally but
uniformly Hölder continuous.

Lemma 4.4 ([20]) Let f be a nonnegative function defined on [0,∞) which is integrable
and is uniformly continuous. Then limt→∞ f (t) = 0.

Theorem 4.1 If (a11 –a12)– –b+
11 –α+

11‖φ1‖–α+
11 > 0 and (a22 –a21)– –b+

22 –α+
21‖φ2‖–α+

21 >
0, then system (1.3) is globally asymptotically stable.

Proof For any two positive solutions (x1(t), x2(t))� and (y1(t), y2(t))� of (1.3), define V(t)
on t ≥ 0 by V(t) = | ln x1(t) – ln x2(t)| + | ln y1(t) – ln y2(t)|. Compute the right differential of
V(t)

d+V(t) = sgn(x1 – x2)
[(

1
x1

–
1
x2

)

F(x1, x2) + 0.5σ 2
1
(
x2

1 – x2
2
)
]

+ sgn(y1 – y2)
[(

1
y1

–
1
y2

)

G(y1, y2) + 0.5σ 2
2
(
y2

1 – y2
2
)
]

≤ –
[
(a11 – a12)– – b+

11 – α+
11‖φ1‖ – α+

11
]|x1 – x2|dt

–
[
(a22 – a21)– – b+

22 – α+
21‖φ2‖ – α+

21
]|y1 – y2|dt. (4.7)

In view of assumptions of Theorem 4.1, integrating both sides of (4.7) leads to

V (t) +
∫ t

0

[
(a11 – a12)– – b+

11 – α+
11‖φ1‖ – α+

11
]∣
∣x1(s) – x2(s)

∣
∣ds

+
∫ t

0

[
(a22 – a21)– – b+

22 – α+
21‖φ2‖ – α+

21
]∣
∣y1(s) – y2(s)

∣
∣ds

≤ V (0) < ∞.

Thus, |x1(t) – x2(t)|, |y1(t) – y2(t)| ∈ L1[0,∞) and the desired assertion follows from Lem-
mas 4.3 and 4.4 immediately. �
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5 Numerical examples
Consider the following example:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = [–(12 + sin t) + (2 + sin t)e–x1(t) + 2 – sin t – (2 – sin t)e–x2(t)

+ (2 – sin2 t)x1(t – 1)e–(2+sin2 t)x1(t–1.5)

+ (2 – cos2 t)x1(t – 1)e–(2+cos2 t)x1(t–1.2)] dt + 0.2x1(t) dB1(t),

dx2(t) = [–(12 – cos2 t) + (2 – cos t)e–x2(t) + 2 – cos2 t – (2 – cos2 t)e–x1(t)

+ (2 – cos2 t)x2(t – 1.5)e–(3+sin2 t)x2(t–1.2)

+ (2 + cos2 t)x2(t – 0.5)e–(3+cos2 t)x2(t–1.2)] dt + 0.1x2(t) dB2(t),

(5.1)

where

a11(t) = 12 + sin t, b11(t) = 2 + sin t, a12(t) = 2 – sin t, b12(t) = 2 – sin t,

α11(t) = 2 – sin2 t, τ11(t) = 1, β11(t) = 2 + sin2 t, γ11(t) = 1.5,

α12(t) = 2 – cos2 t, τ12(t) = 0.5, β12(t) = 2 + cos2 t, γ12(t) = cos2 π t
2

,

σ1 = 0.2,

a22(t) = 12 – cos2 t, b22(t) = 2 – cos t, a21(t) = 2 – cos2 t,

b21(t) = 2 – cos2 t,

α21(t) = 2 – cos2 t, τ21(t) = 1.5, β21(t) = 3 + sin2 t, γ21(t) = 1.2,

α22(t) = 2 + cos2 t, τ22(t) = 0.5, β22(t) = 3 + cos2 t, γ21(t) = 1.2,

σ2 = 0.1.

Obviously, τ = max{τij,γij, i, j = 1, 2} = 1.5, then the initial value of system (4.2) takes xi(t) =
φi(t) = sin2 t, i = 1, 2, t ∈ [–1.5, 0]. After simple calculation, we have

(a11 – a12)– = 10, b+
11 = 3, α+

11 = 2, ‖φ1‖ = 1,

(a11 – a12)– – b+
11 – α+

11‖φ1‖ – α+
11 = 3 > 0,

(a22 – a21)– = 8, b+
22 = 3, α+

21 = 2, ‖φ2‖ = 1,

(a22 – a21)– – b+
22 – α+

21‖φ2‖ – α+
21 = 1 > 0.

Then the conditions of Theorem 4.1 hold and system (5.1) is globally asymptotically stable.
The numerical solutions with proper initial values are shown in Fig. 1.

6 Conclusions
In this paper, we study a patch structure stochastic Nicholson’s blowflies system with
mixed delay and obtain some very simple conditions for guaranteeing the existence and
global asymptotic stability of the considered system. It is interesting that the delays of sys-
tem (1.3) are not the same, which is different from the corresponding ones of the past work.
The methods in this paper can be extended to study other types of differential dynamic
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Figure 1 State trajectories of system (5.1) for x(t)

systems such as stochastic differential impulsive equations, stochastic fractional differen-
tial equations, etc. We hope other researchers can use the method provided in this article
to do more in-depth research on various types of stochastic differential dynamic systems.
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