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Abstract
This paper aims to discuss a generalization of certain paraxial diffraction integral
operator in a class of generalized functions. At the start of this paper, we propose a
convolution formula and establish certain convolution theorem. Then, with the
addition to the convolution theorem, we consider a set of approximating identities
and substantially employ our results in generating sets of integrable and locally
integrable Boehmians. The said generalized integral operator is tested and declared
to be one-to-one and onto mapping. Continuity of the generalized operator with
respect to the convergence of the Boehmian spaces is obtained. Over and above, an
inversion formula and consistency results are also counted.
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1 Introduction
The Fresnel integral operator is a paraxial diffraction integral operator, which describes
the propagation of light from one transverse plane along the optical axis to another. In the
one-dimensional case, it has been defined by aid of the integral equation (see, e.g., [1])

v̂(x) = ei2πd/λe–iπ/4
√

1
λd

∫ ∞

–∞
exp

(

iπ (x – x́)2

λd

)

v(x́) dx́, (1)

where v̂ is the output field related to the input field v, d is the distance of the propagation
of light, and λ is the length of the wave. When va specifies the fractional Fourier integral
operator with order parameter a, the Fresnel integral operator can be explicitly decom-
posed into the fractional Fourier integral operator va followed by magnification and chirp
multiplication as follows (see, e.g., [2]):

v̂(x) = ei2πd/λe–iaπ/4
√

1
sM

exp

(

iπx2

λŔ

)

va

(

x
sM

)

,
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where

a =
2
π

arctan
λd
s2 , M =

√

1 +
λ2d2

s4 = sec
aπ

2
and Ŕ =

s4 + λ2d2

λ2d
= d csc2 aπ

2
.

In the last era, the Fresnel integral operator has been implemented widely in Fourier optics
(see, e.g., [2]), phase retrieval techniques (see, e.g., [3–5]), digital holography (see, e.g., [6–
9] and [10–13]), biological imaging applications (see, e.g., [14, 15]), beam shaping (see, e.g.,
[16, 17]), deformations (see, e.g., [18–20]), and many other areas of integral inequalities
and the porous medium (see, e.g., [21–23]).

The name Boehmians is used to describe a space of objects that are defined as equiv-
alence classes of pairs of sequences. Boehmians are constructed by using a set of axioms
with two notions of convergence called δ-convergence and �-convergence. One of these
axioms states that the denominator sequences are set to form a commutative semigroup
with respect to a binary operation. To a context of Boehmians, certain variants of the Fres-
nel operator were extended to classes of Boehmians. In [24], a generalized Fresnel integral
operator was discussed on a class of distributions and a space of integrable Boehmians.
In [25], a diffraction Fresnel integral operator was discussed on strong Boehmian spaces.
Likewise, in literature, various integral operators were discussed and thoroughly applied to
various spaces of Boehmians, see for example [6, 10, 11, 26–37] and the references cited
therein. However, in this approach, we discuss a new version of paraxial diffraction op-
erators. We derive convolution products, convolution theorems, sets of Boehmians, and
certain generalization of the diffraction operator. In contrast to profitable approaches fur-
nished in [24] and [25], our results are new and distinguishable. In Sect. 2, we introduce
convolution products and delta sequences, and extract various results. In Sect. 3, we pro-
vide several axioms and generate appropriate sets of Boehmians. In Sect. 4, we derive the
generalized Fresnel integral and examine its desired properties.

2 Convolution theorem and delta sequences
In this section, we make use of the integral formula of the Fresnel operator and derive
meritorious convolution products and delta sequences. On this basis, we consequently
implement our results in constructing the integral convolution theorem. The very pre-
requisite convolution product to this variant can be earned as follows.

Definition 1 Let v1 and v2 be integrable functions in the space L1. Then the product for-
mula ∗ between v1 and v2 is defined as follows:

v1 ∗ v2(x́) =
∫ ∞

–∞
v1(w)v2(x́ – w)W (x́, w) dw, (2)

where

W (x́, w) = exp

(

2iw
π (w – x́)

λd

)

is the proposed weight function, d is the distance of the propagation of light, and λ is the
length of the wave.
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Denote by L1 the set of all integrable functions on R. Then, for the convenience of the
reader, we drop the leading constant phase term L = exp(i2πd/λ) exp(–iπ/4) for the rest
of the analysis.

The convolution theorem of the classical Fresnel integral can be drawn as follows.

Theorem 2 Let v1 and v2 be two integrable functions in L1. Then the Fresnel integral op-
erator of the convolution product v1 ∗ v2 is given by

v̂1 ∗ v2(x) =
exp(–iπx2/λd)

L
v̂1(x)̂v2(x),

where L = exp(i2πd/λ) exp(–iπ/4).

Proof Let v1 and v2 be integrable functions over R. Then, by applying (1), we routinely
write

v̂1 ∗ v2(x) =
∫ ∞

–∞
exp

(

iπ (x – x́)2

λd

)

(v1 ∗ v2)(x́) dx́.

Hence, in view of (2), we get

v̂1 ∗ v2(x) =
∫ ∞

–∞
exp

(

iπ (x – x́)2

λd

)∫ ∞

–∞
v1(w)v2(x́ – w)W (x́, w) dw dx́. (3)

By taking into account the definition of W and using the change of variables z = x́ – w
together with Fubini’s theorem, we modify (3) as

v̂1 ∗ v2(x) =
∫ ∞

–∞
v̂1(w)

∫ ∞

–∞
exp

(

iπ (z2 + w2 – 2(z + w)x + x2)
λd

)

v̂2(z) dw dz.

Therefore, modifying and splitting out the exponent term under the integral sign in the
previous equation yield

v̂1 ∗ v2(x) =
∫ ∞

–∞
v1(w)

∫ ∞

–∞
exp

(

iπ ((z + w)2 + (w – x)2 – x2)
λd

)

v2(z) dz dw

= e–iπx2/λd
∫ ∞

–∞
exp

(

iπ (w – x)2

λd

)

v1(w) dw
∫ ∞

–∞
exp

(

iπ (z – x)2

λd

)

v2(z) dz.

Hence, by taking into account the value of the leading constant phase term, we, indeed,
obtain

v̂1 ∗ v2(x) =
exp(–iπx2/λd)

L
v̂1(x)̂v2(x).

Hence, the proof of the theorem has been completed. �

For deterministic needs, we establish the following very useful theorem.

Theorem 3 Let v1 and v2 be two integrable functions in L1. Then the convolution product
v1 ∗ v2 is an integrable function in L1.
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Proof Let v1 and v2 be in L1. Then, by aid of the fact that |W (x́, w)| ≤ 1, we write
∫ ∞

–∞

∣

∣v1 ∗ v2(x́)
∣

∣dx́ ≤
∫ ∞

–∞

∫ ∞

–∞

∣

∣v1(w)
∣

∣

∣

∣v2(x́ – w)
∣

∣dw dx́.

Hence, by using Fubini’s theorem, the previous integral inequality yields
∫ ∞

–∞

∣

∣v1 ∗ v2(x́)
∣

∣dx́ ≤
∫ ∞

–∞

∣

∣v1(w)
∣

∣

∫ ∞

–∞

∣

∣v2(x́ – w)
∣

∣dx́ dw < ∞.

The proof of the theorem is, therefore, completed. �

The fact which deserves further attention is that v̂ ∈ L1 for every v ∈ L1. Based upon this
conjecture, we may think about the delta sequence choice. Indeed, by following (1), we
deduce that

v̂(0) = L
∫ ∞

–∞
exp

(

iπ x́2

λd

)

v(x́) dx́.

Therefore, a wise choice of the description of delta sequences can be expressed in the
following way.

Definition 4 Let D denote the Schwartz space of test functions of compact supports over
R. By � we denote the collection of all sequences from D such that

∫ ∞

–∞
exp

(

iπ x́2

λd

)

wn(x́) dx́ = 1. (4)

∫ ∞

–∞

∣

∣

∣

∣

exp

(

iπ x́2

λd

)

wn(x́)
∣

∣

∣

∣

dx́ < A, A < ∞. (5)

supp(wn)(x́) ⊆ (–an, an), an → 0 as n → ∞, (6)

where supp(w) is the support function of w. The following assertion holds for the delta
sequences.

Theorem 5 Let (wn) and (un) be two sequences in �. Then (wn ∗ un) is a sequence in �.

Proof Firstly, we show that the integral equation

∫ ∞

–∞
exp

(

iπ x́2

λd

)

(wn ∗ un)(x́) dx́ = 1

is satisfied for � sequences. By Theorem 2 we are allowed to write

ŵn ∗ un(0) =
1
L

ŵn(0)̂un(0). (7)

Therefore, using (4), (7) may give

L
∫ ∞

–∞
exp

(

iπ x́2

λd

)

(wn ∗ un)(x́) dx́ =
1
L

(

L
∫ ∞

–∞
exp

(

iπ x́2

λd

)

wn(x́) dx́
)

×
(

L
∫ ∞

–∞
exp

(

iπ x́2

λd

)

un(x́) dx́
)

. (8)
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Hence, owing to the fact that (wn) and (un) are delta sequences in �, (8) then reveals

∫ ∞

–∞
exp

(

iπ x́2

λd

)

(wn ∗ un)(x́)dx́ = 1 for all n ∈N.

This proves (4). Proofs of (5) and (6), namely,

∫ ∞

–∞

∣

∣

∣

∣

exp

(

iπ x́2

λd

)

(wn ∗ un)(x́)
∣

∣

∣

∣

dx́ < A, A < ∞,

and

supp(wn ∗ un)(x́) ⊆ (–an, an), an → 0 as n → ∞,

respectively, are straightforward results from the definitions. Hence, we delete the details
of the similar proofs. �

This completes the proof of the theorem.

3 Fresnel integrable spaces of Boehmians
We devote this section to the abstract construction of the space BS of integrable Boehmi-
ans and the space HS of ultra-Boehmians. We make a free use of the convolution theorem
and define the convolution product which works in with the convolution ∗. To derive the
generalized space BS of integrable Boehmians, we establish the following exemplary ax-
ioms.

Theorem 6 The following identities hold:
(i) (v1 + v2) ∗ un = v1 ∗ un + v2 ∗ un, where v1, v2 ∈ L1, n ∈N, and un ∈ D.

(ii) (αv) ∗ un = α(v ∗ un), where un ∈ D, v ∈ L1, n ∈N, and α ∈C.
(iii) If vn → v as n → ∞ in L1 and un ∈ D, then vn ∗ ψ → v ∗ ψ as n → ∞.
(iv) v1 ∗ v2 = v2 ∗ v1 for v1, v2 ∈ L1.
(v) v1 ∗ (u1 ∗ u2) = (v1 ∗ u1) ∗ u2, where v1 ∈ L1 and u1, u2 ∈ D.

Proof As the proofs of parts (i), (ii), and (iii) are straightforward consequences, following
from simple integration, we prove part (iv) and part (v). By the convolution theorem, we
get

v̂1 ∗ v2 =
exp(–iπx2/λd)

L
v̂1v̂2 =

exp(–iπx2/λd)
L

v̂2v̂1 = v̂2 ∗ v1.

Hence, by considering the inverse integral operator for both sides of the preceding equa-
tion, we complete the proof of (iv). The proof of part (v) is similar to the proof of part (iv).
Therefore, we delete the details.

Hence, the proof of the theorem is completed. �

Theorem 7 If v ∈ L1 and (wn) ∈ �, then v ∗ wn → v as n → ∞ in L1.

Proof of this theorem follows from similar analysis given by the same author (see, e.g.,
[24, 25]).
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The Boehmian space BS is based on the sets L1, D, and �, and the convolution product
∗ is obtained. A Boehmian in BS may be introduced as

xvn =
(

vn

wn

)

,

where vn ∈ L1 and (wn) is a delta sequence. If xvn = ( vn
wn

) and xun = ( un
εn

) are in BS , then it is
possible to claim the space operations

xvn + xun =
(

vn ∗ wn + un ∗ wn

wn ∗ εn

)

and βxvn =
(

βvn

wn

)

, ∀β ∈C.

For every k ∈ N and ψ ∈ L1, we define on BS the following useful operations:

xvn ∗ xun =
(

vn ∗ un

wn ∗ εn

)

, Dkxvn =
(

Dkvn

wn

)

and xvn ∗ ψ =
(

vn ∗ ψ

wn

)

,

where Dkxvn is the kth derivative of xvn .

Definition 8 Let xvn ,m, xvn ∈ BS , m = 1, 2, 3, . . . . Then the sequence (xvn ,m)∞m=1 is δ-
convergent to xvn , denoted by δ – limm→∞ xvn ,m = xvn , provided that there can be found a
delta sequence (wn) such that

(i) (xvn ,m ∗ wk), (xvn ∗ wk) ∈ L1 for all m, k ∈N, and
(ii) limm→∞ xvn ,m ∗α,β wk = xvn ∗ wk in L1 for every k ∈N.

Or, equivalently,
δ – limm→∞ xvn ,m = xvn if and only if there are un,k , uk ∈ L1 and (wk) ∈ � such that
(i) wn = ( un,k

wk
), xvn = ( uk

wk
)

(ii) to every k ∈ N , we have limn→∞ un,k = uk in L1.

Definition 9 Let xvn ,m, xvn ∈ BS , m = 1, 2, 3, . . . . Then the sequence (xvn ,m)∞m=1 is �-
convergent to xvn , denoted by �-limm→∞ xvn ,m = xvn , provided that there can be found
a delta sequence (wn) such that

(a) (xvn ,m – xvn ) ∗ wn ∈ L1 (∀m ∈N);
(b) limm→∞(xvn ,m – xvn ) ∗ wn = 0 in L1.

Theorem 10 Let (wn) ∈ � be fixed and u ∈ L1. Then the mapping

u → xvn , (9)

xvn = ( u∗wn
wn

), is a one-one map from the space L1 into the Boehmian space BS .

From (9), it can be read that L1 has an identification with a subspace in BS .

Theorem 11 Let (wn) ∈ �. If un → u in L1 as n → ∞, then, for all k ∈ N , un ∗ uk → u ∗ uk

as n → ∞.

Theorem 11 clearly shows that

xvn ,m → xvn in BS as m → ∞.

Moreover, the above theorem indeed leads to the following statement.
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Theorem 12 The embedding of the space L1 into the Boehmian space BS defined by (9) is
continuous.

Now, let us evaluate the ultra-Boehmian space HS . Introduce the set IS to be the set of all
Fresnel operators of all L1 elements. Similarly, denote by DS( or �S) the set of all Fresnel
transforms of all D( or �) elements, respectively. The product formula 	 is defined for HS

as follows.

Definition 13 Let v̂ ∈ IS and uS ∈ DS . Then we define

v̂ 	 û =
exp(–iπx2/λd)

L
v̂̂u. (10)

We prove the following necessary axioms.

Theorem 14 The following hold:
(i) (̂v1 + v̂2) 	 û = v̂1 	 û + v̂2 	 û for every v̂1, v̂2 ∈ IS and û ∈ DS .

(ii) (β v̂) 	 û = β (̂v 	 û) for every v̂2 ∈ IS , û ∈ DS , and β ∈C; the space of complex
numbers.

(iii) If v̂n → v̂ as n → ∞ and û ∈ DS , then v̂n 	 û → v̂ 	 û as n → ∞ in IS .
(iv) v̂1 	 v̂2 = v̂2 	 v̂1 for v̂1, v̂2 ∈ IS .
(v) If v̂ ∈ IS and (ŵn) ∈ �S , then v̂ 	 ŵn → v̂ in IS as n → ∞.

Proof Proof of (i). Let v̂2 ∈ IS and û ∈ DS be the Fresnel operator of the elements u ∈ L1

and v ∈ D, respectively. Then, by (10), we have

(̂v1 + v̂2) 	 û =
exp(–iπx2/λd)

L
(̂v1 + v̂2)̂u

=
exp(–iπx2/λd)

L
v̂1û +

exp(–iπx2/λd)
L

v̂2û

= v̂1 	 û + v̂2 	 û.

Proof of (ii) follows from a similar argument used in the proof of (i). To prove (iii), let
û ∈ DS be the Fresnel operator of u ∈ D and v̂n, v̂ be the Fresnel operators of vn and v ∈ L1,
respectively. Then, by (10) and Theorem 2, we proceed to write

(̂vn 	 û – v̂ 	 û) =
exp(–iπx2/λd)

L
v̂nû –

exp(–iπx2/λd)
L

v̂̂u

= v̂n ∗ u – v̂ ∗ u

= ̂vn ∗ u – v ∗ u

= ̂(vn – v) ∗ u

=
exp(–iπx2/λd)

L
v̂n – v̂u.

Hence, by the assumption that v̂n → v̂ as n → ∞, the right-hand side of the above equation
approaches zero as n → ∞. Hence, we have obtained v̂n 	 û → v̂	 û as n → ∞. The proofs
of (iv) and (v) are similar.

This completes the proof of the theorem. �
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The Boehmian space HS is approved by the above theorem. Every member of HS is
defined as

x̂vn =
(

v̂n

ŵn

)

.

If x̂vn = ( v̂n
ŵn

) and xûn = ( ûn
ε̂n

) are in HS , then we define

x̂vn + xûn =
v̂ 	 ŵn + ûn 	 ŵn

ŵn 	 ε̂n
and βx̂vn =

(

β v̂
ŵn

)

, ∀β ∈ C.

Also, for k ∈R and ψ̂ ∈ IS , we define operations on HS as

x̂vn 	 xûn =
(

v̂ 	 ûn

ŵn 	 ε̂n

)

, Dkx̂vn =
(

Dk̂v
ŵn

)

and x̂vn 	 ψ̂ =
(

v̂ 	 ψ̂

ŵn

)

,

where Dkx̂vn is the kth derivative of x̂vn .

Definition 15 Let x̂vn ,m, x̂vn ∈ HS for m = 1, 2, 3, . . . . Then the convergence in HS is defined
as follows.

(i) The sequence (x̂vn ,m)∞m=1 is said to be δ-convergent to x̂vn , denoted by
δ – limm→∞ x̂vn ,m = x̂vn , provided that there can be found a delta sequence (ŵn) such
that
(a) (x̂vn ,m 	 wk), (x̂vn 	 ŵk) ∈ IS for all n, k ∈ N.
(b) limm→∞ x̂vn ,m 	 ŵk = x̂vn 	 ŵk in IS for every k ∈N.

(ii) The sequence (x̂vn ,m)∞m=1 is �S-convergent to x̂vn , denoted by
�S-limm→∞ x̂vn ,m = x̂vn , provided that there can be found a delta sequence (ŵ) such
that
(a) (x̂vn ,m – x̂vn ) 	 ŵn ∈ IS (∀m ∈ N);
(b) limm→∞(x̂vn ,m – x̂vn ) 	 ŵn = 0 in IS .

Theorem 16 Let (ŵ) ∈ �S be fixed and u ∈ IS . Then the mapping defined by

u → x̂vn , (11)

where x̂vn = ( u	ŵ
ŵ ), is a one-to-one mapping IS → HS .

From (11), it can be read that IS can be identified as subspaces of HS .

Theorem 17 Let (ŵ) ∈ �S . Then if un → u in IS as n → ∞, then, for all k ∈ N, un 	 uk →
u 	 uk as n → ∞. That is, x̂vn ,m → x̂vn in HS as m → ∞.

The above theorem leads to the following:

Theorem 18 The mapping defined by (9) is a continuous embedding of the space IS into
the ultra-Boehmian space HS .
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4 The boehmian Fresnel operators
By the former analysis, we define the Fresnel operator of the Boehmian xvn = ( vn

wn
) in BS as

a Boehmian in HS defined by

x̂vn = x̂vn , (12)

where x̂vn = ( v̂n
ŵn

).

Theorem 19 Let xvn = ( vn
wn

). Then the mapping xvn → x̂vn from BS → HS defined by x̂vn =
x̂vn coincides with the classical Fresnel operator L1 → IS .

Proof Let w ∈ L1. Then w can be identified in BS as xvn , where xvn = ( w∗vn
vn

), which is the
representation of w in BS . Now, by employing Theorem 2, we obtain

x̂vn =
(

ŵ ∗ vn

v̂n

)

=
exp(–iπx2/λd)

L

(

ŵ̂vn

v̂n

)

=
(

ŵ 	 v̂n

v̂n

)

,

which is the representation of ŵ in HS .
The proof is, therefore, finished. �

Theorem 20 Let xvn = ( vn
wn

) and x̂vn = x̂vn . Then the mapping xvn → x̂vn from BS onto
HS , defined by x̂vn = x̂vn , is linear and continuous with respect to the convergence of the
Boehmian spaces.

A similar proof for this theorem is available in various citations (see, e.g., [28] and [29]).
Hence it is omitted.

We introduce the inverse operator of the operator x̂vn as follows.

Definition 21 Let x̂vn ∈ HS , x̂vn = ( v̂n
ŵn

) for xvn = ( vn
wn

). We define the inverse operator of
x̂vn as

v̂–1x̂vn = xvn . (13)

We derive the following inversion properties.

Theorem 22 Let x̂vn ∈ HS and w = v̂ for v ∈ L1. The inverse operator x̂vn → xvn is linear.
Moreover, it satisfies

v̂–1(x̂vn 	 w) = xvn ∗ v and x̂vn ∗ v = x̂vn 	 w.

Proof Consider two arbitrary Boehmians x̂vn and xûn in HS defined, respectively, by x̂vn =
( v̂n

ŵn
) and xûn = ( ûn

ε̂n
). Then, for all n ∈N, Theorem 2 and the linearity of the integral reveal

x̂vn + xûn =
(

v̂n 	 ε̂n + ûn 	 ŵn

ŵn 	 ε̂n

)

=
( exp(–iπx2/λd)

L (v̂n ∗ εn + ûn ∗ wn)
exp(–iπx2/λd)

L
̂(wn ∗ εn)

)

.
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Hence, Definition 21 and the notion of addition in BS imply

v̂–1(x̂vn + xûn ) =
(

vn ∗ εn + un ∗ wn

wn ∗ εn

)

=
(

vn

wn

)

+
(

un

εn

)

.

In notations, this gives

v̂–1(x̂vn + xûn ) = xvn + xun .

To complete the proof of linearity, indeed, for some η ∈C and all n ∈ N, we have

v̂–1(ηx̂vn ) = η̂v–1x̂vn .

This proves the linearity condition. To show v̂–1(x̂vn 	 w) = xvn ∗ v, we assume xvn = ( vn
wn

) in
HS . Then, for every w ∈ L1, we have v̂–1(x̂vn 	 w) = ( v̂n	̂v

ŵn
). By using Theorem 2 and Defini-

tion 21, we get

v̂–1(x̂vn 	 w) = v̂–1
(

v̂n ∗ v
ŵn

)

=
(

vn

wn
∗ v

)

= xvn ∗ v.

Proof of the part x̂vn ∗ v = x̂vn 	 w is almost similar to the inversion case.
This finishes the proof of the theorem. �

5 Conclusion
In this article, the paraxial diffraction integral operator has been extended to a class of
Boehmians, and the new operator has been obtained as a Boehmian. Many properties of
the generalized diffraction integral operator coincide with the estimated properties of the
classical operator. Various embeddings are also defined.
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