
Zhang et al. Advances in Difference Equations        (2020) 2020:396 
https://doi.org/10.1186/s13662-020-02860-1

R E S E A R C H Open Access

Explicit monotone iterative sequences for
positive solutions of a fractional differential
system with coupled integral boundary
conditions on a half-line
Haiyan Zhang1, Yongqing Wang2* and Jiafa Xu3

*Correspondence:
wyqing9801@163.com
2School of Mathematical Sciences,
Qufu Normal University, Qufu
273165, Shandong, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper we consider a fractional differential system with coupled integral
boundary value problems on a half-line, where the nonlinearity terms depend on
unknown functions and the lower-order fractional derivative of unknown functions,
and the fractional infinite boundary value conditions depend on the coupled infinite
integral of unknown functions. By virtue of the monotone iterative technique, we find
two explicit monotone iterative sequences which converge to the positive minimal
and maximal solutions when the nonlinearities can satisfy certain nonlinear growth
conditions.
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1 Introduction
Fractional-order differential equations is a natural generalization of the case of integer or-
der, which has become the focus of attention involving various kinds of boundary condi-
tions because of the wide application in mathematical models and applied sciences. Some
latest results on the topic can be found in a series of papers [1–15] and the references
therein. In particular, a monotone iterative technique is believed to be an efficient and im-
portant method to deal with sequences of monotone solutions for initial and boundary
value problems. For some applications of this method to nonlinear fractional differential
equations, see [16–24]. We also note that there are some results about monotone iterative
solution of a single fractional order equation on a half-line, see [25–29].

In [25] Zhang considered a nonlinear fractional boundary value problem on a half-line

⎧
⎨

⎩

Dαu(t) + f (t, u(t), Dα–1u(t)) = 0, t ∈ (0, +∞),α ∈ (1, 2],

u(0) = 0, Dα–1u(+∞) = βu(ξ ), β > 0,
(1.1)
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where f ∈ C(J × R × R,R). By utilizing the monotone iterative technique, iterative se-
quences of the positive extremal solutions were acquired.

In [27] Pei et al. studied the Hadamard fractional integro-differential equation on an
infinite interval

⎧
⎨

⎩

Dαu(t) + f (t, u(t), Iru(t), Dα–1u(t)) = 0, 1 < α < 2, t ∈ (1, +∞),

u(1) = 0, Dα–1u(∞) =
∑m

i=1 λiIβi u(η),
(1.2)

where I(·) is the Hadamard fractional integral and α, η, βi, λi (i = 1, 2, . . . , m) are some
given constants with Γ (α) >

∑m
i=1

λiΓ (α)
Γ (α+βi)

(logη)α+βi–1. By using the monotone iterative
technique, the existence of positive solutions was established.

On the other hand, integral boundary conditions are considered to be more reasonable
than the local boundary conditions, which can depict phenomena of heat transmission,
population dynamics, blood flow, etc. A large number of results about fractional differen-
tial equations with integral boundary condition have been obtained, see [9, 10, 30–43] and
the references cited therein. Meanwhile, we note that the coupled systems of fractional-
order differential equations have also attracted much attention due to their extensive ap-
plications, we refer to [3, 9, 10, 14, 22, 29, 32–43].

In [9] Jiang et al. utilized the fixed point index to construct the existence of positive
solutions for the following system on a finite interval:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dβu(t) + f1(t, u(t), v(t)) = 0, 1 < t < e,

Dβv(t) + f2(t, u(t), v(t)) = 0, 1 < t < e,

u(1) = v(1) = u′(1) = v′(1) = 0,

u(e) =
∫ e

1 h(s)v(s) ds
s ,

v(e) =
∫ e

1 g(s)u(s) ds
s ,

(1.3)

where the nonlinearities fi (i = 1, 2) can grow superlinearly and sublinearly, and boundary
value conditions depend on the coupled integral of unknown functions.

In [29] a coupled system of fractional differential equations on an infinite interval is
studied

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαu(t) + ϕ(t, v(t), Dγ1 v(t)) = 0, α ∈ (2, 3],γ1 ∈ (0, 1),

Dβv(t) + ψ(t, u(t), Dγ2 u(t)) = 0, β ∈ (2, 3],γ2 ∈ (0, 1),

I3–αu(0) = 0, Dα–2u(0) =
∫ h

0 g1(s)u(s) ds, Dα–1u(+∞) = Mu(ξ ) + a,

I3–βv(0) = 0, Dβ–2v(0) =
∫ h

0 g2(s)v(s) ds, Dβ–1v(+∞) = Nv(η) + b,

(1.4)

where t ∈ J = [0, +∞), ϕ,ψ ∈ C(J ×R×R, J), M, N are real numbers satisfying 0 < Mξα–1 <
Γ (α), 0 < Nηβ–1 < Γ (β), ξ ,η, h > 0, and a, b ∈ R

+, g1, g2 ∈ L1[0, h] are nonnegative func-
tions, the nonlinear terms ϕ, ψ and boundary conditions of the system are not coupled.
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In [32] Aljoudi et al. studied the sequential fractional differential equations on a finite
interval

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Dq + kDq–1)u(t) = f (t, u(t), v(t), Dαv(t)), k > 0,

1 < q ≤ 2, 0 < α < 1,

(Dp + kDp–1)u(t) = g(t, u(t), v(t), Dδu(t)),

1 < p ≤ 2, 0 < δ < 1,

u(1) = 0, u(e) = Iγ v(η), γ > 0, 1 < η < e,

v(1) = 0, v(e) = Iβu(ξ ), β > 0, 1 < ξ < e,

(1.5)

where D(·) and I(·) denote the Hadamard fractional derivative and Hadamard fractional
integral, f , g : [1, e] ×R

3 →R are given continuous functions, and boundary value condi-
tions depend on the coupled fractional integral of unknown functions.

Inspired by the works above, in this paper we utilize the monotone iterative technique
to study the existence of positive extremal solutions of a fractional differential system on
a half-line

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαu(t) + ϕ(t, u(t), v(t), Dβ–1v(t)) = 0, 2 < α ≤ 3,

Dβv(t) + ψ(t, u(t), v(t), Dα–1u(t)) = 0, 2 < β ≤ 3,

u(0) = u′(0) = 0, Dα–1u(+∞) =
∫ +∞

0 h(t)v(t) dt,

v(0) = v′(0) = 0, Dβ–1v(+∞) =
∫ +∞

0 g(t)u(t) dt,

(1.6)

where Dα , Dβ are the Riemann–Liouville fractional derivatives. Here we emphasize that
the nonlinearity terms ϕ, ψ include not only unknown functions, but also the lower-order
fractional derivative of unknown functions. By the way, the fractional infinite boundary
value conditions depend on the coupled infinite integral of unknown functions. To the
best of the authors’ knowledge, the system with coupled infinite integral boundary value
conditions is yet to be investigated. ϕ, ψ satisfy the following assumptions:

(C0) ϕ,ψ ∈ C(J ×R×R×R, J), J = [0, +∞).
(C1) h(t), g(t) ∈ L[0, +∞) with

∫ +∞
0 h(t)tβ–1 dt = Υ1,

∫ +∞
0 g(t)tα–1 dt = Υ2, Υ1Υ2 <

Γ (α)Γ (β).
(C2) The nonnegative functions ai(t), bi(t) ∈ L[0, +∞) (i = 0, 1, 2, 3) and constants 0 ≤

λk , τk < 1 (k = 1, 2, 3) satisfy

∣
∣ϕ(t, u, v, w)

∣
∣ ≤ a0(t) + a1(t)|u|λ1 + a2(t)|v|λ2 + a3(t)|w|λ3 , u, v, w ∈R,∀t ∈ J ,

with
∫ +∞

0
a0(t) dt = a∗

0 < +∞,
∫ +∞

0
a1(t)

(
1 + tα+β–1)λ1 dt = a∗

1 < +∞,

∫ +∞

0
a2(t)

(
1 + tα+β–1)λ2 dt = a∗

2 < +∞,
∫ +∞

0
a3(t) dt = a∗

3 < +∞,

and

∣
∣ψ(t, u, v, z)

∣
∣ ≤ b0(t) + b1(t)|u|τ1 + b2(t)|v|τ2 + a3(t)|z|τ3 , u, v, z ∈R,∀t ∈ J ,
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with
∫ +∞

0
b0(t) dt = b∗

0 < +∞,
∫ +∞

0
b1(t)

(
1 + tα+β–1)τ1 dt = b∗

1 < +∞,

∫ +∞

0
b2(t)

(
1 + tα+β–1)τ2 dt = b∗

2 < +∞,
∫ +∞

0
b3(t) dt = b∗

3 < +∞.

(C3) ϕ(t, u, v, w) and ψ(t, u, v, z) are increasing with respect to the variables u, v, w and
u, v, z, and ϕ(t, 0, 0, 0) 	≡ 0, ψ(t, 0, 0, 0) 	≡ 0, ∀t ∈ J .

For convenience, we set � = Γ (α)Γ (β) – Υ1Υ2, Θ = max{Γ (β) + Υ1,Γ (α) + Υ2,
Γ (α)(Γ (β) + Υ1),Γ (β)(Γ (α) + Υ2)}, Λ = Θ

�
.

2 Preliminaries
In this section we only list some definitions and lemmas of the Riemann–Liouville frac-
tional integral and derivative; for more details, we refer the readers to [1].

Definition 2.1 (see [1]) The Riemann–Liouville fractional integral of order q > 0 for an
integrable function g is defined as

Iqg(x) =
1

Γ (q)

∫ x

0
(x – t)q–1g(t) dt,

provided that the integral exists.

Definition 2.2 (see [1]) The Riemann–Liouville fractional derivative of order q > 0 for an
integrable function g is defined as

Dqg(x) =
1

Γ (n – q)

(
d

dx

)n ∫ x

0
(x – t)n–q–1g(t) dt,

where n = [q] + 1, [q] is the smallest integer greater than or equal to q, provided that the
right-hand side is pointwise defined on (0, +∞).

Lemma 2.3 (see [1]) Let q > 0 and u ∈ C(0, +∞) ∩ L(0, +∞). Then the general solution of
fractional differential equation Dqu(t) = 0 is

u(t) = c1tq–1 + c2tq–2 + · · · + cntq–n,

where ci ∈R, i = 1, 2, . . . , n, and n – 1 < q < n.

Lemma 2.4 Let x, y ∈ C(0, +∞) ∩ L(0, +∞) and assumption (C1) be satisfied. Then the
fractional differential system with coupled integral boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαu(t) + x(t) = 0, 2 < α ≤ 3,

Dβv(t) + y(t) = 0, 2 < β ≤ 3,

u(0) = u′(0) = 0, Dα–1u(+∞) =
∫ +∞

0 h(t)v(t) dt,

v(0) = v′(0) = 0, Dβ–1v(+∞) =
∫ +∞

0 g(t)u(t) dt,

(2.1)
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has a solution which can take the integral representation

⎧
⎨

⎩

u(t) =
∫ +∞

0 K1(t, s)x(s) ds +
∫ +∞

0 K3(t, s)y(s) ds,

v(t) =
∫ +∞

0 K2(t, s)y(s) ds +
∫ +∞

0 K4(t, s)x(s) ds,
(2.2)

where

K1(t, s) = K11(t, s) + K12(t, s), K2(t, s) = K21(t, s) + K22(t, s),

K3(t, s) =
Γ (β)tα–1

�

∫ +∞

0
h(t)K21(t, s) dt,

K4(t, s) =
Γ (α)tβ–1

�

∫ +∞

0
g(t)K11(t, s) dt

(2.3)

with

K11(t, s) =
1

Γ (α)

⎧
⎨

⎩

tα–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ +∞,

tα–1, 0 ≤ t ≤ s ≤ +∞,

K12(t, s) =
Υ1tα–1

�

∫ +∞

0
g(t)K11(t, s) dt,

K21(t, s) =
1

Γ (β)

⎧
⎨

⎩

tβ–1 – (t – s)β–1, 0 ≤ s ≤ t ≤ +∞,

tβ–1, 0 ≤ t ≤ s ≤ +∞,

K22(t, s) =
Υ2tβ–1

�

∫ +∞

0
h(t)K21(t, s) dt.

Proof By Lemma 2.3, we can turn system (2.1) into an equivalent integral system

⎧
⎨

⎩

u(t) = – 1
Γ (α)

∫ t
0 (t – s)αx(s) ds + c1tα–1 + c2tα–2 + c3tα–3,

v(t) = – 1
Γ (β)

∫ t
0 (t – s)βy(s) ds + d1tβ–1 + d2tβ–2 + d3tβ–3,

(2.4)

where ci, di ∈ R (i = 1, 2, 3). Notice that u(0) = u′(0) = 0 and v(0) = v′(0) = 0, we have c2 =
c3 = d2 = d3 = 0. From (2.4) we have

⎧
⎨

⎩

u(t) = – 1
Γ (α)

∫ t
0 (t – s)αx(s) ds + c1tα–1,

v(t) = – 1
Γ (β)

∫ t
0 (t – s)βy(s) ds + d1tβ–1.

(2.5)

As a result,
⎧
⎨

⎩

Dα–1u(t) = c1Γ (α) –
∫ t

0 x(s) ds,

Dβ–1v(t) = d1Γ (β) –
∫ t

0 y(s) ds.
(2.6)

That is,
⎧
⎨

⎩

Dα–1u(+∞) = c1Γ (α) –
∫ +∞

0 x(s) ds,

Dβ–1v(+∞) = d1Γ (β) –
∫ +∞

0 y(s) ds.
(2.7)
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By means of conditions Dα–1u(+∞) =
∫ +∞

0 h(t)v(t) dt and Dβ–1v(+∞) =
∫ +∞

0 g(t)u(t) dt, we
have

⎧
⎨

⎩

c1 = 1
Γ (α)

∫ +∞
0 h(t)v(t) dt + 1

Γ (α)
∫ +∞

0 x(s) ds,

d1 = 1
Γ (β)

∫ +∞
0 g(t)u(t) dt + 1

Γ (β)
∫ +∞

0 y(s) ds.
(2.8)

Submitting (2.8) to (2.5), we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(t) = – 1
Γ (α)

∫ t
0 (t – s)αx(s) ds + tα–1

Γ (α) [
∫ +∞

0 h(t)v(t) dt +
∫ +∞

0 x(s) ds]

=
∫ ∞

0 K11(t, s)x(s) ds + tα–1

Γ (α)
∫ +∞

0 h(t)v(t) dt,

v(t) = – 1
Γ (β)

∫ t
0 (t – s)βy(s) ds + tβ–1

Γ (β) [
∫ +∞

0 g(t)u(t) dt +
∫ +∞

0 y(s) ds]

=
∫ ∞

0 K21(t, s)y(s) ds + tβ–1

Γ (β)
∫ +∞

0 g(t)u(t) dt.

(2.9)

Multiplying both sides of equality (2.9) by g(t) and h(t) and integrating from 0 to +∞, we
have

⎧
⎨

⎩

∫ +∞
0 g(t)u(t) dt =

∫ +∞
0 g(t)

∫ +∞
0 K11(t, s)x(s) ds dt + Υ2

Γ (α)
∫ +∞

0 h(t)v(t) dt,
∫ +∞

0 h(t)v(t) dt =
∫ +∞

0 h(t)
∫ +∞

0 K21(t, s)y(s) ds dt + Υ1
Γ (β)

∫ +∞
0 g(t)u(t) dt.

Then
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ +∞
0 g(t)u(t) dt = Γ (α)Γ (β)

�
[
∫ +∞

0 g(t)
∫ +∞

0 K11(t, s)x(s) ds dt

+ Υ2
Γ (α)

∫ +∞
0 h(t)

∫ +∞
0 K21(t, s)y(s) ds dt],

∫ +∞
0 h(t)v(t) dt = Γ (α)Γ (β)

�
[ Υ1
Γ (β)

∫ +∞
0 g(t)

∫ +∞
0 K11(t, s)x(s) ds dt

+
∫ +∞

0 h(t)
∫ +∞

0 K21(t, s)y(s) ds dt].

(2.10)

Submitting (2.10) to (2.9), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) =
∫ +∞

0 K11(t, s)x(s) ds + tα–1Υ1
�

∫ +∞
0 g(t)

∫ +∞
0 K11(t, s)x(s) ds dt

+ tα–1Γ (β)
�

∫ +∞
0 h(t)

∫ +∞
0 K21(t, s)y(s) ds dt

=
∫ ∞

0 K11(t, s)x(s) ds +
∫ ∞

0 K12(t, s)x(s) ds +
∫ ∞

0 K3(t, s)y(s) ds

=
∫ ∞

0 K1(t, s)x(s) ds +
∫ ∞

0 K3(t, s)y(s) ds,

v(t) =
∫ +∞

0 K21(t, s)y(s) ds + tβ–1Γ (α)
�

∫ +∞
0 g(t)

∫ +∞
0 K11(t, s)x(s) ds dt

+ tβ–1Υ2
�

∫ +∞
0 h(t)

∫ +∞
0 K21(t, s)y(s) ds dt

=
∫ +∞

0 K21(t, s)y(s) ds +
∫ +∞

0 K22(t, s)y(s) ds +
∫ +∞

0 K4(t, s)x(s) ds

=
∫ +∞

0 K2(t, s)y(s) ds +
∫ +∞

0 K4(t, s)x(s) ds.

(2.11)

The proof is completed. �

Lemma 2.5 For (s, t) ∈ J × J , if assumption (C1) is satisfied, then

0 ≤ K1(t, s) ≤ Γ (β)tα–1

�
, 0 ≤ K1(t, s)

1 + tα+β–1 ≤ Γ (β)
�

,

0 ≤ K2(t, s) ≤ Γ (α)tβ–1

�
, 0 ≤ K2(t, s)

1 + tα+β–1 ≤ Γ (α)
�

,
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0 ≤ K3(t, s) ≤ Υ1tα–1

�
, 0 ≤ K3(t, s)

1 + tα+β–1 ≤ Υ1

�
,

0 ≤ K4(t, s) ≤ Υ2tβ–1

�
, 0 ≤ K4(t, s)

1 + tα+β–1 ≤ Υ2

�
.

Proof From (2.3), it is obvious that

0 ≤ K11(t, s) ≤ tα–1

Γ (α)
, ∀(t, s) ∈ J × J ,

and

0 ≤ K12(t, s) ≤ Υ1tα–1

�

∫ +∞

0

g(t)tα–1

Γ (α)
dt =

Υ1Υ2tα–1

Γ (α)�
, ∀(t, s) ∈ J × J .

Thus

0 ≤ K1(t, s) = K11(t, s) + K12(t, s) ≤ Γ (β)tα–1

�
, ∀(t, s) ∈ J × J .

Furthermore,

0 ≤ K1(t, s)
1 + tα+β–1 ≤ Γ (β)

�
, ∀(t, s) ∈ J × J .

By a similar calculation, we can prove other inequality results about K2(t, s), K3(t, s), and
K4(t, s). So the proof is completed. �

Remark 2.6 From (2.5), (2.8), and (2.10), by a direct calculation, we have
⎧
⎨

⎩

Dα–1u(t) =
∫ +∞

0 H1(t, s)x(s) ds +
∫ +∞

0 H3(t, s)y(s) ds,

Dβ–1v(t) =
∫ +∞

0 H2(t, s)y(s) ds +
∫ +∞

0 H4(t, s)x(s) ds,
(2.12)

where

H1(t, s) = H11(t, s) + H12(t, s), H2(t, s) = H11(t, s) + H22(t, s),

H3(t, s) =
Γ (α)Γ (β)

�

∫ +∞

0
h(t)K21(t, s) dt,

H4(t, s) =
Γ (α)Γ (β)

�

∫ +∞

0
g(t)K11(t, s) dt

with

H11(t, s) =

⎧
⎨

⎩

0, 0 ≤ s ≤ t ≤ +∞,

1, 0 ≤ t ≤ s ≤ +∞,
H12(t, s) =

Υ1Γ (α)
�

∫ +∞

0
g(t)K11(t, s) dt.

H22(t, s) =
Υ2Γ (β)

�

∫ +∞

0
h(t)K21(t, s) dt.

Remark 2.7 From Lemma 2.5, by a direct calculation, we can easily obtain that

0 ≤ H1(t, s) = H11(t, s) + H12(t, s) ≤ 1 +
Υ1Υ2

�
=

Γ (α)Γ (β)
�

, ∀(t, s) ∈ J × J ,
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0 ≤ H2(t, s) = H11(t, s) + H22(t, s) ≤ 1 +
Υ1Υ2

�
=

Γ (α)Γ (β)
�

, ∀(t, s) ∈ J × J ,

0 ≤ H3(t, s) ≤ Γ (α)Υ1

�
, ∀(t, s) ∈ J × J ,

0 ≤ H4(t, s) ≤ Γ (β)Υ2

�
, ∀(t, s) ∈ J × J .

Define two spaces

X =
{

u ∈ C(J), Dα–1u ∈ C(J)
∣
∣
∣ sup

t∈J

|u(t)|
1 + tα+β–1 < +∞, sup

t∈J

∣
∣Dα–1u(t)

∣
∣ < +∞

}

,

Y =
{

v ∈ C(J), Dβ–1v ∈ C(J)
∣
∣
∣ sup

t∈J

|v(t)|
1 + tα+β–1 < +∞, sup

t∈J

∣
∣Dβ–1v(t)

∣
∣ < +∞

}

,

equipped with the norms

‖u‖X = max

{

sup
t∈J

|u(t)|
1 + tα+β–1 , sup

t∈J

∣
∣Dα–1u(t)

∣
∣

}

,

‖v‖Y = max

{

sup
t∈J

|v(t)|
1 + tα+β–1 , sup

t∈J

∣
∣Dβ–1v(t)

∣
∣

}

,

where 2 < α,β ≤ 3. C(J) denotes the space of all continuous functions defined on [0, +∞).

Lemma 2.8 (X,‖ · ‖X) and (Y ,‖ · ‖Y ) are two Banach spaces.

Proof The proof is similar to that of Lemma 2.4 in [29], so we omit it. �

Lemma 2.9 (see [44]) Let U ⊂ X be a bounded set. Then U is relatively compact in X if
the following conditions hold:

(i) For any u ∈ U , u(t)
1+tα–1 and Dα–1u(t) are equicontinuous on any compact interval of J;

(ii) For any ε > 0, there is a constant C = C(ε) > 0 such that | u(t1)
1+tα–1

1
– u(t2)

1+tα–1
2

| < ε and
|Dα–1u(t1) – Dα–1u(t2)| < ε for any t1, t2 ≥ C and u ∈ U .

Remark 2.10 Let U ⊂ X be a bounded set. According to Lemmas 2.8 and 2.9, it is clear
that U is relatively compact in X if the following conditions hold:

(i) For any u ∈ U , u(t)
1+tα+β–1 and Dα–1u(t) are equicontinuous on any compact interval

of J ;
(ii) For any ε > 0, there is a constant C = C(ε) > 0 such that | u(t1)

1+tα+β–1
1

– u(t2)
1+tα+β–1

2
| < ε and

|Dα–1u(t1) – Dα–1u(t2)| < ε for any t1, t2 ≥ C and u ∈ U .

3 Main results
We define the cone P ⊂ X × Y as P = {(u, v) ∈ X × Y |u(t) ≥ 0, v(t) ≥ 0, Dα–1u(t) ≥
0, Dβ–1v(t) ≥ 0, t ∈ J}. From Lemma 2.4 it is easy to know that the fractional differential
system (1.6) is equivalent to the following system of Hammerstein-type integral equations:

(
u(t)
v(t)

)

=

(∫ +∞
0 K1(t, s)ϕ(u,v)(s) ds +

∫ +∞
0 K3(t, s)ψ(u,v)(s) ds

∫ +∞
0 K2(t, s)ψ(u,v)(s) ds +

∫ +∞
0 K4(t, s)ϕ(u,v)(s) ds

)

:=

(
�1(u, v)(t)
�2(u, v)(t)

)

for u, v ∈ P, t ∈ J , (3.1)
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and for convenience, we set

⎧
⎨

⎩

ϕ(u,v)(s) = ϕ(s, u(s), v(s), Dβ–1v(s)),

ψ(u,v)(s) = ψ(s, u(s), v(s), Dα–1u(s)).

Then we can define an operator � : P × P → P × P as follows:

�(u, v)(t) = (�1,�2)(u, v)(t) for u, v ∈ P, t ∈ J .

Therefore, if (u, v) ∈ (P × P)\{0} is a fixed point of �, then (u, v) is a positive solution for
the fractional differential system (1.6). Next, we will directly study the existence of fixed
points of the operator �.

By Remark 2.6 and (3.1), we have

(
Dα–1

�1(u, v)(t)
Dβ–1

�2(u, v)(t)

)

=

(∫ +∞
0 H1(t, s)ϕ(u,v)(s) ds +

∫ +∞
0 H3(t, s)ψ(u,v)(s) ds

∫ +∞
0 H2(t, s)ψ(u,v)(s) ds +

∫ +∞
0 H4(t, s)ϕ(u,v)(s) ds

)

for u, v ∈ P, t ∈ J . (3.2)

Lemma 3.1 If assumptions (C0) and (C2) are satisfied, then

∫ +∞

0

∣
∣ϕ(u,v)(s)

∣
∣ds ≤ a∗

0 +
3∑

k=1

a∗
k
∥
∥(u, v)

∥
∥λk

X×Y , ∀(u, v) ∈ X × Y ,

and

∫ +∞

0

∣
∣ψ(u,v)(s)

∣
∣ds ≤ b∗

0 +
3∑

k=1

b∗
k
∥
∥(u, v)

∥
∥τk

X×Y , ∀(u, v) ∈ X × Y .

Proof For ∀(u, v) ∈ X × Y , by assumptions (C0) and (C2), we have

∫ +∞

0

∣
∣ϕ(u,v)(s)

∣
∣ds

≤
∫ +∞

0

(
a0(s) + a1(s)

∣
∣u(s)

∣
∣λ1 + a2(s)

∣
∣v(s)

∣
∣λ2 + a3(s)

∣
∣Dβ–1v(s)

∣
∣λ3)ds

≤ a∗
0 +

∫ +∞

0
a1(s))

(
1 + sα+β–1)λ1 |u(s)|λ1

(1 + sα+β–1)λ1
ds

+
∫ +∞

0
a2(s))

(
1 + sα+β–1)λ2 |v(s)|λ2

(1 + sα+β–1)λ2
ds +

∫ +∞

0
a3(s)

∣
∣Dβ–1v(s)

∣
∣λ3 ds

≤ a∗
0 + a∗

1‖u‖λ1
X + a∗

2‖v‖λ2
Y + a∗

3‖v‖λ3
Y

≤ a∗
0 +

3∑

k=1

a∗
k
∥
∥(u, v)

∥
∥λk

X×Y



Zhang et al. Advances in Difference Equations        (2020) 2020:396 Page 10 of 20

and

∫ +∞

0

∣
∣ψ(u,v)(s)

∣
∣ds

≤
∫ +∞

0

(
b0(s) + b1(s)

∣
∣u(s)

∣
∣τ1 + b2(s)

∣
∣v(s)

∣
∣τ2 + b3(s)

∣
∣Dα–1u(s)

∣
∣τ3)ds

≤ b∗
0 +

∫ +∞

0
b1(s))

(
1 + sα+β–1)τ1 |u(s)|τ1

(1 + sα+β–1)τ1
ds

+
∫ +∞

0
b2(s))

(
1 + sα+β–1)τ2 |v(s)|τ2

(1 + sα+β–1)τ2
ds +

∫ +∞

0
b3(s)

∣
∣Dα–1u(s)

∣
∣τ3 ds

≤ b∗
0 + b∗

1‖u‖τ1
X + b∗

2‖v‖τ2
Y + b∗

3‖u‖τ3
X

≤ b∗
0 +

3∑

k=1

b∗
k
∥
∥(u, v)

∥
∥τk

X×Y . �

Lemma 3.2 If assumptions (C0), (C1), and (C2) are satisfied, then the operator � : P → P
is completely continuous.

Proof Since Ki(t, s) ≥ 0, ∀(t, s) ∈ J × J , i = 1, 2, 3, 4, and ϕ ≥ 0, ψ ≥ 0, ∀(u, v) ∈ P × P, we
have �1(u, v)(t) ≥ 0, �2(u, v)(t) ≥ 0, ∀(u, v) ∈ P, t ∈ J . So it is obvious that � : P → P.

Next we show that the operator � : P → P is relatively compact. First let U = {(u, v)|
(u, v) ∈ P,‖(u, v)‖X×Y ≤ M}. For ∀(u, v) ∈ U , by Lemma 2.4, Lemma 2.5, and Lemma 3.1,
we have

sup
t∈J

|�1(u, v)(t)|
1 + tα+β–1

≤ sup
t∈J

∣
∣
∣
∣

∫ +∞

0

K1(t, s)
1 + tα+β–1 ϕ(u,v)(s) ds

∣
∣
∣
∣ + sup

t∈J

∣
∣
∣
∣

∫ +∞

0

K3(t, s)
1 + tα+β–1 ψ(u,v)(s) ds

∣
∣
∣
∣

≤ Γ (β)
�

∫ +∞

0

∣
∣ϕ(u,v)(s)

∣
∣ds +

Υ1

�

∫ +∞

0

∣
∣ψ(u,v)(s)

∣
∣ds

≤ Γ (β) + Υ1

�

[

a∗
0 +

3∑

k=1

a∗
k
∥
∥(u, v)

∥
∥λk

X×Y + b∗
0 +

3∑

k=1

b∗
k
∥
∥(u, v)

∥
∥τk

X×Y

]

≤ Γ (β) + Υ1

�

[

a∗
0 + b∗

0 +
3∑

k=1

(
a∗

kMλk + b∗
kMτk

)
]

. (3.3)

By Remark 2.6, Remark 2.7, and Lemma 3.1, we have

sup
t∈J

∣
∣Dα–1

�1(u, v)(t)
∣
∣

≤ sup
t∈J

∣
∣
∣
∣

∫ ∞

0
H1(t, s)ϕ(u,v)(s) ds

∣
∣
∣
∣ + sup

t∈J

∣
∣
∣
∣

∫ ∞

0
H3(t, s)ψ(u,v)(s) ds

∣
∣
∣
∣

≤ Γ (α)Γ (β)
�

∫ +∞

0

∣
∣ϕ(u,v)(s)

∣
∣ds +

Γ (α)Υ1

�

∫ +∞

0

∣
∣ψ(u,v)(s)

∣
∣ds

≤ Γ (α)(Γ (β) + Υ1)
�

[

a∗
0 +

3∑

k=1

a∗
k
∥
∥(u, v)

∥
∥λk

X×Y + b∗
0 +

3∑

k=1

b∗
k
∥
∥(u, v)

∥
∥τk

X×Y

]
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≤ Γ (α)(Γ (β) + Υ1)
�

[

a∗
0 + b∗

0 +
3∑

k=1

(
a∗

kMλk + b∗
kMτk

)
]

. (3.4)

Thus
∥
∥�1(u, v)

∥
∥

X

= max

{

sup
t∈J

|�1(u, v)(t)|
1 + tα+β–1 , sup

t∈J

∣
∣Dα–1

�1(u, v)(t)
∣
∣

}

≤ max{Γ (β) + Υ1,Γ (α)(Γ (β) + Υ1)}
�

[

a∗
0 + b∗

0 +
3∑

k=1

(
a∗

kMλk + b∗
kMτk

)
]

. (3.5)

Similarly

∥
∥�2(u, v)

∥
∥

Y ≤ max{Γ (α) + Υ2,Γ (β)(Γ (α) + Υ2)}
�

[

a∗
0 + b∗

0 +
3∑

k=1

(
a∗

kMλk + b∗
kMτk

)
]

.

Therefore

∥
∥�(u, v)

∥
∥

X×Y = max
{∥
∥�1(u, v)

∥
∥

X ,
∥
∥�2(u, v)

∥
∥

Y

} ≤ Θ

�

[

a∗
0 + b∗

0 +
3∑

k=1

(
a∗

kMλk + b∗
kMτk

)
]

,

which implies that TU is uniformly bounded.
Second, let I ⊂ J be any compact interval. Then, for all t1, t2 ∈ I , t2 > t1 and (u, v) ∈ U ,

we have
∣
∣
∣
∣
�1(u, v)(t2)
1 + tα+β–1

2
–
�1(u, v)(t1)
1 + tα+β–1

1

∣
∣
∣
∣

≤
∫ +∞

0

∣
∣
∣
∣

K1(t2, s)
1 + tα+β–1

2
–

K1(t1, s)
1 + tα+β–1

1

∣
∣
∣
∣

∣
∣ϕ(u,v)(s)

∣
∣ds

+
∫ +∞

0

∣
∣
∣
∣

K3(t2, s)
1 + tα+β–1

2
–

K3(t1, s)
1 + tα+β–1

1

∣
∣
∣
∣

∣
∣ψ(u,v)(s)

∣
∣ds. (3.6)

Notice that K1(t, s)/(1+ tα+β–1), K3(t, s)/(1+ tα+β–1) are uniformly continuous for any (t, s) ∈
I ×I . Furthermore, K1(t, s)/(1+tα+β–1), K3(t, s)/(1+tα+β–1) only depend on t for s ≥ t, which
implies that K1(t, s)/(1 + tα+β–1), K3(t, s)/(1 + tα+β–1) are uniformly continuous on I × (J \ I).
Thus, for all s ∈ J and t1, t2 ∈ I , we have

∀ε > 0,∃δ(ε) such that if |t1 – t2| < δ, then
∣
∣
∣
∣

K1(t2, s)
1 + tα+β–1

2
–

K1(t1, s)
1 + tα+β–1

1

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

K3(t2, s)
1 + tα+β–1

2
–

K3(t1, s)
1 + tα+β–1

1

∣
∣
∣
∣ < ε. (3.7)

Combining (3.6) and (3.7) with Lemma 3.1, for all s ∈ J , (u, v) ∈ U , and t1, t2 ∈ I , we have

∣
∣
∣
∣
�1(u, v)(t2)
1 + tα+β–1

2
–
�1(u, v)(t1)
1 + tα+β–1

1

∣
∣
∣
∣ ≤

[

a∗
0 +

3∑

k=1

a∗
kMλk + b∗

0 +
3∑

k=1

b∗
kMτk

]

ε,

which implies that �1(u, v)(t)/(1 + tα+β–1) is equicontinuous on I .
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Note that

Dα–1
�1(u, v)(t) =

∫ +∞

0
H1(t, s)ϕ(u,v)(s) ds +

∫ +∞

0
H3(t, s)ψ(u,v)(s) ds

and H1(t, s), H3(t, s) ∈ C(J × J) do not depend on t, which infers that Dα–1
�1(u, v)(t) is

equicontinuous on I . In the same way, we can show that �2(u, v)(t)/(1 + tα+β–1) and
Dβ–1

�2(u, v)(t) are equicontinuous. Thus condition (i) of Remark 2.10 is satisfied.
Then we show that operators �1, �2 are equiconvergent at +∞. Since

lim
t→+∞

K1(t, s)
1 + tα+β–1 = 0, lim

t→+∞
K3(t, s)

1 + tα+β–1 = 0,

we can infer that, for any ε > 0, there exists a sufficiently large constant C = C(ε) > 0, for
any t1, t2 ≥ C and s ∈ J , such that

∣
∣
∣
∣

K1(t2, s)
1 + tα+β–1

2
–

K1(t1, s)
1 + tα+β–1

1

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

K3(t2, s)
1 + tα+β–1

2
–

K3(t1, s)
1 + tα+β–1

1

∣
∣
∣
∣ < ε.

Therefore, by Lemma 3.1 and (3.6), we conclude that �1(u, v)(t)/1 + tα+β–1 is equiconver-
gent at +∞. On the other hand, the functions H1(t, s), H3(t, s) do not depend on t, it is
obvious that Dα–1

�1(u, v)(t) is equiconvergent at +∞. Similarly, �2(u, v)(t)/1 + tα+β–1 and
Dα–1

�2(u, v)(t) are equiconvergent at +∞. Thus condition (ii) of Remark 2.10 is satisfied.
As can be seen from the above discussion, all the conditions of Remark 2.10 are satisfied.

Thus the operator � : P → P is relatively compact.
Finally, we prove that the operator � : P → P is continuous. Let (un, vn), (u, v) ∈ P such

that (un, vn) → (u, v)(n → ∞). Then ‖(un, vn)‖X×Y < +∞, ‖(u, v)‖X×Y < +∞. Similar to
(3.3) and (3.4), we can obtain

sup
t∈J

|�1(un, vn)(t)|
1 + tα+β–1

≤ Γ (β) + Υ1

�

[

a∗
0 + b∗

0 +
3∑

k=1

(
a∗

k
∥
∥(un, vn)

∥
∥λk

X×Y + b∗
k
∥
∥(un, vn)

∥
∥τk

X×Y

)
]

< +∞

and

sup
t∈J

∣
∣Dα–1

�1(un, vn)(t)
∣
∣

≤ Γ (α)(Γ (β) + Υ1)
�

[

a∗
0 + b∗

0 +
3∑

k=1

(
a∗

k
∥
∥(un, vn)

∥
∥λk

X×Y + b∗
k
∥
∥(un, vn)

∥
∥τk

X×Y

)
]

< +∞.

By the continuity of function ϕ, ψ and the Lebesgue dominated convergence theorem,
we have

lim
n→∞

�1(un, vn)(t)
1 + tα+β–1

= lim
n→∞

[∫ +∞

0

K1(t, s)
1 + tα+β–1 ϕ(un ,vn)(s) ds +

∫ +∞

0

K3(t, s)
1 + tα+β–1 ψ(un ,vn)(s) ds

]

=
∫ +∞

0

K1(t, s)
1 + tα+β–1 ϕ(u,v)(s) ds +

∫ +∞

0

K3(t, s)
1 + tα+β–1 ψ(u,v)(s) ds =

�1(u, v)(t)
1 + tα+β–1
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and

lim
n→∞ Dα–1

�1(un, vn)(t)

= lim
n→∞

[∫ +∞

0
H1(t, s)ϕ(un ,vn)(s) ds +

∫ +∞

0
H3(t, s)ψ(un ,vn)(s) ds

]

=
∫ ∞

0
H1(t, s)ϕ(u,v)(s) ds +

∫ +∞

0
H3(t, s)ψ(u,v)(s) ds = Dα–1

�1(u, v)(t).

Then, as n → ∞,

sup
t∈J

|�1(un, vn)(t) – �1(u, v)(t)|
1 + tα+β–1

≤ sup
t∈J

∫ +∞

0

K1(t, s)
1 + tα+β–1

∣
∣ϕ(un ,vn)(s) – ϕ(u,v)(s)

∣
∣ds

+ sup
t∈J

∫ +∞

0

K3(t, s)
1 + tα+β–1

∣
∣ψ(un ,vn)(s) – ψ(u,v)(s)

∣
∣ds

≤ Γ (β) + Υ1

�

[∫ +∞

0

∣
∣ϕ(un ,vn)(s) – ϕ(u,v)(s)

∣
∣ds +

∫ +∞

0

∣
∣ψ(un ,vn)(s) – ψ(u,v)(s)

∣
∣ds

]

→ 0,

and as n → ∞,

sup
t∈J

∣
∣Dα–1

�1(un, vn)(t) – Dα–1
�1(u, v)(t)

∣
∣

≤ sup
t∈J

∫ +∞

0
H1(t, s)

∣
∣ϕ(un ,vn)(s) – ϕ(u,v)(s)

∣
∣ds

+ sup
t∈J

∫ +∞

0
H3(t, s)

∣
∣ψ(un ,vn)(s) – ϕ(u,v)(s)

∣
∣ds

≤ Γ (α)(Γ (β) + Υ1)
�

[∫ +∞

0

∣
∣ϕ(un ,vn)(s) – ϕ(u,v)(s)

∣
∣ds +

∫ +∞

0

∣
∣ψ(un ,vn)(s) – ϕ(u,v)(s)

∣
∣ds

]

→ 0.

So, as n → ∞,

∥
∥�1(un, vn) – �1(u, v)

∥
∥

X

= max

{

sup
t∈J

|�1(un, vn)(t) – �1(u, v)(t)|
1 + tα+β–1 , sup

t∈J

∣
∣Dα–1

�1(un, vn)(t) – Dα–1
�1(u, v)(t)

∣
∣

}

→ 0,

which implies that the operator �1 is continuous. By the same way, we can obtain that the
operator �2 is continuous. That is, the operator � is continuous.

In view of all above arguments, the operator � : P → P is completely continuous. So the
proof is completed.
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Define a partial order over the product space:

(
u1

v1

)

≥
(

u2

v2

)

if u1(t) ≥ u2(t), v1(t) ≥ v2(t), Dα–1u1(t) ≥ Dα–1u2(t), Dβ–1v1(t) ≥ Dβ–1v2(t), t ∈ J . �

Theorem 3.3 Suppose that (C0), (C1), (C2), and (C3) are satisfied. Then there exists a
positive constant R such that system (1.6) has two positive solutions (u∗, v∗) and (w∗, z∗) sat-
isfying 0 ≤ ‖(u∗, v∗)‖X×Y ≤ R and 0 ≤ ‖(w∗, z∗)‖X×Y ≤ R with limn→∞(un, vn) = (u∗, v∗) and
limn→∞(wn, zn) = (w∗, z∗), where (un, vn) and (wn, zn) can be given by the following monotone
iterative sequences:

(
un(t)
vn(t)

)

=

(
�1(un–1, vn–1)(t)
�2(un–1, vn–1)(t)

)

, n = 1, 2, . . . , with

(
u0(t)
v0(t)

)

=

(
Rtα

Rtβ

)

(3.8)

and
(

wn(t)
zn(t)

)

=

(
�1(wn–1, zn–1)(t)
�2(wn–1, zn–1)(t)

)

, n = 1, 2, . . . , with

(
w0(t)
z0(t)

)

=

(
0
0

)

. (3.9)

In addition,
(

w0(t)
z0(t)

)

≤
(

w1(t)
z1(t)

)

≤ · · · ≤
(

wn(t)
zn(t)

)

≤ · · · ≤
(

w∗(t)
z∗(t)

)

≤ · · · ≤
(

u∗(t)
v∗(t)

)

≤ · · · ≤
(

un(t)
vn(t)

)

≤ · · · ≤
(

u2(t)
v2(t)

)

≤
(

u1(t)
v1(t)

)

≤
(

u0(t)
v0(t)

)

(3.10)

and
(

Dα–1w0(t)
Dβ–1z0(t)

)

≤
(

Dα–1w1(t)
Dβ–1z1(t)

)

≤ · · · ≤
(

Dα–1wn(t)
Dβ–1zn(t)

)

≤ · · · ≤
(

Dα–1w∗(t)
Dβ–1z∗(t)

)

≤ · · · ≤
(

Dα1–1u∗(t)
Dα2–1v∗(t)

)

≤ · · · ≤
(

Dα–1un(t)
Dβ–1vn(t)

)

≤ · · · ≤
(

Dα–1u2(t)
Dβ–1v2(t)

)

≤
(

Dα–1u1(t)
Dβ–1v1(t)

)

≤
(

Dα–1u0(t)
Dβ–1v0(t)

)

. (3.11)

Proof First, Lemma 3.2 brings about the fact that �(P) ⊂ P for any (u, v) ∈ P, t ∈ J .
Next, let

R ≥ max
{

8Λa∗
0, 8Λb∗

0,
(
8Λa∗

k
)1/(1–λk ),

(
8Λb∗

k
)1/(1–τk ), k = 1, 2, 3

}

and define UR = {(u, v) ∈ P : ‖(u, v)‖X×Y ≤ R}. For any (u, v) ∈ UR, similar to (3.3) and (3.4),
we obtain

sup
t∈J

|�1(u, v)(t)|
1 + tα+β–1 ≤ Λ

[

a∗
0 + b∗

0 +
3∑

k=1

(
a∗

kRλk + b∗
kRτk

)
]

≤ R
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and

sup
t∈J

∣
∣Dα–1u(t)

∣
∣ ≤ Λ

[

a∗
0 + b∗

0 +
3∑

k=1

(
a∗

kRλk + b∗
kRτk

)
]

≤ R.

This means that ‖�1(u, v)‖X ≤ R. In the same way, ‖�2(u, v)‖Y ≤ R for all (u, v) ∈ UR. Thus
we know

∥
∥�(u, v)

∥
∥

X×Y =
{∥
∥�1(u, v)

∥
∥

X ,
∥
∥�2(u, v)

∥
∥

Y

} ≤ R.

That is, �(UR) ⊂ UR.
Through (3.8) and (3.9), it is obvious that (u0(t), v0(t)), (w0(t), z0(t)) ∈ UR. By the com-

plete continuity of the operator�, we define the sequences (un, vn) and (wn, zn) as (un, vn) =
�(un–1, vn–1), (wn, zn) = �(wn–1, zn–1) for n = 1, 2, . . . . Since �(UR) ⊂ UR, we can obtain that
(un, vn), (wn, zn) ∈ �(UR) for n = 1, 2, . . . . Hence we need to prove that there exist (u∗, v∗)
and (w∗, z∗) satisfying limn→∞(un, vn) = (u∗, v∗) and limn→∞(wn, zn) = (w∗, z∗), which are
two monotone sequences for positive solutions of the fractional differential system (1.6).

For t ∈ J , by Lemma 2.5, (3.1), and (3.8), we have

u1(t) = �1(u0, v0)(t) ≤ tα–1Λ

[

a∗
0 +

3∑

k=1

a∗
kRλk + b∗

0 +
3∑

k=1

b∗
kRτk

]

≤ Rtα–1 = u0(t)

and

v1(t) = �2(u0, v0)(t) ≤ tβ–1Λ

[

b∗
0 +

3∑

k=1

b∗
kRτk + a∗

0 +
3∑

k=1

a∗
kRλk

]

≤ Rtβ–1 = v0(t),

that is,
(

u1(t)
v1(t)

)

=

(
�1(u0, v0)(t)
�2(u0, v0)(t)

)

≤
(

Rtα–1

Rtβ–1

)

=

(
u0(t)
v0(t)

)

. (3.12)

Then we consider the monotonicity of the fractional derivative of (u, v). By (3.12) and
Remark 2.6, we know

Dα–1u1(t) = Dα–1
�1(u0, v0)(t) =

∫ +∞

0
H1(t, s)ϕ(u0,v0)(s) ds +

∫ +∞

0
H3(t, s)ψ(u0,v0)(s) ds

≤ Γ (α)Λ

[

a∗
0 +

3∑

k=1

a∗
kRλk + b∗

0 +
3∑

k=1

b∗
kRτk

]

≤ Γ (α)R = Dα–1u0(t),

Dβ–1v1(t) = Dβ–1T2(u0, v0)(t) =
∫ +∞

0
H2(t, s)ψ(u0,v0)(s) ds +

∫ +∞

0
H4(t, s)ϕ(u0,v0)(s) ds

≤ Γ (β)Λ

[

a∗
0 +

3∑

k=1

a∗
kRλk + b∗

0 +
3∑

k=1

b∗
kRτk

]

≤ Γ (β)R = Dβ–1v0(t),

that is,
(

Dα–1u1(t)
Dβ–1v1(t)

)

=

(
Dα–1

�1(u0, v0)(t)
Dβ–1

�2(u0, v0)(t)

)

≤
(

Γ (α)R
Γ (β)R

)

=

(
Dα–1u0(t)
Dβ–1v0(t)

)

. (3.13)
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By the monotonicity assumption (C3) of functions ϕ and ψ , similar to (3.12) and (3.13),
for ∀t ∈ J , we do the second iteration:

(
u2(t)
v2(t)

)

=

(
�1(u1, v1)(t)
�2(u1, v1)(t)

)

≤
(
�1(u0, v0)(t)
�2(u0, v0)(t)

)

=

(
u1(t)
v1(t)

)

,

(
Dα–1u2(t)
Dβ–1v2(t)

)

=

(
Dα–1

�1(u1, v1)(t)
Dβ–1

�2(u1, v1)(t)

)

≤
(

Dα–1
�1(u0, v0)(t)

Dβ–1
�2(u0, v0)(t)

)

=

(
Dα–1u1(t)
Dβ–1v1(t)

)

.

By recursion, for t ∈ J , the sequence {(un, vn)}∞n=0 satisfies

(
un+1(t)
vn+1(t)

)

≤
(

un(t)
vn(t)

)

,

(
Dα–1un+1(t)
Dβ–1vn+1(t)

)

≤
(

Dα–1un(t)
Dβ–1vn(t)

)

.

Applying the iterative sequence (un+1, vn+1) = �(un, vn) and the complete continuity of the
operator �, it is easy to infer that (un, vn) → (u∗, v∗) and �(u∗, v∗) = (u∗, v∗). Thus (u∗, v∗)
is a fixed point of �.

For the sequence {(wn, zn)}∞n=0, we take a similar discussion. For t ∈ J , we attain

(
w1(t)
z1(t)

)

=

(
�1(w0, z0)(t)
�2(w0, z0)(t)

)

=

(∫ +∞
0 K1(t, s)ϕ(w0,z0)(s) ds +

∫ +∞
0 K3(t, s)ψ(w0,z0)(s) ds

∫ +∞
0 K2(t, s)ψ(w0,z0)(s) ds +

∫ +∞
0 K4(t, s)ϕ(w0,z0)(s) ds

)

≥
(

0
0

)

=

(
w0(t)
z0(t)

)

,

(
Dα–1w1(t)
Dβ–1z1(t)

)

=

(∫ +∞
0 H1(t, s)ϕ(w0,z0)(s) ds +

∫ +∞
0 H3(t, s)ψ(w0,z0)(s) ds

∫ +∞
0 H2(t, s)ψ(w0,z0)(s) ds +

∫ +∞
0 H4(t, s)ϕ(w0,z0)(s) ds

)

≥
(

0
0

)

=

(
Dα–1w0(t)
Dβ–1z0(t)

)

.

Using the the monotonicity assumption (C3) of functions ϕ and ψ , we can obtain

(
w2(t)
z2(t)

)

=

(
�1(w1, z1)(t)
�2(w1, z1)(t)

)

≥
(
�1(w0, z0)(t)
�2(w0, z0)(t)

)

=

(
w1(t)
z1(t)

)

,

(
Dα–1w2(t)
Dβ–1z2(t)

)

=

(
Dα–1

�1(w1, z1)(t)
Dβ–1

�2(w1, z1)(t)

)

≥
(

Dα–1
�1(w0, z0)(t)

Dβ–1
�2(w0, z0)(t)

)

=

(
Dα–1w1(t)
Dβ–1z1(t)

)

.

Analogously, for n = 0, 1, 2, . . . and t ∈ J , we know

(
wn+1(t)
zn+1(t)

)

≥
(

wn(t)
zn(t)

)

,

(
Dα–1wn+1(t)
Dβ–1zn+1(t)

)

≥
(

Dα–1wn(t)
Dβ–1zn(t)

)

.

Applying the iterative sequence (wn+1, zn+1) = �(wn, zn) and the complete continuity of
the operator �, it is easy to acquire that (wn, zn) → (w∗, z∗) and �(w∗, z∗) = (w∗, z∗). Thus
(w∗, z∗) is also a fixed point of �.

Finally we prove that (u∗, v∗) and (w∗, z∗) are the minimal and maximal positive solu-
tions of system (1.6). Suppose that (ξ (t),η(t)) is any positive solution of system (1.6), then
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�(ξ (t),η(t)) = (ξ (t),η(t)) and

(
w0(t)
z0(t)

)

=

(
0
0

)

≤
(

ξ (t)
η(t)

)

≤
(

Rtα–1

Rtβ–1

)

=

(
u0(t)
v0(t)

)

,

(
Dα–1w0(t)
Dβ–1z0(t)

)

≤
(

Dα–1ξ (t)
Dβ–1η(t)

)

≤
(

Dα–1u0(t)
Dβ–1v0(t)

)

.

Using the monotone property of the operator �, we obtain that

(
w1(t)
z1(t)

)

=

(
�1(w0, z0)(t)
�2(w0, z0)(t)

)

≤
(

ξ (t)
η(t)

)

≤
(
�1(u0, v0)(t)
�2(u0, v0)(t)

)

=

(
u1(t)
v1(t)

)

,

(
Dα–1w1(t)
Dβ–1z1(t)

)

≤
(

Dα–1ξ (t)
Dβ–1η(t)

)

≤
(

Dα–1u1(t)
Dβ–1v1(t)

)

.

Repeating the above process, we have

(
wn(t)
zn(t)

)

≤
(

ξ (t)
η(t)

)

≤
(

un(t)
vn(t)

)

,

(
Dα–1wn(t)
Dβ–1zn(t)

)

≤
(

Dα–1ξ (t)
Dβ–1η(t)

)

≤
(

Dα–1un(t)
Dβ–1vn(t)

)

.

Combining limn→∞(wn, zn) = (w∗, z∗) and limn→∞(un, vn) = (u∗, v∗), the results (3.10) and
(3.11) come naturally.

Again ϕ(t, 0, 0, 0) 	= 0 and ψ(t, 0, 0, 0) 	= 0 for all t ∈ J , we know that (0, 0) is not a solution
of system (1.6). By (3.10) and (3.11), it is obvious that (w∗, z∗) and (u∗, v∗) are the extreme
positive solutions of system (1.6), which can be constructed by means of two monotone
iterative sequences in (3.8) and (3.9). Thus the proof is completed. �

Remark 3.4 When the parameters λk , τk (k = 1, 2, 3) take different values, the same result
can be obtained by using a similar method, so we omit the details.

Example 3.5 Consider the following fractional differential system on a half-line:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–D2.5u(t) = 2
(10+t)2 + e–t |u(t)|0.1

(1+t3.6)0.1 + e–2t |v(t)|0.3

(1+t3.6)0.3 + |D1.1v(t)|0.4

1+t2 ,

–D2.1v(t) = 1
(20+t)3 + e–3t |u(t)|0.2

(1+t3.6)0.2 + e–4t |v(t)|0.4

(1+t3.6)0.4 + 3t2|D1.5u(t)|0.2

(3+t3)2 ,

u(0) = u′(0) = 0, D1.5u(+∞) =
∫ +∞

0 t–1.1e–tv(t) dt,

v(0) = v′(0) = 0, D1.1v(+∞) =
∫ +∞

0 t–1.5e–2tu(t) dt,

(3.14)

where α = 2.5, β = 2.1, h(t) = t–1.1e–t , g(t) = t–1.5e–2t , λ1 = 0.1, λ2 = 0.3, λ3 = 0.4, τ1 = 0.2,
τ2 = 0.4, τ3 = 0.2, Γ (2.5) = 1.329340, Γ (2.1) = 1.046486, Υ1 =

∫ +∞
0 h(t)t1.1 dt = 1, Υ2 =

∫ +∞
0 g(t)t1.5 dt = 0.5, and

ϕ(t, u, v, w) =
2

(10 + t)2 +
e–t|u|0.1

(1 + t3.6)0.1 +
e–2t|v|0.3

(1 + t3.6)0.3 +
|w|0.4

1 + t2 ,
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ψ(t, u, v, z) =
1

(20 + t)3 +
e–3t|u|0.2

(1 + t3.6)0.2 +
e–4t|v|0.4

(1 + t3.6)0.4 +
3t2|z|0.2

(3 + t3)2 .

It is easy to know that Γ (2.5)Γ (2.1) > Υ1Υ2. So assumptions (C0) and (C1) are satisfied.
Noting that

∣
∣ϕ(t, u, v, w)

∣
∣ ≤ 2

(10 + t)2 +
e–t|u|0.1

(1 + t3.6)0.1 +
e–2t|v|0.3

(1 + t3.6)0.3 +
|w|0.4

1 + t2

= a0(t) + a1(t)|u|0.1 + a2(t)|v|0.3 + a3(t)|w|0.4,

∣
∣ψ(t, u, v, z)

∣
∣ ≤ 1

(20 + t)3 +
e–3t|u|0.2

(1 + t3.6)0.2 +
e–4t|v|0.4

(1 + t3.6)0.4 +
3t2|z|0.2

(3 + t3)2

= b0(t) + b1(t)|u|0.2 + b2(t)|v|0.4 + b3(t)|z|0.2,

and

a∗
0 =

∫ +∞

0
a0(t) dt =

1
5

, a∗
1 =

∫ +∞

0
a1(t)

(
1 + t3.6)0.1 dt = 1,

a∗
2 =

∫ +∞

0
a2(t)

(
1 + t3.6)0.3 dt =

1
2

, a∗
3 =

∫ +∞

0
a3(t) dt =

π

2
,

b∗
0 =

∫ +∞

0
b0(t) dt =

1
800

, b∗
1 =

∫ +∞

0
b1(t)

(
1 + t3.6)0.2 dt =

1
3

,

b∗
2 =

∫ +∞

0
b2(t)

(
1 + t3.6)0.4 dt =

1
4

, b∗
3 =

∫ +∞

0
b3(t) dt = π ,

which means that assumption (C2) is satisfied.
From the expression of functions ϕ, ψ , it is obvious that ϕ, ψ are increasing with re-

spect to the variables u, v, w and u, v, z, and ϕ(t, 0, 0, 0) 	≡ 0, ψ(t, 0, 0, 0) 	≡ 0, ∀t ∈ J . Thus
assumption (C3) is satisfied. By Theorem 3.3, it follows that the fractional differential sys-
tem (3.14) has two positive solutions, which can be established by the limit means of two
explicit monotone iterative sequences in (3.8) and (3.9).

4 Conclusions
In this paper, we apply the monotone iterative technique to study a fractional differential
system with coupled integral boundary conditions in a half-line. We first transform sys-
tem (1.6) into an equivalent operator equation (3.1), and then we construct some norm
inequalities related to nonlinear terms ϕ, ψ and a new Banach space. Finally, some ex-
plicit monotone iterative sequences for approximating the extreme positive solutions are
obtained.
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