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Abstract
This paper presents an absolutely stable noniterative difference scheme for solving a
general class of singular perturbation problems having left, right, internal, or twin
boundary layers. The original two-point second-order singular perturbation problem
is approximated by a first-order delay differential equation with a variable deviating
argument. This delay differential equation is transformed into a three-term difference
equation that can be solved using the Thomas algorithm. The uniqueness and
stability analysis are discussed, showing that the method is absolutely stable. An
optimal estimate for the deviating argument is obtained to take advantage of the
second-order accuracy of the central finite difference method in addition to the
absolute stability property. Several problems having left, right, interior, or twin
boundary layers are considered to validate and illustrate the method. The numerical
results confirm that the deviating argument can stabilize the unstable discretized
differential equation and that the new approach is effective in solving the considered
class of singular perturbation problems.

Keywords: Singular perturbation problems; Finite difference schemes; Absolutely
stable; Boundary and interior layers

1 Introduction
Singular perturbation problems (SPPs), also known as stiff, arise very frequently in var-
ious areas of applied science, such as fluid mechanics, heat transfer, materials science,
chemical and electrical engineering, superconductor theory, and chemical reactor sys-
tems [1–9]. It is a well-known fact that SPPs exhibit stiff internal or boundary layers as the
singular perturbation parameter approaches zero [10–49]. As this happens, the stiffness
ratio increases and the classical numerical methods become inadequate for solving such
problems over standard locally uniform meshes, where nonphysical oscillations emerge
in the numerical solution due to the stability restriction on the step-size. An interesting
collection of examples of exotic numerical solutions of singular perturbation problems
obtained using inadequate numerical discretization schemes can be found in [10]. The
construction of special-purpose numerical methods for ensuring convergence regardless
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of the value of the perturbation parameter was first raised in [11, 12] using fitting factor
(stabilization term) and fitting mesh (layer adapted mesh) techniques. It is well known that
depending on the behavior of the differential operator coefficients in SPPs, the solutions
exhibit a boundary layer, twin boundary-layers, or interior layer [3, 4, 13–18]. A variety
of numerical and semianalytical numerical methods for solving different classes of SPPs
exhibiting a boundary layer, twin boundary-layers, or interior layer can be found in [18–
49]. In all of these SPP classes, a priori information about the location of the layers is used
to construct appropriate numerical methods for SPPs. And consequently, the numerical
methods developed for SPPs have different numerical integration algorithms depending
on the location of the layers. The purpose of this paper is to present a noniterative abso-
lutely stable difference scheme for solving a general class of SPPs having left, right, inter-
nal, or twin boundary layers. The method does not depend on asymptotic expansions and
needs no prior information about the location of the layers, and so it is designed to be suit-
able for the practicing engineers and applied mathematicians who need a practical tool for
solving SPPs (see, for example, [15, 38] for asymptotic techniques, designed for a similar
purpose). The method depends on replacing the original two-point second-order SPP by
a first-order approximate delay differential equation with a variable deviating argument.
This delay differential equation is transformed into a three-term difference equation that
can be solved using the Thomas algorithm [50]. The stability analysis of the method is
discussed showing that the method is absolutely stable under a certain condition on the
deviating argument whereas there is no stability restriction on the step-size. An optimal
estimate for the deviating argument is obtained to take advantage of the second-order ac-
curacy of the central finite difference method [48, 50] in addition to the absolute stability
property [19, 28, 48–50]. Several problems having left, right, interior, or twin boundary
layers are considered to validate and illustrate the method. To analyze the effect of the de-
viating argument on the solution accuracy, the maximum absolute solution error is pre-
sented in tables and figures for constant and variable deviating argument values. The nu-
merical results confirm that the deviating argument can stabilize the unstable discretized
differential equation and that the new approach is effective in solving the considered class
of singular perturbation problems.

2 Description of the method
Consider the following linear SPP:

–εy′′(x) + p(x)y′(x) + q(x)y(x) = r(x), (1)

with BCs

y(a) = A, y(b) = B,

where 0 < ε � 1, a, b, A and B are given constants, and p(x), q(x) and r(x) ∈ C1(x), x ∈ [a, b].
Moreover, we assume that q(x) ≥ 0 for all x ∈ [a, b]. Under these assumptions, problem
(1) has a unique solution with boundary or interior layers [13–49]. The interval [a, b] is
divided into N subintervals [xi, xi+1], i = 0, 1, 2, . . . , N – 1, each of length h, i.e., h = (b – a)/N
and xi = a+ ih. For the sake of simplicity, we use pi = p(xi), qi = q(xi), ri = r(xi), yi–1 = y(xi–1),
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yi+1 = y(xi+1), y′
i = y′(xi). Dividing Eq. (1) by –ε and letting ω = 1/ε results in

y′′
i – ωpiy′

i – ωqiyi = –ωfi. (2)

Let δi = δ(xi) be a positive variable deviating argument (0 < δi � 1). Then by using the
Taylor expansion about the point xi, we have

y(xi – δi) ∼= yi – δiy′
i +

δ2
i

2
y′′

i . (3)

By substituting Eq. (3) into Eq. (2), we have

2y(xi – δi) – 2yi + 2δiy′
i – δ2

i ωpiy′
i – δ2

i ωqiyi ∼= –δ2
i ωfi. (4)

Now, applying standard forward and centered finite difference formulas for y′
i in Eq. (4)

results in

2y(xi – δi) – 2yi + 2δi

{
yi+1 – yi

h

}
– δ2

i ωpi

{
yi+1 – yi–1

2h

}
– δ2

i ωqiyi ∼= –δ2
i ωfi. (5)

Again, using the Taylor expansion and the standard backward finite difference, we obtain:

y(xi – δi) ∼= yi – δi
yi – yi–1

h
. (6)

By substituting Eq. (6) into Eq. (5), we get the following difference equation:

Eiyi–1 + Fiyi + Giyi+1 ∼= Hi, i = 1, 2, . . . , N – 1, (7)

where

Ei =
2

hδi
+

ωpi

2h
, (8)

Fi = –
4

hδi
– ωqi, (9)

Gi =
2

hδi
–

ωpi

2h
, (10)

Hi = –ωfi. (11)

The difference Eq. (7) and the two BCs in (1) results in a tridiagonal system that can be
easily solved using the Thomas algorithm to obtain the unknowns y1 to yN–1.

2.1 Thomas algorithm
A brief description of the Thomas algorithm [50], is presented as follows.

In this algorithm, the solution of the difference Eq. (7) can be written as

yi = Wiyi+1 + Ti, i = 1, 2, . . . , N – 1. (12)
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where Wi and Ti are to be determined. From Eq. (12) we have

yi–1 = Wi–1yi + Ti–1, (13)

and substituting (12) and (13) into (7), we get

yi = –
Gi

Fi + EiWi–1
yi+1 +

Hi – EiTi–1

Fi + EiWi–1
. (14)

Comparing (14) and (12) results in

Wi = –
Gi

Fi + EiWi–1
, i = 1, 2, . . . , N – 1, (15)

Ti =
Hi – EiTi–1

Fi + EiWi–1
, i = 1, 2, . . . , N – 1. (16)

Starting with initial conditions W0 = 0 and T0 = y0 = A, the values of Wi and Ti for
i = 1, 2, . . . , N – 1 are computed in a forward process, from Eqs. (15)–(16), and then yi

is computed in a backward process, from Eq. (12), using the BC yN = B.

3 Uniqueness and stability analysis
In this section, the uniqueness and stability condition of the proposed algorithm for the
difference Eq. (7) is analyzed.

Theorem 1 The numerical scheme Eiyi–1 + Fiyi + Giyi+1 ∼= Hi defined in (7)–(11) results in
a unique stable solution provided

δi ≤ 4
ω|pi| . (17)

Proof The existence of a unique solution to the tridiagonal system results from establish-
ing that the tridiagonal coefficient matrix of the system is diagonally dominant. It is clear
that Ei in (8) and Gi in (10) are nonnegative when 2

hδi
+ ωpi

2h ≥ 0 and 2
hδi

– ωpi
2h ≥ 0, respec-

tively. These inequalities are verified if the condition δi ≤ 4
ω|pi| is verified. Following this

condition, Fi is negative and verifies the inequality |Fi| ≥ |Gi|+ |Ei| = 4
hδi

. Thus, under con-
dition (17), the tridiagonal coefficient matrix is diagonally dominant, and the numerical
scheme has a unique solution.

For stability analysis, suppose that a small numerical error τi–1 was introduced in the
calculation of Wi–1 so that it yields an approximate value W̃i–1 such that

W̃i–1 = Wi–1 + τi–1. (18)

Then, from (18) and (15), we have

τi =
(

–
Gi

Fi + Ei(Wi–1 + τi–1)

)
–

(
–

Gi

Fi + EiWi–1

)

=
(

–
GiEiτi–1

(Fi + Ei(Wi–1 + τi–1))(Fi + EiWi–1)

)
�

(
W 2

i Ei

Gi

)
τi–1, (19)
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|τi| �
∣∣W 2

i
∣∣
∣∣∣∣ Ei

Gi

∣∣∣∣|τi–1| =
∣∣∣∣ GiEi

(Fi + EiWi–1)2

∣∣∣∣|τi–1|. (20)

Thus, the numerical scheme defined by (7)–(11) results in a unique stable solution under
condition (17). �

Now, if we chose δi = 4
ω|pi| , then for the left-end boundary layers, pi < 0, we have Ei = 0,

and the present scheme is reduced to a stable forward integration scheme. Also, on the
other hand, for the right-end boundary layers, pi > 0, we have Gi = 0, and the present
scheme is reduced to a stable backward integration scheme. Moreover, in the above two
cases, the propagation error in (20) has vanished.

Moreover, at pi = 0, for twin-boundary layers or internal layers, or at h ≤ 2
ω‖pi‖∞ , we set

δi = 2h ≤ 4
ω|pi| , and the present scheme is reduced to the standard central finite difference

scheme (CFD) in [48, 50]. Thus, to take advantage of the second-order accuracy of the
standard central finite difference scheme in addition to the absolute stability property, δi

can be selected according to

δi = δop = min

{
4

ω|pi| , 2h
}

. (21)

The stability in CFD is controlled by the step-size restriction whereas the present scheme
is absolutely stable without any restrictions on the step-size.

These details are combined in the following algorithm:

3.1 Algorithm steps
Step I: compute

h = (b – a)/(N),
x = (a : h : b)

Step II: set xx = 0, index = 0, w = 1/ε
Set W = [0, 0, . . . , 0], T[0, 0, . . . , 0] where the vector length is N
Set T(1) = A, W (1) = 0

Step II: while xx ≤ b – h, compute
(i) xx = x(index);

(ii) p = p(xx); q = q(xx); r = r(xx)
(iii) δ = min(4/(w ∗ abs(p + 1E – 16)), 2h)
(iv) E(index) = 2/h + δwp/(2h)
(v) G(index) = 2/h – δwp/(2h)

(vi) F(index) = 4/h – δwq
(vii) H(index) = –δwf
(viii) index = index + 1

Step III: Do Steps (i) and (ii) for index2 = 1, 2, 3, . . . , N – 1
(i) Compute W (ind) = – G(index2)

G(index2)+E(index2)∗W (index2–1)

(ii) Compute T(ind) = F(index2)∗T(index2–1)–H(index2)
G(index2)+E(index2)∗W (index2–1)

Step IV: Compute the solution
(i) set Sol = [0, 0, . . . , 0], where the vector length is N – 2

(ii) Set Sol(N) = B
(iii) Compute Sol(index2 – 1) = W (index2 – 1) ∗ Sol(index2) + T(index2 – 1) where

index2 = N , N – 1, . . . , 3, 2, 1
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This algorithm is easily adaptable in any mathematical environment. We present the
Matlab code in Appendix A.

4 Numerical results
To demonstrate the applicability of the method, we consider in the following several prob-
lems having left, right, interior, or twin boundary layers. These problems have been dis-
cussed in the literature and their approximate solutions are available for comparison.

4.1 Left-end boundary-layer problems
Example 1 Consider the following SPBVP [2, 7, 13–15, 38]

εy′′(x) + y′(x) – y(x) = 0, x ∈ [0, 1], (22)

with BCs y(0) = 1 and y(1) = 1. The exact solution is given by

y(x) =
(em2 – 1)em1x + (1 – em1 )em2x

em2 – em1
,

where m1 = (–1 +
√

1 + 4ε)/(2ε) and m2 = (–1 –
√

1 + 4ε)/(2ε).
The solution errors are listed in Table 1 for ε = 10–3 and ε = 10–4 at h = 0.001. The

solutions for ε = 10–4 using the present absolutely stable central difference (ASCD) and
the standard CFD schemes are presented in Fig. 1.

Example 2 Consider the following SPBVP [7, 13–15, 38]

εy′′(x) + y′(x) = 1 + 2x, x ∈ [0, 1], (23)

with BCs y(0) = 0 and y(1) = 1. The exact solution is given by

y(x) = x(x + 1 – 2ε) +
(2ε – 1)(1 – e–x/ε)

1 – e–1/ε .

Table 1 The solution errors of Example 1 for ε = 10–3 and ε = 10–4 at h = 0.001

xi ε = 10–3 ε = 10–4

CFD ASCD CFD ASCD

δi = 4
ω|pi | δi = δop δi = 4

ω|pi | δi = δop

0.000 6.0951e–14 0.0000e+00 6.0951e–14 1.0592e–13 0.0000e+00 0.0000e+00
0.001 2.1803e–02 2.3236e–01 2.1803e–02 4.2100e–01 1.1841e–04 1.1841e–04
0.002 1.5273e–02 8.5511e–02 1.5273e–02 2.8036e–01 1.4708e–04 1.4708e–04
0.003 8.0307e–03 3.1542e–02 8.0307e–03 1.8672e–01 1.4708e–04 1.4708e–04
0.004 3.7564e–03 1.1708e–02 3.7564e–03 1.2436e–01 1.4708e–04 1.4708e–04
0.005 1.6486e–03 4.4190e–03 1.6486e–03 8.2822e–02 1.4708e–04 1.4708e–04
0.006 6.9512e–04 1.7401e–03 6.9512e–04 5.5160e–02 1.4708e–04 1.4708e–04
0.007 2.8515e–04 7.5553e–04 2.8515e–04 3.6736e–02 1.4708e–04 1.4708e–04
0.008 1.1466e–04 3.9370e–04 1.1466e–04 2.4466e–02 1.4708e–04 1.4708e–04
0.009 4.5397e–05 2.6072e–04 4.5397e–05 1.6295e–02 1.4707e–04 1.4707e–04
0.010 1.7743e–05 2.1185e–04 1.7743e–05 1.0852e–02 1.4707e–04 1.4707e–04
0.020 5.9987e–08 1.8343e–04 5.9987e–08 1.8638e–04 1.4705e–04 1.4705e–04
0.050 6.1017e–08 1.8322e–04 6.1017e–08 6.2155e–08 1.4689e–04 1.4689e–04
0.100 6.0767e–08 1.8247e–04 6.0767e–08 6.0963e–08 1.4629e–04 1.4629e–04
0.300 5.7716e–08 1.7332e–04 5.7716e–08 5.7913e–08 1.3896e–04 1.3896e–04
0.500 5.0343e–08 1.5119e–04 5.0343e–08 5.0524e–08 1.2123e–04 1.2123e–04
1.000 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
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Figure 1 The solution of Example 1 for ε = 10–4 using the ASCD and CFD schemes

Table 2 The solution errors of Example 2 for ε = 10–3 and ε = 10–4 at h = 0.001

xi ε = 10–3 ε = 10–4

CFD ASCD CFD ASCD

δi = 4
ω|pi | δi = δop δi = 4

ω|pi | δi = δop

0.000 3.6835e–13 0.0000e+00 3.6835e–13 1.3312e–12 0.0000e+00 0.0000e+00
0.001 3.4477e–02 3.6814e–01 3.4477e–02 6.6658e–01 7.5381e–04 7.5381e–04
0.002 2.4176e–02 1.3606e–01 2.4176e–02 4.4436e–01 7.9840e–04 7.9840e–04
0.003 1.2725e–02 5.0684e–02 1.2725e–02 2.9624e–01 7.9760e–04 7.9760e–04
0.004 5.9580e–03 1.9275e–02 5.9580e–03 1.9749e–01 7.9680e–04 7.9680e–04
0.005 2.6175e–03 7.7195e–03 2.6175e–03 1.3166e–01 7.9600e–04 7.9600e–04
0.006 1.1048e–03 3.4678e–03 1.1048e–03 8.7774e–02 7.9520e–04 7.9520e–04
0.007 4.5373e–04 1.9031e–03 4.5373e–04 5.8516e–02 7.9440e–04 7.9440e–04
0.008 1.8268e–04 1.3268e–03 1.8268e–04 3.9011e–02 7.9360e–04 7.9360e–04
0.009 7.2459e–05 1.1142e–03 7.2459e–05 2.6007e–02 7.9280e–04 7.9280e–04
0.010 2.8408e–05 1.0353e–03 2.8408e–05 1.7338e–02 7.9200e–04 7.9200e–04
0.020 1.7708e–09 9.8000e–04 1.7708e–09 3.0067e–04 7.8400e–04 7.8400e–04
0.050 5.5511e–16 9.5000e–04 5.5511e–16 1.5680e–09 7.6000e–04 7.6000e–04
0.100 4.4409e–16 9.0000e–04 4.4409e–16 8.8818e–16 7.2000e–04 7.2000e–04
0.300 2.2204e–16 7.0000e–04 2.2204e–16 3.3307e–16 5.6000e–04 5.6000e–04
0.500 2.2204e–16 5.0000e–04 2.2204e–16 3.3307e–16 4.0000e–04 4.0000e–04
1.000 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

The solution errors are presented in Table 2 for ε = 10–3 and ε = 10–4 at h = 0.001. The
solutions for ε = 10–4 using the ASCD and CFD schemes are depicted in Fig. 2.

Example 3 Consider the following SPBVP [47]

–εy′′(x) –
1

1 + x
y′(x) = 0, x ∈ [0, 1], (24)

with BCs y(0) = 0 and y(1) = 1. The exact solution is given by

y(x) =
[

(1 + x)(1–1/ε) – 1
(2)(1–1/ε) – 1

]
.

The solution errors are presented in Table 3 for ε = 10–3 and ε = 10–4 at h = 0.001. The
solutions for ε = 10–4 using the ASCD and CFD schemes are present in Fig. 3.
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Figure 2 The solution of Example 2 for ε = 10–4 using the ASCD and CFD schemes

Table 3 The solution errors of Example 3 for ε = 10–3 and ε = 10–4 at h = 0.001

xi ε = 10–3 ε = 10–4

CFD ASCD CFD ASCD

δi = 4
ω|pi | δi = δop δi = 4

ω|pi | δi = δop

0.000 8.4953e–14 0.0000e+00 8.4953e–14 9.0494e–14 0.0000e+00 0.0000e+00
0.001 3.4431e–02 3.6843e–01 3.4431e–02 6.6655e–01 4.5673e–05 4.5673e–05
0.002 2.4173e–02 1.3588e–01 2.4173e–02 4.4404e–01 2.1069e–09 2.1069e–09
0.003 1.2753e–02 5.0161e–02 1.2753e–02 2.9570e–01 9.8144e–14 9.8144e–14
0.004 5.9921e–03 1.8536e–02 5.9921e–03 1.9684e–01 0.0000e+00 0.0000e+00
0.005 2.6446e–03 6.8565e–03 2.6446e–03 1.3098e–01 0.0000e+00 0.0000e+00
0.006 1.1226e–03 2.5387e–03 1.1226e–03 8.7114e–02 0.0000e+00 0.0000e+00
0.007 4.6420e–04 9.4093e–04 4.6420e–04 5.7916e–02 0.0000e+00 0.0000e+00
0.008 1.8838e–04 3.4908e–04 1.8838e–04 3.8489e–02 0.0000e+00 0.0000e+00
0.009 7.5392e–05 1.2964e–04 7.5392e–05 2.5567e–02 0.0000e+00 0.0000e+00
0.010 2.9856e–05 4.8189e–05 2.9856e–05 1.6977e–02 0.0000e+00 0.0000e+00
0.020 2.1785e–09 2.5611e–09 2.1785e–09 2.7644e–04 0.0000e+00 0.0000e+00
0.050 1.3323e–15 0.0000e+00 1.3323e–15 9.2895e–10 0.0000e+00 0.0000e+00
0.100 1.4433e–15 0.0000e+00 1.4433e–15 4.4409e–15 0.0000e+00 0.0000e+00
0.300 1.3323e–15 0.0000e+00 1.3323e–15 4.4409e–15 0.0000e+00 0.0000e+00
0.500 2.5535e–15 0.0000e+00 2.5535e–15 4.8850e–15 0.0000e+00 0.0000e+00
1.000 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

The results in Tables 1, 2 and 3 show that at δi = 4/ω|pi| or δi = δop = 4/ω|pi|, there is no
propagation error with the Thomas algorithm (20). Also, at ε = 10–3 the ASCD is reduced
to the CFD scheme, where δop = 2h, and the results are identical. Although the ASCD
stability is verified at δi = 4/ω|pi|, selecting δi = δop takes advantage of the second-order
accuracy of the CFD in addition to the absolute stability property depending on the step-
size value. The solution obtained at ε = 10–4 using the ASCD is more accurate than that
obtained by CFD due to the absolute stability property of the ASCD, while the stability
restriction of CFD results in nonphysical oscillations in the numerical solution as illus-
trated in Figs. 1, 2 and 3. Figure 4 shows the solution error of Example 3 at ε = 10–4 using
different values of the deviating argument δi = k/ω|pi|, k = 4, 3, 2, 1. The results in Fig. 4
reveal that a more accurate solution is obtained at δi = 4/ω|pi|. Moreover, Fig. 5 depicts the
solution error of Example 3 at ε = 10–4 using constant and variable deviating arguments
δi = 4/ω|pi|∞, δi = 4/ω|pi|, respectively. Figure 5 reveals that a more accurate solution is
obtained using a variable deviating argument δi.
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Figure 3 The solution of Example 3 for ε = 10–4 using the ASCD and CFD schemes

Figure 4 The solution errors of Example 3 for ε = 10–4 and different values of δi

4.2 Right-end boundary-layer problems
Example 4 Consider the following SPBVP [2, 13]

εy′′(x) – y′(x) = 0, x ∈ [0, 1], (25)

with BCs y(0) = 1 and y(1) = 0. The exact solution is given by

y(x) =
e(x–1)/ε – 1
e–1/ε – 1

.

The solution errors are reported in Table 4 for ε = 10–3 and ε = 10–4 at h = 0.001. The
numerical solution using the ASCD and CFD schemes for ε = 10–4 are presented in Fig. 6.

Example 5 Consider the following SPBVP

εy′′(x) – y′(x) – (1 + ε)y(x) = 0, (26)
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Figure 5 The solution errors of Example 3 for ε = 10–4 using constant and variable deviating argument δi

Table 4 The solution errors of Example 4 for ε = 10–3 and ε = 10–4 at h = 0.001

xi ε = 10–3 ε = 10–4

CFD ASCD CFD ASCD

δi = 4
ω|pi | δi = δop δi = 4

ω|pi | δi = δop

0.000 2.4425e–15 0.0000e+00 2.4425e–15 2.2204e–15 0.0000e+00 0.0000e+00
0.500 2.4425e–15 0.0000e+00 2.4425e–15 2.2204e–15 0.0000e+00 0.0000e+00
0.700 2.4425e–15 0.0000e+00 2.4425e–15 2.2204e–15 0.0000e+00 0.0000e+00
0.900 2.4425e–15 0.0000e+00 2.4425e–15 2.2204e–15 0.0000e+00 0.0000e+00
0.950 2.4425e–15 0.0000e+00 2.4425e–15 1.5683e–09 0.0000e+00 0.0000e+00
0.980 1.7744e–09 2.0612e–09 1.7744e–09 3.0073e–04 0.0000e+00 0.0000e+00
0.990 2.8465e–05 4.5400e–05 2.8465e–05 1.7342e–02 0.0000e+00 0.0000e+00
0.991 7.2605e–05 1.2341e–04 7.2605e–05 2.6012e–02 0.0000e+00 0.0000e+00
0.992 1.8305e–04 3.3546e–04 1.8305e–04 3.9018e–02 0.0000e+00 0.0000e+00
0.993 4.5463e–04 9.1188e–04 4.5463e–04 5.8528e–02 0.0000e+00 0.0000e+00
0.994 1.1070e–03 2.4788e–03 1.1070e–03 8.7791e–02 0.0000e+00 0.0000e+00
0.995 2.6227e–03 6.7379e–03 2.6227e–03 1.3169e–01 0.0000e+00 0.0000e+00
0.996 5.9700e–03 1.8316e–02 5.9700e–03 1.9753e–01 0.0000e+00 0.0000e+00
0.997 1.2750e–02 4.9787e–02 1.2750e–02 2.9630e–01 9.3592e–14 9.3592e–14
0.998 2.4224e–02 1.3534e–01 2.4224e–02 4.4444e–01 2.0612e–09 2.0612e–09
0.999 3.4546e–02 3.6788e–01 3.4546e–02 6.6671e–01 4.5400e–05 4.5400e–05
1.000 0.0000e+00 0.0000e+00 0.0000e+00 2.2204e–16 0.0000e+00 0.0000e+00

with BCs y(0) = 1 + exp(–(1 + ε)/ε) and y(1) = 1 + exp(–1). The exact solution is given by

y(x) = e(1+ε)(x–1)/ε + e–x.

The solution errors are presented in Table 5 for ε = 10–3 and ε = 10–4 at h = 0.001. The
numerical solution using the ASCD and CFD schemes for ε = 10–4 are given in Fig. 7.

The results in Tables 4 and 5 and Figs. 6 and 7 show that the ASCD can handle problems
with right-end boundary layers effectively as well as those with left-end boundary layers.

4.3 Internal or twin-boundary-layer problems
Example 6 Consider the following SPBVP [49] given by

εy′′(x) + xy′(x) = 0, x ∈ [–1, 1], (27)
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Figure 6 The solution of Example 4 for ε = 10–4 using the ASCD and CFD schemes

Table 5 Solution errors of Example 5 for ε = 10–3 and ε = 10–4 at h = 0.001

xi ε = 10–3 ε = 10–4

CFD ASCD CFD ASCD

δi = 4
ω|pi | δi = δop δi = 4

ω|pi | δi = δop

0.000 4.2411e–14 0.0000e+00 4.2411e–14 1.8874e–14 0.0000e+00 0.0000e+00
0.500 5.0469e–08 1.5141e–04 5.0469e–08 5.0537e–08 1.2125e–04 1.2125e–04
0.700 5.7848e–08 1.7354e–04 5.7848e–08 5.7926e–08 1.3898e–04 1.3898e–04
0.900 6.0894e–08 1.8267e–04 6.0894e–08 6.0976e–08 1.4631e–04 1.4631e–04
0.950 6.1142e–08 1.8341e–04 6.1142e–08 6.2717e–08 1.4690e–04 1.4690e–04
0.980 5.9470e–08 1.8361e–04 5.9470e–08 2.9484e–04 1.4706e–04 1.4706e–04
0.990 2.8120e–05 2.2859e–04 2.8120e–05 1.7169e–02 1.4709e–04 1.4709e–04
0.991 7.1893e–05 3.0595e–04 7.1893e–05 2.5779e–02 1.4709e–04 1.4709e–04
0.992 1.8153e–04 5.1643e–04 1.8153e–04 3.8708e–02 1.4709e–04 1.4709e–04
0.993 4.5140e–04 1.0892e–03 4.5140e–04 5.8119e–02 1.4709e–04 1.4709e–04
0.994 1.1003e–03 2.6476e–03 1.1003e–03 8.7266e–02 1.4709e–04 1.4709e–04
0.995 2.6096e–03 6.8880e–03 2.6096e–03 1.3103e–01 1.4709e–04 1.4709e–04
0.996 5.9461e–03 1.8426e–02 5.9461e–03 1.9674e–01 1.4709e–04 1.4709e–04
0.997 1.2712e–02 4.9822e–02 1.2712e–02 2.9541e–01 1.4709e–04 1.4709e–04
0.998 2.4176e–02 1.3525e–01 2.4176e–02 4.4356e–01 1.4709e–04 1.4709e–04
0.999 3.4512e–02 3.6770e–01 3.4512e–02 6.6605e–01 1.0174e–04 1.0174e–04
1.000 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

with BCs y(–1) = 0 and y(1) = 2. The exact solution is given by

y(x) = 1 +
erf (x/

√
2x)

erf (1/
√

2x)
.

The solution errors are listed in Table 6 for ε = 10–3 and ε = 10–4 at h = 0.001. The numer-
ical solutions using the ASCD and CFD schemes for ε = 10–4 are presented in Fig. 8.

Example 7 Consider the following SPBVP with twin boundary layer [40, 42]

εy′′(x) – 2(2x – 1)y′(x) – 4y(x) = 0, x ∈ [0, 1], (28)

with BCs y(0) = 1 and y(1) = 1. The exact solution is given by

y(x) = e2x(x–1)/ε.
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Figure 7 The solution of Example 5 for ε = 10–4 using the ASCD and CFD schemes

Table 6 The solution errors of Example 6 for ε = 10–3 and ε = 10–4 at h = 0.001

xi ε = 10–3 ε = 10–4

CFD ASCD CFD ASCD

δi = 4
ω|pi | δi = δop δi = 4

ω|pi | δi = δop

–1.00 2.2826e–12 0.0000e+00 2.2826e–12 6.1286e–13 0.0000e+00 1.1351e–13
–0.50 2.2826e–12 0.0000e+00 2.2826e–12 6.1286e–13 0.0000e+00 1.1351e–13
–0.10 5.3097e–06 1.5654e–03 5.3097e–06 6.1286e–13 3.0826e–71 1.1351e–13
–0.08 1.9540e–05 1.1412e–02 1.9540e–05 6.1363e–13 1.2212e–15 1.1274e–13
–0.06 4.4839e–05 5.7780e–02 4.4839e–05 5.5249e–10 1.9732e–09 5.5177e–10
–0.04 6.2362e–05 2.0590e–01 6.2362e–05 4.5925e–06 6.3342e–05 4.5925e–06
–0.02 4.6484e–05 5.2709e–01 4.6484e–05 4.0526e–04 4.5500e–02 4.0526e–04
–0.01 2.5503e–05 7.5183e–01 2.5503e–05 6.0561e–04 3.1731e–01 6.0561e–04
0.00 1.1580e–12 0.0000e+00 1.1580e–12 3.1630e–13 0.0000e+00 4.9516e–14
0.01 2.5503e–05 7.5183e–01 2.5503e–05 6.0561e–04 3.1731e–01 6.0561e–04
0.02 4.6484e–05 5.2709e–01 4.6484e–05 4.0526e–04 4.5500e–02 4.0526e–04
0.04 6.2362e–05 2.0590e–01 6.2362e–05 4.5925e–06 6.3342e–05 4.5925e–06
0.06 4.4839e–05 5.7780e–02 4.4839e–05 5.5189e–10 1.9732e–09 5.5188e–10
0.08 1.9540e–05 1.1412e–02 1.9540e–05 4.8850e–15 1.3323e–15 1.1102e–15
0.10 5.3097e–06 1.5654e–03 5.3097e–06 3.5527e–15 0.0000e+00 2.2204e–16
0.50 0.0000e+00 0.0000e+00 0.0000e+00 8.8818e–16 0.0000e+00 0.0000e+00
1.00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

The solution errors are listed in Table 7 for ε = 10–3 and ε = 10–4 at h = 0.001. The
numerical solutions using the ASCD and CFD methods for ε = 10–4 are presented in Fig. 9.

The results in Table 6 and Fig. 8 show that the ASCD and CFD lead to stable and accurate
results for the internal layer problem (26). The reason for absenting the stability restriction
of CFD in solving internal layer problems is that the internal layer occurs at a turning point
x = xin at which p(xin) = 0. The results in Table 7 show that the solution obtained for the
twin boundary layer problem (28) at ε = 10–4 using the ASCD is more accurate than those
of the CFD and thus is due to the absolute stability property of the ASCD, while for the
CFD the stability restriction results in nonphysical oscillations in the numerical solution
as shown in Fig. 9.

Figure 10 depicts the solution error of Example 7 for ε = 10–4 using different values of
the deviating argument δi = k/ω|pi|, k = 4, 3, 2, 1. The results in Fig. 10 show that a more ac-
curate solution is obtained at δi = 4/ω|pi|. Figure 11 illustrates the solution error of Exam-
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Figure 8 The solution of Example 6 for ε = 10–4 using the ASCD and CFD schemes

Table 7 The solution errors of Example 7 for ε = 10–3 and ε = 10–4 at h = 0.001

xi ε = 10–3 ε = 10–4

CFD ASCD CFD ASCD

δi = 4
ω|pi | δi = δop δi = 4

ω|pi | δi = δop

0.00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
0.01 2.5175e–09 2.5175e–09 2.5175e–09 1.2904e–01 1.0226e–86 1.0226e–86
0.02 9.4549e–18 9.4549e–18 9.4549e–18 1.5959e–02 5.7090e–171 5.709e–171
0.04 4.4278e–34 4.4278e–34 4.4278e–34 2.1328e–04 0.0000e+00 0.0000e+00
0.06 4.4806e–50 1.0270e–49 4.4806e–50 2.3489e–06 0.0000e+00 0.0000e+00
0.08 6.0646e–50 1.1799e–64 6.0646e–50 2.0935e–08 0.0000e+00 0.0000e+00
0.10 6.3669e–50 6.7142e–79 6.3669e–50 1.4785e–10 0.0000e+00 0.0000e+00
0.20 8.4790e–50 1.0611e–139 8.4790e–50 2.8784e–23 0.0000e+00 0.0000e+00
0.30 1.2675e–49 3.9475e–183 1.2675e–49 2.5563e–41 0.0000e+00 0.0000e+00
0.40 2.4911e–49 3.4566e–209 2.4911e–49 2.8289e–73 0.0000e+00 0.0000e+00
0.50 2.0204e–48 7.1246e–218 2.0204e–48 8.4555e–146 0.0000e+00 0.0000e+00
0.60 2.1996e–39 3.4566e–209 2.1996e–39 1.3376e–70 0.0000e+00 0.0000e+00
0.70 4.9323e–21 3.9475e–183 4.9323e–21 2.5837e–41 0.0000e+00 0.0000e+00
0.80 3.2994e–21 1.0611e–139 3.2994e–21 2.9094e–23 0.0000e+00 0.0000e+00
0.90 2.4776e–21 6.7142e–79 2.4776e–21 1.4785e–10 0.0000e+00 0.0000e+00
0.92 2.3599e–21 1.1799e–64 2.3599e–21 2.0935e–08 0.0000e+00 0.0000e+00
0.94 2.2529e–21 1.0270e–49 2.2529e–21 2.3489e–06 0.0000e+00 0.0000e+00
0.96 2.1552e–21 4.4278e–34 2.1552e–21 2.1328e–04 0.0000e+00 0.0000e+00
0.98 9.4528e–18 9.4549e–18 9.4528e–18 1.5959e–02 5.7090e–171 5.709e–171
0.99 2.5175e–09 2.5175e–09 2.5175e–09 1.2904e–01 1.0226e–86 1.0226e–86
1.00 0.0000e+00 0.0000e+00 0.0000e+00 1.1102e–16 0.0000e+00 0.0000e+00

ple 7 for ε = 10–4 when adopting constant and variable deviating arguments δi = 4/ω|pi|∞,
δi = 4/ω|pi|, respectively. Figure 11 reveals that a more accurate solution is obtained using
a variable deviating argument.

5 Conclusions
This paper presented an absolutely stable noniterative central difference scheme for solv-
ing a general class of SPPs having left, right, internal, or twin boundary layers. The original
two-point second-order SPPs is approximated by a first-order delay differential equation
with a variable deviating argument. This delay differential equation was transformed into
a three-term difference equation that was solved using the Thomas algorithm. The stabil-
ity analysis of the method is discussed showing that the method is absolutely stable under
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Figure 9 The solution of Example 7 for ε = 10–4 using the ASCD and CFD schemes

Figure 10 The solution errors of Example 7 at ε = 10–4 and different values of δi

Figure 11 Solution errors of Example 7 at ε = 10–4 using constant and variable deviating argument δi

a certain condition on the deviating argument without stability restriction on the step-
size. An optimal estimation for the deviating argument is obtained taking advantage of
the second-order accuracy of the central finite difference method in addition to the abso-
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lute stability property. Several examples having left, right, interior, or twin boundary layers
were considered to illustrate the method. To analyze the effect of the deviating argument
on the solution accuracy, the maximum absolute error is reported in several tables and
figures for constant and variable deviating argument values. The results confirm that the
variable deviating argument results in more accurate results than the constant one. More-
over, the results reveal that the deviating argument can stabilize the unstable discretized
differential equation and that the present method is effective in solving the considered
class of SPPs.

Appendix A
Clear all, format long

Epsn=.001, a=0; b=1; w=1/Epsn;

Alpha=0 %1+exp((-1-Epsn)/Epsn)

Beta=1 %1+1/exp(1)

h0=.01

Deltamax=2*h0

JJ=3.999

Ind=0; x=a; xx=0; hh=(a:h0:b)

While xx<b-h0

Ind=Ind+1; x=hh (Ind+1);

% f=0; p=-1; q=1;

% f=-1-2*x; p=-1; q=0;

% f=0; p=-(1-x/2); q=1/2;

% f=-2/(x+1)*(log(2/(x+1))-1); p=-2; q=-2/(1+x);

% f=-x-2.9995; p=f; q=0

% f=0; p=-1; q=0

% f=0; p=1; q=0

% f=0; p=1; q=1+epsp;

% f=0; p=x; q=1;

% f=0; p=-x; q=0

% p=0; q=1; f= -cos (pi*x)^2-2*epsp^2*pi^2*cos(2*pi*x)

Delta=min(JJ/w/abs(p),Deltamax)

If p==0; Delta=min(JJ/w/abs(p+1e-6),Deltamax);end;

ALPHANEG(Ind)=(2/h0+Delta*w*p/2/h0);

ALPHAPOS(Ind)=(2/h0-Delta*w*p/2/h0);

ALPHAI(Ind)= -4/h0-Delta*w*q; BETA=-w*Delta*f;

if (ALPHAI)>0 |(ALPHAPOS)<0|(ALPHANEG)<0|

abs(ALPHAI)+.1<abs(ALPHAPOS)+abs(ALPHANEG),

error (’not dominant’); end

end

% Thomas algorithm in Matlab environment

subc = [ ALPHANEG’;0;0];

supc = [0;0; ALPHAPOS’];

diagc= [1; ALPHAI’;1];

Bvector = [alpha; BETA’;beta];

AAAA = spdiags ([subc diagc supc],-1:1,

length (Bvector), length (Bvector));
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YSOL=AAAA\Bvector;.
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