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Abstract
Some essential conditions for existence theory and stability analysis to a class of
boundary value problems of fractional delay differential equations involving
Atangana–Baleanu-Caputo derivative are established. The deserted results are
derived by using the Banach contraction and Krasnoselskii’s fixed point theorems.
Moreover, different kinds of stability theory including Hyers–Ulam, generalized
Hyers–Ulam, Hyers–Ulam-Rassias and generalized Hyers–Ulam–Rassias stability are
also developed for the problem under consideration. Appropriate examples are given
for illustrative purposes.
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1 Introduction
Fractional-order differential equations (FDEs) have large numbers of application in mod-
eling various real-world processes and phenomena. Due to this researchers have taken a
keen interest in the development of the concerned area of research. A valuable contribu-
tion in the development of the theory was made by different researchers; see [1–3] and in
the references therein. The real-world problems involving the memory effects is one of the
biggest challenges for the researchers. Therefore to overcome this deficiency, some new
techniques and tools were developed by different researchers to furnish the theory fur-
ther. The phenomena related to dynamics, thermodynamics, control theory, biophysics,
biomedical, computer networking, electrostatics, image and signal processing and eco-
nomics are commonly modeled via the aforementioned equations [2, 3]. Due to the re-
liability, a great degree of freedom and global nature of FDEs as compared to traditional
differential equations (DEs), researchers paid more attention to the concerned area. In this
connection, we refer to [4–9]. The researchers studied different aspects of FDEs. Of course
an important aspect of FDEs is the existence of a solution, its uniqueness and stability anal-
ysis. They used fixed point theory and different techniques of analysis to investigate the

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02866-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02866-9&domain=pdf
mailto:tabdeljawad@psu.edu.sa
mailto:hasibkhan13@yahoo.com


Ali et al. Advances in Difference Equations        (2020) 2020:407 Page 2 of 13

stability and existence of solutions for FDEs. In this connection, the researchers published
a variety of books and articles [10].

Another important type of DEs is known as delay DEs (DDEs). There are various kinds
of DDEs: continuous delay, discrete type delay and proportional type delay. Each delay
has its own characteristics in the modeling of real-world problems. The proportional type
DDEs constitute an important class and have a large number of applications in dynami-
cal systems and their uses [11]. It frequently occurred in technological control or natural
problems. In such a system, the monitoring and adjustment to the system are observed
by the controller. As a result, as regards the arising time delay in between the observation
and action control, these adjustments of concern cannot be made immediately. Perfect
real-life examples that reflect time delay are one of the important tools to determine the
dynamics and an essential part of the system is natural networking. Specifically, a time
delay occurs in the communication between neurons. It has been observed that the use of
time delay in the model of such a system directs to a convoluted dynamics and even dis-
order [12]. Furthermore, fractional-order DDEs have a variety of applications in diverse
fields, such as hydraulic network systems, automatic control systems, transmission lines,
economy, and biology (see [13]). The concerned equations have gotten considerable at-
tention of researchers because these described accurately almost all the electro-dynamic
and other real-world situations.

There are different types of differential operators, such as the Riemann–Liouville (RL),
Caputo, Hadamard, Caputo–Fabrizo (CF), and Atangana–Baleanu–Caputo (ABC) types.
The benefits of these various derivatives, which give the freedom of selection to the re-
searchers to choose the best one of them, is that they will accurately describe the situa-
tion. The derivatives in the sense of Riemann–Liouville and Caputo are vastly used and
have been well explored by different researchers; see [14, 15]. Probably, the classical frac-
tional derivatives involving a singular kernel cannot determine the non-local dynamics al-
ways. Therefore researchers introduced some new class of fractional differential operators
known as nonsingular derivatives. In 2016, a nonsingular derivative involving an exponen-
tial function was introduced by Caputo and Fabrizo. In subsequent years the concerned
derivative were generalized by Atangana–Baleanu–Caputo and was named the ABC frac-
tional derivative. The concerned operator has recently been construed non-locally, with-
out singular kernel and reliable differential operator, as applied in modeling of various
real-world phenomena [16] regularly. The complex situations due to singular kernel have
been replaced by involving exponential and power decay law; for details see [17, 18]. The
problems under ABC derivative have been studied for iterative solutions mostly by us-
ing some integral transform, but very rarely have been investigated as regards qualitative
aspects.

On the other hand, sometimes it was too complex to obtain an exact solution of a nonlin-
ear FDEs, in such a situation stability analysis plays a vital role in the investigation. There
are varieties of stabilities presented in the literature in the past, such as Lyapunov stability,
exponential stability, asymptotic stability, and Mittag-Leffler stability [19–21]. Probably,
the most reliable stabilities are those known as Hyers–Ulam (HU) stability. The concerned
stability was modified to generalized HU stability (see [22–25]). In 1970, the aforemen-
tioned stability was further generalized by Rassias [26]. The concerned areas of existence
and stability analysis are well furnished for FDEs involving Caputo and Riemann–Liouville
operators [27–30]. But in the case of ABC derivative, the very high relay version was inves-
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tigated. For a pantograph type problem it has not been properly investigated yet. Inspired
by the aforementioned literature, we investigate the following fractional DDEs under in-
homogeneous boundary conditions:

⎧
⎨

⎩

ABC
0 Dα

t ω(t) = f (t,ω(t),ω(νt)), 0 < ν < 1, 1 < α ≤ 2,

ω(0) = ω0, ω(T) = ω1,
(1)

where ABC
0 Dα

t represents the ABC derivative, f : J × R × R → R is a continuous function
and J = [0, T]. Ordinary classes of FDEs are well studied and explored as regards the ex-
istence and stability analysis via different methods. But pantograph type fractional DDEs
are relay versions to be investigated from this point of view. The aforementioned fractional
DDEs is to be investigated with the help of ABC fractional-order derivatives. Therefore,
we develop conditions for the existence and different types of stabilities with the help of
results of nonlinear analysis and fixed point theory. Further we investigate the boundary
value problem (BVP) which has many applications in mathematical modeling of numer-
ous processes and phenomena in engineering, physics and dynamics systems. To illustrate
the results we give some examples.

2 Background materials
This section consist of some basic definitions and lemmas, which are required in this ar-
ticle. Let X = C[J , R] be a Banach space with norm ‖ω‖ = maxt∈J |ω(t)|.

Definition 1 ([16, 18]) Let ω ∈ H1(a, b), a < b and α ∈ [0, 1]. The ABC fractional derivative
of ω of order α is defined as

ABC
a Dα

t ω(t) =
M(α)
1 – α

∫ t

a
ω′(ζ )Eα

(
–α(t – ζ )α

1 – α

)

dζ . (2)

We use in our paper this definition. And in the Riemann–Liouville sense we define

ABR
a Dα

t ω(t) =
M(α)
1 – α

d
dt

∫ t

a
ω(ζ )Eα

(
–α(t – ζ )α

1 – α

)

dζ . (3)

Here M(α) > 0 is a normalization function with the property M(0) = M(1) = 1 and Eα is
the Mittag-Liffler function.

Definition 2 ([16, 18]) The Atangana–Baleanu fractional integral of ω of order α is given
by

AB
a Iαt ω(t) =

1 – α

M(α)
ω(t) +

α

M(α)Γ (α)

∫ t

a
ω(ζ )(t – ζ )α–1 dζ . (4)

Lemma 1 ([31]) The AB fractional integral and derivative of order α ∈ (0, 1) of the function
ω, satisfy

AB
a Iαt

ABC
a Dα

t ω(t) = ω(t) – ω(a).
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Definition 3 ([31]) Let ω be a function such that ωn ∈ H1(a, b) and n < α ≤ n + 1. Then
the ABC derivative is

ABC
a Dα

t ω(t) =ABC
a Dβ

t ω(n)(t).

And the associated integral is given as

AB
a Iα

t ω(t) = aIn
t

AB
a Iβ

t ω(t).

Here β = α – n.

Lemma 2 ([31]) The AB fractional integral and derivative of order α ∈ (n, n + 1) of the
function ω, satisfy

AB
a Iαt

ABC
a Dα

t ω(t) = ω(t) –
n∑

k=0

ω(k)(a)
k!

(t – a)k

Theorem 1 (Krasnoselskii’s fixed-point theorem [32]) If V ⊂ X be a convex and closed
non-empty subset, there exist two operators F , G such that

• Fv1 + Gv2 ∈ V for all v1, v2 ∈ V ,
• F is a condensing operator,
• G is continuous and compact,

then there exists at least one solution v ∈ E such that

F(v) + G(v) = v.

3 Main results
In this section, we examine the existence and uniqueness of solutions of our proposed
problem (1).

Lemma 3 Let y ∈ J , then the solution of the problem

⎧
⎨

⎩

ABC
a Dα

t ω(t) = y(t), 1 < α ≤ 2, t ∈ [0, T],

ω(0) = ω0, ω(T) = ω1,
(5)

is given by

ω(t) =
tw1 + w0(T – t)

T
–

t(2 – α)
TM(α – 1)

∫ T

0
y(ζ ) dζ

–
t(α – 1)

TM(α – 1)Γ (α)

∫ T

0
y(ζ )(T – ζ )α–1 dζ

+
2 – α

M(α – 1)

∫ t

0
y(ζ ) dζ +

α – 1
M(α – 1)Γ (α)

∫ t

0
y(ζ )(t – ζ )α–1 dζ .

Proof By applying the integral AB
0 Iα

t to (5), we have

ω(t) = c0 + c1 +
2 – α

M(α – 1)

∫ t

0
y(ζ ) dζ +

α – 1
M(α – 1)Γ (α)

∫ t

0
y(ζ )(t – ζ )α–1 dζ . (6)
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Using w(0) = w0 and w(T) = w1 in (6) implies c0 = w0 and

c1 =
w1 – w0

T
–

2 – α

TM(α – 1)

∫ T

0
y(ζ ) dζ –

α – 1
TM(α – 1)Γ (α)

∫ T

0
y(ζ )(T – ζ )α–1 dζ .

By putting the value of c0 and c1 in (6), we get

ω(t) =
tw1 + w0(T – t)

T
–

t(2 – α)
TM(α – 1)

∫ T

0
y(ζ ) dζ

–
t(α – 1)

TM(α – 1)Γ (α)

∫ T

0
y(ζ )(T – ζ )α–1 dζ

+
2 – α

M(α – 1)

∫ t

0
y(ζ ) dζ +

α – 1
M(α – 1)Γ (α)

∫ t

0
y(ζ )(t – ζ )α–1 dζ . �

Corollary 1 In view of Lemma 3, our considered problem (1) is equal to the following in-
tegral equation:

ω(t) =
tw1 + w0(T – t)

T
–

t(2 – α)
TM(α – 1)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

–
t(α – 1)

TM(α – 1)Γ (α)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(T – ζ )α–1 dζ

+
2 – α

M(α – 1)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

+
α – 1

M(α – 1)Γ (α)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(t – ζ )α–1 dζ .

For the existence and uniqueness of our propose problem (1), we consider the following
assumptions to hold:

(B1) There exists a constant Kf > 0 such that, for any u, w, ū, w̄ ∈ J , one has

∣
∣f (t, u, w) – f (t, ū, w̄)

∣
∣ ≤ Kf

{|u – ū| + |w – w̄|}.

(B2) There exist constants lf , mf , nf > 0 such that

∣
∣f

(
t, w(t), w(νt)

)∣
∣ ≤ lf + mf

∣
∣w(t)

∣
∣ + nf

∣
∣w(νt)

∣
∣.

Theorem 2 In view of assumption (B1), the BVP (1) has a unique solution if

4Kf (TΓ (α + 1) + Tα)
M(α – 1)Γ (α + 1)

< 1.

Proof Let the operator F : X → X be defined as

Fω(t) =
tw1 + w0(T – t)

T
–

t(2 – α)
TM(α – 1)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

–
t(α – 1)

TM(α – 1)Γ (α)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(T – ζ )α–1 dζ
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+
2 – α

M(α – 1)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

+
α – 1

M(α – 1)Γ (α)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(t – ζ )α–1 dζ .

To show that F is a condensing operator, letting ω, ω̄ ∈ X, one has

∥
∥Fω(t) – Fω̄(t)

∥
∥

= max
t∈J

∣
∣Fω(t) – Fω̄(t)

∣
∣

= max
t∈J

∣
∣
∣
∣

t(2 – α)
TM(α – 1)

∫ T

0

[
f
(
ζ ,ω(ζ ),ω(νζ )

)
– f

(
ζ , ω̄(ζ ), ω̄(νζ )

)]
dζ

–
t(α – 1)

TM(α – 1)Γ (α)

∫ T

0

[
f
(
ζ ,ω(ζ ),ω(νζ )

)
– f

(
ζ , ω̄(ζ ), ω̄(νζ )

)]
(T – ζ )α–1 dζ

+
2 – α

M(α – 1)

∫ t

0

[
f
(
ζ ,ω(ζ ),ω(νζ )

)
– f

(
ζ , ω̄(ζ ), ω̄(νζ )

)]
dζ

+
α – 1

M(α – 1)Γ (α)

∫ t

0

[
f
(
ζ ,ω(ζ ),ω(νζ )

)
– f

(
ζ , ω̄(ζ ), ω̄(νζ )

)]
(t – ζ )α–1 dζ

∣
∣
∣
∣

≤ 4Kf (TΓ (α + 1) + Tα)
M(α – 1)Γ (α + 1)

‖ω – ω̄‖.

This shows that F is a condensing map, so it has a unique fixed point. Consequently, our
considered problem (1) has a unique solution. �

Now consider the operators defined as

Gω(t) =
tw1 + w0(T – t)

T
–

t(2 – α)
TM(α – 1)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

–
t(α – 1)

TM(α – 1)Γ (α)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(T – ζ )α–1 dζ ,

Hω(t) =
2 – α

M(α – 1)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

+
α – 1

M(α – 1)Γ (α)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(t – ζ )α–1 dζ ,

Fω(t) = Gω(t) + Hω(t).

Theorem 3 If the assumptions (B1), (B2) and 0 < 2Kf (TΓ (α+1)+Tα )
M(α–1)Γ α+1 < 1 hold, then the pro-

posed problem (1) has at least one solution.

Proof Consider the set V = {ω ∈ X : ‖ω‖ ≤ b}. The continuity of f implies that G is con-
tinuous. Now for any ω, ω̄ ∈ V , one has

‖Gω – Gω̄‖ = max
t∈J

∣
∣Gω(t) – Gω̄(t)

∣
∣

=
∣
∣
∣
∣–

t(2 – α)
TM(α – 1)

∫ T

0

[
f
(
ζ ,ω(ζ ),ω(νζ )

)
– f

(
ζ , ω̄(ζ ), ω̄(νζ )

)]
dζ
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–
t(α – 1)

TM(α – 1)Γ (α)

×
∫ T

0

[
f
(
ζ ,ω(ζ ),ω(νζ )

)
– f

(
ζ , ω̄(ζ ), ω̄(νζ )

)]
(T – ζ )α–1 dζ

∣
∣
∣
∣

≤ 2Kf (TΓ (α + 1) + Tα)
M(α – 1)Γ α + 1

‖ω – ω̄‖.

This shows that G is a contraction. Now for the continuity and compactness of H, consid-
ering any w ∈ V , one has

‖Hω‖ = max
t∈J

∣
∣Hω(t)

∣
∣

= max
t∈J

∣
∣
∣
∣

2 – α

M(α – 1)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

+
α – 1

M(α – 1)Γ (α)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(t – ζ )α–1 dζ

∣
∣
∣
∣

≤ TΓ (α + 1) + Tα

M(α – 1)Γ (α + 1)
[
lf + (mf + nf )b

]
.

Hence G is bounded. For continuity letting t1 < t2 ∈ J , we have

∣
∣Hω(t2) – Hω(t1)

∣
∣

=
∣
∣
∣
∣

2 – α

M(α – 1)

[∫ t2

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ –

∫ t1

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

]

+
α – 1

M(α – 1)Γ (α)

×
[∫ t2

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(t2 – ζ )α–1 dζ –

∫ t1

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(t1 – ζ )α–1 dζ

]∣
∣
∣
∣

≤ lf + (mf + nf )b
M(α – 1)

(t2 – t1) +
lf + (mf + nf )b

M(α – 1)Γ (α + 1)
(
tα
2 – tα

1
)
.

This implies that |Hω(t2) – Hω(t1)| → 0 as t2 → t1. Also H is continuous and bounded.
Therefore we have ‖Hω(t2) – Hω(t1)‖ → 0 as t2 → t1. Thus H is completely continuous
by the Arzelá–Ascoli theorem. Thus all the requirements of Theorem 1 are obtained so
our proposed problem (1) has at least one solution in V . �

4 Stability analysis
This section is concerned with the Ulam type stability for our proposed problem. To
achieve the goal, we give some definitions and notions.

Definition 4 The solution of our considered problem (1) is HU stable if there exists a
positive number Cf , such that, for each ε > 0 and for each ω ∈ X of the inequality

∣
∣ABC
0 Dα

t ω(t) – f
(
t,ω(t),ω(νt)

)∣
∣ ≤ ε, t ∈ [0, T], (7)

one has a unique solution ω∗ ∈ X of the considered BVP (1) such that

∥
∥ω – ω∗∥∥ ≤ Cf ε.



Ali et al. Advances in Difference Equations        (2020) 2020:407 Page 8 of 13

It will be generalized Hyers–Ulam (GHU) stable, if we can find

Φ : (0,∞) → (0,∞), Φ(0) = 0,

such that

∥
∥ω – ω∗∥∥ ≤ Cf Φ(ε).

Remark 1 Let ω ∈ X be the solution of inequality given in (7) if and only if we have a
function β ∈ C[0, T] which depends on ω and for each 0 ≤ t ≤ T

(i) |β(t)| ≤ ε;
(ii) ABC

0 Dα
t ω(t) = f (t,ω(t),ω(νt)) + β(t).

Definition 5 The solution ω ∈ X of our proposed problem (1) is Hyers–Ulam–Rassias
(HUR) stable with respect to ψ ∈ X if we can find a real constant Cf > 0 with the property
that, for every ε > 0 and for each ω ∈ X of the inequality

∣
∣ABC
0 Dα

t ω(t) – f
(
t,ω(t),ω(νt)

)∣
∣ ≤ ψ(t)ε, ∀t ∈ [0, T], (8)

one has a unique solution ω∗ ∈ X of the considered BVP (1) such that

∥
∥ω – ω∗∥∥ ≤ Cf ψ(t)ε.

It will be generalized Hyers–Ulam–Rassias (GHUR) stable, if

∥
∥ω – ω∗∥∥ ≤ Cf ψ(t).

Remark 2 ω ∈ X is said to be the solution of the inequality given in (8) if and only if we
have a function β ∈ C[0, T] which is depending on ω and for each 0 ≤ t ≤ T

(i) |β(t)| ≤ εψ(t);
(ii) ABC

0 Dα
t ω(t) = f (t,ω(t),ω(νt)) + β(t).

Lemma 4 Under the Remark 1, the function ω ∈ X corresponding to the given problem

⎧
⎨

⎩

ABC
0 Dα

t ω(t) = f (t,ω(t),ω(νt)) + β(t), 1 < α ≤ 2, 0 < ν < 1,

ω(0) = ω0, ω(T) = ω1.
(9)

satisfies the relation given by

∣
∣ω(t) – F

(
t,ω(t),ω(νt)

)∣
∣ ≤ Cα,Tε, for all t ∈ [0, T], (10)

where

F
(
t,ω(t),ω(νt)

)
=

tw1 + w0(T – t)
T

–
t(2 – α)

TM(α – 1)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

–
t(α – 1)

TM(α – 1)Γ (α)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(T – ζ )α–1 dζ
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+
2 – α

M(α – 1)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

+
α – 1

M(α – 1)Γ (α)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(t – ζ )α–1 dζ

and

Cα,T =
2(TΓ (α + 1) + Tα)
M(α – 1)Γ (α + 1)

.

Proof With the help of Lemma 3, the corresponding problem (9) becomes

ω(t) =
tw1 + w0(T – t)

T
–

t(2 – α)
TM(α – 1)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

–
t(α – 1)

TM(α – 1)Γ (α)

∫ T

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(T – ζ )α–1 dζ

+
2 – α

M(α – 1)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
dζ

+
α – 1

M(α – 1)Γ (α)

∫ t

0
f
(
ζ ,ω(ζ ),ω(νζ )

)
(t – ζ )α–1 dζ –

t(2 – α)
TM(α – 1)

∫ T

0
β(ζ ) dζ

–
t(α – 1)

TM(α – 1)Γ (α)

∫ T

0
β(ζ )(T – ζ )α–1 dζ +

2 – α

M(α – 1)

∫ t

0
β(ζ ) dζ

+
α – 1

M(α – 1)Γ (α)

∫ t

0
β(ζ )(t – ζ )α–1 dζ .

This implies

∣
∣ω(t) – F

(
t,ω(t),ω(νt)

)∣
∣ ≤ Cα,Tε. �

Theorem 4 Under the assumption (A1) along with Lemma 4, the solution of our proposed
problem (1) is HU and GHU stable if 1 �= Cα,T holds.

Proof If ω is any solution and ω∗ is a unique solution of problem (1), then one has

∣
∣ω(t) – ω∗(t)

∣
∣ =

∣
∣ω(t) – F

(
t,ω∗(t),ω∗(νt)

)∣
∣

=
∣
∣ω(t) – F

(
t,ω(t),ω(νt)

)
+ F

(
t,ω(t),ω(νt)

)
+ F

(
t,ω∗(t),ω∗(νt)

)∣
∣

≤ ∣
∣ω(t) – F

(
t,ω(t),ω(νt)

)∣
∣ +

∣
∣F

(
t,ω(t),ω(νt)

)
+ F

(
t,ω∗(t),ω∗(νt)

)∣
∣

≤ Cα,Tε + 2kf Cα,T
∥
∥ω – ω∗∥∥.

This further implies that

∥
∥ω – ω∗∥∥ ≤ Cα,T

1 – 2Kf Cα,T
ε.

Let Cf = Cα,T
1–2Kf Cα,T

, then the solution of the proposed problem (1) is HU stable. Further-
more, if Φ(ε) = ε, then the solution is GHU stable. �
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Lemma 5 For the BVP (9), the following inequality holds:

∣
∣ω(t) – F

(
t,ω(t),ω(νt)

)∣
∣ ≤ Cα,TεΨ (t), for all t ∈ [0, T],

Proof We omit the proof as it is straightforward and may be derived like Lemma 4 by using
Remark 2. �

Theorem 5 Under the assumption (A1) together with Lemma 5, the solution of the pro-
posed problem (1) is HUR and GHUR stable if the condition 1 �= Cα,T holds.

Proof One can easily derive the proof like the proof of Theorem 4. �

5 Examples
In this section, we discuss our result with the help of the following examples.

Example 1 Consider the Dirichlet BVP

⎧
⎨

⎩

ABC
0 D

3
2
t ω(t) = e–t

10 + e– sin(t)

40(ω(t)+1) + et–cos(t)

40[ω( t
3 )+2] , t ∈ [0, 1],

ω(0) = 0, ω(1) = 0,
(11)

clearly T = 1 and f (t,ω(t),ω( 1
3 t)) = e–t

10 + e– sin(t)

40(ω(t)+1) + et–cos(t)

40[ω( t
3 )+2] is a continuous function ∀

t ∈ [0, 1]. Furthermore, let ω, ω̄ ∈ C[J , R], then one has

∣
∣
∣
∣f

(

t,ω(t),ω
(

1
3

t
))

– f
(

t, ω̄(t), ω̄
(

1
3

t
))∣

∣
∣
∣

=
∣
∣
∣
∣

[
e–t

10
+

e– sin(t)

40(ω(t) + 1)
+

et–cos(t)

40[ω( t
3 ) + 2]

]

–
[

e–t

10
+

e– sin(t)

40(ω̄(t) + 1)
+

et–cos(t)

40[ω̄( t
3 ) + 2]

]∣
∣
∣
∣,

≤ 1
40

{
∣
∣ω(t) – ω̄(t)

∣
∣ + |ω

(
1
3

t
)

– ω̄

(
1
3

t
)}

.

So we have Kf = 1
40 , and α = 3

2 . Furthermore,

∣
∣
∣
∣f

(

t,ω(t),ω
(

1
3

t
))∣

∣
∣
∣ =

∣
∣
∣
∣
e–t

10
+

e– sin(t)

40(ω(t) + 1)
+

et–cos(t)

40[ω( t
3 ) + 2]

∣
∣
∣
∣

≤ 1
10

+
1

40
∣
∣ω(t)

∣
∣ +

1
40

∣
∣
∣
∣ω

(
1
3

t
)∣

∣
∣
∣.

Here, lf = 1
10 , mf = 1

40 , nf = 1
40 and T = 1.

Now

4Kf (TΓ (α + 1) + Tα)
M(α – 1)Γ (α + 1)

= 0.1314 < 1.
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Therefore, the conditions of Theorem 2 are satisfied. Thus, the problem (11) has a unique
solution. Furthermore,

2Kf (TΓ (α + 1) + Tα)
M(α – 1)Γ α + 1

= 0.0657 < 1.

Hence, the conditions of Theorem 3 also hold. Therefore, (11) has at least one solution.
Furthermore, proceeding to verify the stability results, we see that Cα,T = 0.1322 �= 1, thus
the solution of the mentioned problem (11) is HU stable and consequently GHU stable.
Analogously, the conditions of HUR and GHUR stability may be easily derived by taking
a nondecreasing function Ψ (t) = t ∈ [0, 1].

Example 2 Consider the inhomogeneous BVP

⎧
⎨

⎩

ABC
0 D

4
3
t ω(t) = t2+et

15 + e–π t cos(t)
50+ω(t) + e

–t
2

50+ω( t
2 ) , t ∈ [0, 1],

ω(0) = eπ , ω(1) = cos (ω( π
3 )),

(12)

f (t,ω(t),ω( 1
2 t)) = t2+et

15 + e–π t cos(t)
50+ω(t) + e

–t
2

50+ω( t
2 ) is a continuous function for all t ∈ [0, 1]. Fur-

thermore, let ω, ω̄ ∈ C[J , R], then we have

∣
∣
∣
∣f

(

t,ω(t),ω
(

1
2

t
))

– f
(

t, ω̄(t), ω̄
(

1
2

t
))∣

∣
∣
∣

=
∣
∣
∣
∣

[
t2 + et

15
+

e–π t cos(t)
50 + ω(t)

+
e –t

2

50 + ω( t
2 )

]

–
[

t2 + et

15
+

e–π t cos(t)
50 + ω̄(t)

+
e –t

2

50 + ω̄( t
2 )

]∣
∣
∣
∣

≤ 1
50

[
∣
∣ω(t) – ω̄(t)

∣
∣ +

∣
∣
∣
∣ω

(
1
2

t
)

– ω̄

(
1
2

t
)∣

∣
∣
∣

]

.

Thus from the above, one has Lf = 1
50 and α = 4

3 . Moreover, we have

∣
∣
∣
∣f

(

t,ω(t),ω
(

1
2

t
))∣

∣
∣
∣ =

∣
∣
∣
∣
t2 + et

15
+

e–π t cos(t)
50 + ω(t)

+
e –t

2

50 + ω( t
2 )

∣
∣
∣
∣

≤ 1
15

+
1

50
∣
∣ω(t)

∣
∣ +

1
50

∣
∣
∣
∣ω

(
1
2

t
)∣

∣
∣
∣,

where lf = 1
15 , mf = nf = 1

50 and T = 1. We obtain

4Kf (TΓ (α + 1) + Tα)
M(α – 1)Γ (α + 1)

=
4Γ ( 1

3 ) + 9)
240Γ ( 1

3 )
< 1.

Therefore, the conditions of Theorem 2 are satisfied. Thus, the problem (12) has a unique
solution. Furthermore,

2Kf (TΓ (α + 1) + Tα)
M(α – 1)Γ α + 1

=
4Γ ( 1

3 ) + 9)
480Γ ( 1

3 )
< 1.
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Hence, the conditions of Theorem 3 also hold. Therefore, (12) has at least one solution.
Furthermore, we observed that Cα,T �= 1, hence the solution of the mentioned problem (12)
is HU stable and consequently GHU stable. Along the same line, taking a nondecreasing
function Ψ (t) = 1 + t, the condition of HUR and GHUR stability can be derived for the
solution of (12).

6 Conclusion
We have successfully attained several essential conditions for the existence and stability
theory for a class of BVPs involving ABC fractional derivative. By classical fixed point the-
ory like Banach contraction and Krasnoselskii’s fixed point theorems, the required results
have been established. Furthermore, on using nonlinear analysis some adequate results
for different kinds of HU stability have been developed. Providing pertinent examples, the
results have been justified.
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