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Abstract
Biological models are usually described using difference equations. As a result, we are
- in this work - interested in studying a general difference model which includes two
biological models as special cases. In detail, we study the qualitative behaviors (local
and global stability, boundedness and periodicity character) of a general difference
model. Furthermore, we apply our general results to the population model with two
age classes and the flour beetle model.
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1 Introduction
It should be emphasized that the majority of the mathematical models of real-world pro-
cesses refer to evolutionary differential equations such as linear/nonlinear ODEs (ordinary
differential equations) and PDEs (partial differential equations). On the other hand, owing
to the difficulties the occurred while analyzing nonlinear PDEs and finding their solutions,
various reduction procedures are employed to reduce problems of infinite dimensions
(PDEs) to that of finite dimensions (ODEs). In particular, in mechanical engineering, the
problems of reduction procedures are based on FEM (finite element method), FDM (fi-
nite difference method), the Bubnov–Galerkin methods of higher-order approximation,
etc. (see, for example, [4, 5]).

The so far mentioned approaches allow one to reduce nonlinear PDEs to a finite set of
nonlinear ODEs or sometimes to ODEs and AEs (algebraic equations). Thus, the problem
is finally reduced to study nonlinear ODEs or ODEs/AEs which cannot be solved, in gen-
eral, analytically. Therefore, a wide palette of numerical algorithms have been developed
including implicit and explicit iterative methods that are based on the temporal discretiza-
tion. They include, for instance, the classic Runge–Kutta method (RKM), second-order
Runge–Kutta methods with two stages, adaptive Runge–Kutta methods with estimations
of the local truncation error, implicit Runge–Kutta methods, Euler methods, Dormand–
Prince methods, seventh-, sixth- and fifth-order Runge–Kutta–Nyström algorithms mod-
ified by Fehlberg, and many other [8]. However, all of them are based on the introduced
step-size and hence in fact the problem is discretely governed by difference equations.
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Difference equations are known as a description of the observed evolution of a phe-
nomenon, where the majority of measurements of a time-evolving variable are discrete.
Thus, these equations gain their importance in arithmetical models. Nonlinear difference
equations of order greater than one are of paramount importance in applications. Such
equations also appear naturally as discrete analogs and as numerical solutions of differen-
tial and delay differential equations which model various diverse phenomena in biology,
ecology, physiology, physics, engineering and economics.

For varied reasons, rational difference equations have interest in the debate of many
researchers. First, they afford many examples of nonlinear equations which are treatable,
in many cases. But whose dynamics offer some strong features with regard to the linear
case. In fact, the importance of studying difference equations comes from their appearance
in many biological models which have many applications. One of the interesting models
is describe by the Riccati difference equation

ωn+1 =
a + bωn

c + dωn
,

where a, b, c, d and ω0 are real numbers. The richness of the dynamics of Riccati equa-
tions is very well known [11], and a specific case of these equations provides the classical
Beverton–Holt model on the dynamics of exploited fish populations [6]. Another example
refers to Kuruklis et al. [23] who investigated the behavior of the Pielou’s discrete logistic
model

ωn+1 =
αωn

1 + ωn–1
, (1.1)

where α ≤ 1. This equation was proposed by Pielou in [31] as a discrete analog of the delay
logistic differential equation. The case α > 1 in Pielou’s equation was considered in [19].
As an example of a map generated by a simple model for frequency-dependent natural
selection, May [25] introduced the difference equation

ωn+1 =
ωneμ(1–2ωn)

1 – ωn + ωneμ(1–2ωn) , (1.2)

where μ ∈ (0,∞). May studied the local stability of the positive equilibrium point ω∗ = 1/2.
Moreover, Kocic et al. [19] investigated the oscillation and the global asymptotic stability
of Eq. (1.2). Cooke et al. [10] studied the stability of the discrete epidemic models

ωn+1 = (1 – ωn – ωn–1)
(
1 – e–Aωn

)
,

where A ∈ (0,∞). Also, Kuang et al. [20] established the global stability of a model of flour
beetle population growth

ωn+1 = aωn + bωn–2e–cωn–dωn–2 , (1.3)

where a ∈ (0, 1), b, c, d ∈ [0,∞), b �= 0 and c + d > 0. As a model that describes the dynamics
of baleen whales, the equation

ωn+1 = (1 – δ)ωn + δωn–k

(
1 + η

(
1 –

(
ωn–k

M

)γ ))

+
, (1.4)
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where δ ∈ (0, 1) and M,η,γ ∈ (0,∞), has been proposed. For the global stability of Eq. (1.4),
see [19].

For, general equations, Stevo [32] investigated the periodic character of solutions of the
equation

ωn+1 =
g(ωn,ωn–1)

A + ωn
,

where A, ω–1 and ω0 are positive real numbers and g : (0,∞)2 → (0,∞) is continuous and
satisfies

g(u, v) – g(v, w) = (u – w)h(u, v, w) – A(u – v),

for some continuous function h : (0,∞)3 → (0,∞) such that

1
u

h(u, v, w) → 0 as u, v, w → ∞ and sup
1

A + u
h(u, v, w) < ∞.

The boundedness, global attractivity, oscillatory and asymptotic periodicity of the non-
negative solutions of the equation

ωn+1 = α +
ωn–k

f (ωn,ωn–1, . . . ,ωn–k+1)

is investigated in [17], where α is a nonnegative real number and f is a continuous function,
nondecreasing in each variable and increasing in at least one. In [38], Sun and Xi studied
the global behavior of the nonlinear equation

ωn+ = f (ωn–s,ωn–t),

where s and t nonnegative integers, s < t and f is decreasing in u and increasing in v.
Abdelrahman et al. [2] studied the asymptotic behavior of the solutions of a general class

of difference equations,

ωn+1 = aωn–l + bωn–k + f (ωn–l,ωn–k),

where a and b are nonnegative real numbers and f : (0,∞)2 → (0,∞) is continuous real
function and homogeneous with degree zero.

Moaaz et al. [27–29] investigated the qualitative behavior of solutions of the equations

ωn+1 = f (ωn–l,ωn–k) (1.5)

and

ωn+1 = aωn–1e–f (ωn ,ωn–1), (1.6)

where l and k are positive integers, a is a positive real number, f is a continuous real func-
tion and homogeneous with degree zero.
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For many results, applications and open problems on higher-order equations and differ-
ence systems, see [1–38].

This paper is concerned with the investigation of the asymptotic behavior of the solu-
tions of the general difference model

ωn+1 = aωn + bωn–ke–f (ωn ,ωn–k ), (E)

where k is a nonnegative integer, a and b are nonnegative real numbers, the function
f (u, v) : [0,∞)2 → [0,∞) is a continuous real function and homogeneous with degree κ

and the initial conditions ω–k ,ω–k+1, . . . ,ω0 are positive real numbers.
Our aim in this paper is to give a complete picture regarding the stability of the equi-

librium point of Eq. (E). Furthermore, we get sufficient conditions which ensure that the
solutions of the studied equation are bounded, also sufficient conditions for global stabil-
ity of equilibrium point. Moreover, we study the existence of periodic solutions of a prime
period two. Finally, we apply our general results to the population model with two age
classes and the flour beetle model.

In addition to the theoretical importance of studying the qualitative behavior of solu-
tions to a general model of difference equations, this work is characterized by:

1. Study of some qualitative properties of biological models which have been previously
partially verified or not verified.

2. The studied equation includes many special cases that were studied previously. It’s
easy to note that Eqs. (1.3), (1.5) and (1.6) are special cases of Eq. (E). So, our results
extend and complement the results in [20, 27–29].

3. This work can be extended. Some other properties of the general model, such as
bifurcations, can also be studied.

2 Dynamics of Eq. (E)
2.1 Stability of Eq. (E)
In the following, we state a necessary and sufficient condition for locally asymptotically
stable of the equilibrium point of Eq. (E). For our next considerations, we define the func-
tion Φ : [0,∞)2 → [0,∞) by

Φ(u, v) := au + bve–f (u,v). (2.1)

An equilibrium point of Eq. (2.1) is a point ω∗ such that ω∗ = Φ(ω∗,ω∗) (that is, ω∗ is a
fixed point of the function Φ(u, v)). Then, equilibrium point of Eq. (E) is given by ω∗ =
aω∗ + bω∗e–f (ω∗ ,ω∗), and hence

ω∗(1 – a – be–(ω∗)κ f (1,1)) = 0.

Thus, we have

ω∗ = 0,

and the positive equilibrium point

ω∗ =
[

1
f (1, 1)

ln

(
b

1 – a

)]1/κ

, κ �= 0, b > 1 – a > 0. (2.2)
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The linearized equation of (E) of ω∗ is

zn+1 – μuzn – μvzn–1 = 0, (2.3)

where μs = Φs(ω∗,ω∗), s = u, v. A linear equation will be called stable, asymptotically stable,
or unstable provided that the zero equilibrium has that property. From (2.1), we get

Φu(u, v) = a – bve–f (u,v)fu(u, v) (2.4)

and

Φv(u, v) =
(
1 – vfv(u, v)

)
be–f (u,v). (2.5)

In the next theorems, we study the asymptotic stability for (E).

Theorem 2.1 For local stability of the equilibrium point ω∗ = 0 of Eq. (E), we have the
following cases:

(1) If a + b < 1, then ω∗ is locally asymptotically stable and sink.
(2) If b – 1 > a, then ω∗ is unstable and repeller.
(3) If |b – 1| < a, then ω∗ is an unstable saddle point.
(4) If |b – 1| = a, then ω∗ is a nonhyperbolic point.

Proof If we put ω∗ = 0 in (2.4) and (2.5), then we have μu = a and μv = b. The rest of the ς

is immediate (from [21, Theorem 1.1.1]) and hence is omitted. �

Theorem 2.2 Assume that a �= 0, κ �= 0, and b > 1 – a > 0. For local stability of the equilib-
rium point (2.2) of Eq. (E), we have the following cases:

(1) Equilibrium point ω∗ is locally asymptotically stable and sink if and only if κ > 0 and

α – 2σγ < β < (2/a – 1)σγ . (2.6)

(2) Equilibrium point ω∗ is unstable and repeller if and only if

β < min{–σγ ,α – 2σγ } for κ < 0, (2.7)

β > max
{
α – 2σγ , (2/a – 1)σγ

}
for κ > 0. (2.8)

(3) Equilibrium point ω∗ is an unstable saddle point if and only if

(
(2/a – 1)σγ + α

)2 >
4
a
σκγ 2, (2.9)

and

–σγ < β < (α – 2σγ ) or β < –σγ for κ > 0,

–σγ > β > (α – 2σγ ) or β > –σγ for κ < 0.
(2.10)
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(4) Equilibrium point ω∗ is a nonhyperbolic point if and only if one of the following
condition hold:

β = α – 2σγ , or (2.11)

β = (2/a – 1)σγ and – (2/a – 1)σγ ≤ α ≤ (2/a + 1)σγ , (2.12)

where α = fu(1, 1), β = fv(1, 1), γ = f (1, 1) and σ = a
(1–a) ln(b/(1–a)) .

Proof First, since f homogeneous with degree κ , we have from [7] that fu and fv homoge-
neous with degree κ – 1 and hence

μu = Φu
(
ω∗,ω∗)

= a – b
(
ω∗)κe–(ω∗)κ f (1,1)fu(1, 1)

= a – (1 – a)
fu(1, 1)
f (1, 1)

ln

(
b

1 – a

)

= a – (1 – a)
α

γ
A, (2.13)

where A = ln( b
1–a ), and

μv = Φv
(
ω∗,ω∗)

=
(
1 –

(
ω∗)κ fv(1, 1)

)
(1 – a)

= (1 – a)
(

1 –
fv(1, 1)
f (1, 1)

ln

(
b

1 – a

))

= (1 – a)
(

1 –
β

γ
A

)
. (2.14)

Thus, the characteristic equation of (2.3) is

λ2 – μuλ – μv = 0. (2.15)

For Case (1). From Euler’s homogeneous function theorem, we have ufu + vfv = κf , and
hence α + β = κγ (at (u, v) = (1, 1)). Thus and from (2.6), we get

α –
2aγ

(1 – a)A
< β < β + κγ ,

where κγ > 0. Then, we obtain (by adding (–α – β))

–
2aγ

(1 – a)A
– β < –α < β .

Next, we get (by multiplying ×( 1–a
γ

A))

–2a –
1 – a

γ
βA < –

1 – a
γ

αA <
1 – a

γ
βA.
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By adding a to the last inequality, we find

–a –
1 – a

γ
βA < a –

1 – a
γ

αA < a +
1 – a

γ
βA,

and hence
∣
∣∣
∣a – (1 – a)

α

γ
A

∣
∣∣
∣ < 1 – (1 – a)

(
1 –

β

γ
A

)
. (2.16)

Also, from (2.6), we have

(1 – a)
β

γ
A < 2 – a,

and hence

(1 – a) – (1 – a)
β

γ
A > –1,

so

1 – (1 – a)
(

1 –
β

γ
A

)
< 2. (2.17)

From (2.16) and (2.17), we obtain

|μu| < 1 – μv < 2.

Hence, and from [21, Theorem 1.1.1-(c)], we see that ω∗ is a locally asymptotically stable
and sink.

For Case (2). First, we let (2.7) hold. Thus,

β < –
aγ

(1 – a)A
,

and so

–(1 – a)
β

γ
A > a.

Then we find

μv = (1 – a)
(

1 –
β

γ
A

)
> 1. (2.18)

Also, from (2.7), we have

α + 2β = β + κγ < β < α –
2aγ

(1 – a)A
,

where κ < 0. As in Case (1), we can prove that

|μu| < μv – 1. (2.19)
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Similarly, if we consider the condition (2.8), we can prove that

μv < –1 and |μu| < 1 – μv.

Therefore, and from [21, Theorem 1.1.1-(d)], we see that ω∗ is an unstable and repeller.
For Case (3). If we have (2.9) hold, then we get

((
2
a

– 1
)

σγ + α

)2

>
4
a
σγ (α + β),

and so,

(
2
a

– 1
)2

γ 2σ 2 + α2 >
4
a
σγ (α + β) – 2

(
2
a

– 1
)

αγσ

=
2
a
σγ (2β + aα).

Since σ = a/(1 – a)A, we have

γ 2
(

2 – a
1 – a

)2

+ A2α2 > 2γ
A

(1 – a)
(aα + 2β),

so

γ 2(2 – a)2 + A2α2(1 – a)2 > 2γ A(1 – a)(aα + 2β).

This is equivalent (after performing some simple algebraic operations) to

(
a – (1 – a)

α

γ
A

)2

+ 4(1 – a)
(

1 –
β

γ
A

)
> 0.

This implies

μ2
u + 4μv > 0. (2.20)

Next, let (2.10) hold. Proceeding as in the proof of Case (1), we can prove that

|μu| > |1 – μv|. (2.21)

Therefore, and from [21, Theorem 1.1.1-(e)], we see that ω∗ is an unstable saddle point.
For Case (4), if β = α – 2σγ , then we find μu = μv – 1. Finally, let (2.12) hold. Then, we

have β = (2/a – 1)σγ , and hence μv = –1. Also, from (2.12), we have

–
2 – a

(1 – a)A
γ ≤ α ≤ 2 + a

(1 – a)A
γ ,

which is equivalent to

–2 – a ≤ –(1 – a)
α

γ
A ≤ 2 – a,
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so,
∣
∣∣
∣a – (1 – a)

α

γ
A

∣
∣∣
∣ ≤ 2.

Then, from [21, Theorem 1.1.1-(f )], we see that ω∗ is a nonhyperbolic point. The proof is
complete. �

Theorem 2.3 Assume that a = 0, κ �= 0 and b > 1. For local stability of the equilibrium
point (2.2) of Eq. (E), we have the following cases:

(1) Equilibrium point ω∗ is locally asymptotically stable and sink if and only if

|α| < β <
2

ln b
γ . (2.22)

(2) Equilibrium point ω∗ is unstable and repeller if and only if

β < –|α|, or β > max
{|α|, 2γ / ln b

}
. (2.23)

(3) Equilibrium point ω∗ is an unstable saddle point if and only if

(
α

γ
ln b + 2

)2

> 4κ ln b, (2.24)

and

|α| > –β > 0, or 2γ / ln b < β < |α|. (2.25)

(4) Equilibrium point ω∗ is a nonhyperbolic point if and only if

|α| = |β| or |α| ≤ β = 2γ / ln b, (2.26)

where α, β and γ are defined as in Theorem 2.2.

Proof The proof is similar to the proof of Theorem 2.2 and hence is omitted. �

2.2 Boundedness of Eq. (E)
In the following theorems, we study the boundedness of the solutions of Eq. (E).

Theorem 2.4 Assume that a = 0 and b ∈ (0, 1]. Then every solution of Eq. (E) is bounded
and

0 < ωn ≤ max{ω–k ,ω–k+1, . . . ,ω0}, (2.27)

for all n > 0.

Proof Assume that {ωn}∞n=–k is a solution of Eq. (E). From (E) and f (u, v) ≥ 0, we note that

ωn+1 = bωn–ke–f (ωn ,ωn–k )

≤ bωn–k .
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Since b ≤ 1, we get ωn+1 ≤ ωn–k . Thus, we can divide the sequence {ωn}∞n=–k into k + 1
subsequences bounded above by the initial conditions

ω–k ≥ ω1 ≥ ωk+2 ≥ ω2k+3 ≥ · · · ,

ω–k+1 ≥ ω2 ≥ ωk+3 ≥ ω2k+4 ≥ · · · ,

...

ω0 ≥ ωk+1 ≥ ω2k+2 ≥ ω3k+3 ≥ · · · .

Hence, we see that ωn ≤ max{ω–k ,ω–k+1, . . . ,ω0} for all n > 0. The proof is complete. �

Theorem 2.5 Assume that a ∈ [0, 1) and there exists a constant λ such that f (u, v) ≥ λv.
Then every solution of Eq. (E) is bounded and

lim sup
n→∞

ωn ≤ b
λe(1 – a)

, (2.28)

Proof Assume that {ωn}∞n=–k is a solution of Eq. (E). Since f (u, v) ≥ λv, we obtain

ωn+1 = aωn + bωn–ke–f (ωn ,ωn–k )

≤ aωn + bωn–ke–λωn–k . (2.29)

Now, we define the function Q(u) = λue1–λu. Then, we have Q′(u) = λe1–λu(1 – λu). Hence,
the critical point u∗ of the function Q(u) is u∗ = 1/λ, and Q(1/λ) = 1 is the maximum value
of Q(u). Thus, we obtain λue1–λu < 1 and so

ue–λu < 1/λe. (2.30)

Consequently, and from (2.29), we see that

ωn+1 ≤ aωn +
b
λe

.

Next, we let

yn+1 = ayn +
b
λe

. (2.31)

Thus, the solution of (2.31) is

yn = any0 +
b

λe(1 – a)
(
1 – an).

Since a ∈ (0, 1), we get

lim sup
n→∞

ωn ≤ lim sup
n→∞

yn =
b

λe(1 – a)
.

Then every solution of Eq. (E) is bounded and the proof is complete. �
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2.3 Global stability of equilibrium point
In the next theorem, we study the globally asymptotically stable of zero equilibrium point
of Eq. (E) when k = 1.

Theorem 2.6 If a ∈ (0, 1), b ∈ [0, 1), a + b < 1 and f has positive partial derivatives, then
the zero equilibrium of (E) is globally asymptotically stable.

Proof From Eq. (E), we have

ωn+1 = aωn +
(
be–f (ωn ,ωn–1))ωn–1.

Now, we let f0(u, v) = a and f1(u, v) = be–f (u,v). Firstly, we have

∂

∂s
f1(u, v) = –bfse–f (u,v) ≤ 0 for s = u, v.

Then we have

f0 and f1 are non-increasing in u, v for all u, v ∈ [0,∞). (2.32)

Secondly, we note that

f0(u, u) = a > 0 for all u ∈ [0,∞). (2.33)

Finally, since f (u, v) ≥ 0, we obtain

f0(u, v) + f1(u, v) = a + be–f (u,v)

≤ a + b

< 1, (2.34)

for all u, v ∈ (0,∞). Therefore, from [21, Theorem 1.3.1] and (2.32)–(2.34), the zero equi-
librium of (E) is globally asymptotically stable. �

Theorem 2.7 Assume that κ > 0, a ∈ (0, 1), b/(1 – a) ∈ (1, e), there exists a constant λ

such that f (u, v) ≥ λv, 0 < fu ≤ λae/b and 0 < fv ≤ λ. Then every positive solution of Eq. (E)
converges to ω∗.

Proof Consider the function Φ : (0,∞)2 → (0,∞) defined as (2.1). Since f (u, v) ≥ λv and
fu ≤ λae/b, we find

Φu(u, v) = a – bve–f (u,v)fu(u, v)

≥ a – bve–λvfu(u, v)

> a –
b
λe

fu(u, v)
[
from (2.30)

]

> a –
b
λe

(
λae

b

)

> 0. (2.35)
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Next, since a ∈ (0, 1) and f (u, v) ≥ λv, we see that the equation ωn+1 = Φ(ωn,ωn–k) is
bounded [from Theorem 2.5] and

lim sup
n→∞

ωn ≤ b
λe(1 – a)

.

Thus, for some integer N > k, we see that

ωn–k ≤ b
λe(1 – a)

<
1
λ

, for n > N ,

where b(1 – a) < e. Hence, we obtain

Φv(u, v) = b
(
1 – vfv(u, v)

)
e–f (u,v)

> b
(

1 –
1
λ

fv(u, v)
)

e–f (u,v)

> b
(

1 –
1
λ

fv(u, v)
)

e–f (u,v)

> 0. (2.36)

Now, we define the function

Ψ (ω) = Φ(ω,ω) – ω

= ω
(
be–f (ω,ω) – (1 – a)

)
.

We note that Ψ (ω) = 0 if and only if ω = ω∗. Next, let ω < ω∗, then

ωκ <
1

f (1, 1)
ln

(
b

1 – a

)
,

and so

be–ωκ f (1,1) > 1 – a.

Thus, Ψ (ω) < 0. Similarly, if ω > ω∗, then we have Ψ (ω) > 0. Consequently, we see that the
function Φ satisfies the negative feedback condition

(
ω – ω∗)(Φ(ω,ω) – ω

)
< 0 for all ω ∈ (0,∞)\{ω∗}. (2.37)

Hence, from [21, Theorem 1.4.1] and (2.35)–(2.37), every positive solution of Eq. (E) con-
verges to ω∗. �

Theorem 2.8 Assume that κ > 0, a = 0, there exists a constant λ such that f (u, v) ≥ λv,
fu > 0, 0 < fv ≤ λe/b and

f (u, v) = f (v, u) ⇒ u = v. (2.38)

Then every positive solution of Eq. (E) converges to ω∗.
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Proof Consider the function Φ : (0,∞)2 → (0,∞) defined as (2.1). Since fu > 0, we find

Φu(u, v) = –bve–f (u,v)fu(u, v)

≤ 0.

From Theorem 2.5, we obtain, for some integer N > k,

ωn–k ≤ b
λe

, for n > N .

Hence, we see that

Φv(u, v) = b
(
1 – vfv(u, v)

)
e–f (u,v)

> b
(

1 –
b
λe

fv(u, v)
)

e–f (u,v).

Since fv ≤ λe/b, we have Φv(u, v) > 0. Now, we will prove that Eq. (E) has no solutions
of prime period two. Suppose otherwise, we assume that Eq. (E) has prime period two
. . . ,ρ,σ ,ρ,σ , . . . . Thus, we get

ρ = bρe–f (σ ,ρ),

σ = bσe–f (ρ,σ ).

Thus, we have f (ρ,σ ) = f (σ ,ρ) = ln b and hence ρ = σ [from (2.38)], and this is a contra-
diction. Therefore, from [21, Theorem 1.4.6], every positive solution of Eq. (E) converges
to ω∗. �

Theorem 2.9 Assume that k = 1, κ > 0, a ∈ (0, 1), b ∈ [0, 1), a + b < 1 and f has positive
partial derivatives. If the solution {ωn}∞n=–1 of (E) is a nonzero eventually, then

lim
n→∞

ωn+1

ωn
= ρ+ or lim

n→∞
ωn+1

ωn
= ρ–, (2.39)

where

ρ± =
1
2
(
a ± √

a2 + 4b
)
.

Proof The linearized equation of (E) at ω∗ = 0 is

zn+1 – azn – bzn–1 = 0. (2.40)

The solutions of characteristic equation of (2.40) are ρ±. Next, we can formulate (E) as

ωn+1 = Anωn + Bnωn–1, (2.41)

where

An = a and Bn = be–f (ωn ,ωn–k ).
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From Theorem 2.6, we have limn→∞ ωn = 0, and so limn→∞ f (ωn,ωn–k) = limn→∞ ωκ
n ×

F( ωn–k
ωn

) = 0. Hence,

lim
n→∞ An = a and lim

n→∞ Bn = b.

Therefore, the limiting equation of (2.41) is exactly (2.40). From Poincaré’s theorem, we
see that (2.39) holds, and this completes the proof of the theorem. �

2.4 The existence of periodic solutions
Here, we give the periodicity character of the solution for Eq. (E).

Theorem 2.10 Suppose that k is even and κ �= 0. Then Eq. (E) has a periodic solution of
prime period two {. . . , τσ ,σ , τσ ,σ , . . .}, τ �= 1, if and only if

b(τκ –1) =
τ (τ – a)τκ

1 – aτ
. (2.42)

Proof Assume that Eq. (E) has a periodic solution of prime period two . . . ,ρ,σ ,ρ,σ , . . . .
Thus, and from (E), we get

ρ = aσ + bσe–f (σ ,σ )

= σ
(
a + be–σκ f (1,1)),

this implies that

σκ =
1

f (1, 1)
ln

(
b

ρ/σ – a

)
.

Let τ = ρ/σ and τ �= 1, we find

σκ =
1

f (1, 1)
ln

(
b

τ – a

)
. (2.43)

Also, from Eq. (E), we obtain

σ = aρ + bρe–f (ρ,ρ),

and hence

ρκ =
1

f (1, 1)
ln

(
bτ

1 – aτ

)
. (2.44)

Since ρκ = τ κσ κ , we have

ln

(
bτ

1 – aτ

)
= τ κ ln

(
b

τ – a

)
, (2.45)

it follows that

b(τκ –1) =
τ (τ – a)τκ

1 – aτ
.
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On the other hand, if (2.42) holds, then we choose

ω–k = ω–k+2r =
(

1
f (1, 1)

ln

(
b

τ – a

))1/κ

and

ω–k+2r–1 =
(

1
f (1, 1)

ln

(
bτ

1 – aτ

))1/κ

,

for r = 1, 2, . . . , k/2, t ∈ (0,∞) and t �= 1. Thus, we see that

ω1 = aω0 + bω–k exp
(
–f (ω0,ω–k)

)

= ω0
(
a + b exp

(
–ωκ

0 f (1, 1)
))

=
(

1
f (1, 1)

ln

(
b

τ – a

))1/κ(
a + b exp

(
– ln

(
b

τ – a

)))

=
(

1
f (1, 1)

ln

(
b

τ – a

))1/κ

τ . (2.46)

From (2.42), we see that (2.45) holds. By using (2.45), we obtain

ω1 = τ

(
1

f (1, 1)
1
τ κ

ln

(
bτ

1 – aτ

))1/κ

=
(

1
f (1, 1)

ln

(
bτ

1 – aτ

))1/κ

= ω–1.

Similarly, we can prove that ω2 = ω0. Therefore, it follows by induction that

ω2r = ω0 and ω2r+1 = ω–1 for all r = 1, 2, . . . .

Hence, Eq. (E) has a prime period two solution and the proof is complete. �

Theorem 2.11 Suppose that k is odd a �= 0 and κ �= 0. Then, Eq. (E) has a periodic solution
of prime period two {. . . , τσ ,σ , τσ ,σ , . . .}, τ �= 1, if and only if

b(η2–η1) =
τ η1 (1 – τa)η2

(τ – a)η1
, (2.47)

where η1 = f (τ , 1) and η2 = f (1, τ ).

Proof We proceed as in proof of Theorem 2.10. Thus, we get

σκ =
1

f (1, τ )
ln

(
bτ

τ – a

)

and

ρκ =
1

f (1, 1/τ )
ln

(
b

1 – aτ

)
.
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Since ρκ = τ κσ κ and τ κ f (1, 1/τ ) = f (τ , 1), we have

f (τ , 1) ln

(
bτ

τ – a

)
= f (1, τ ) ln

(
b

1 – aτ

)
.

Thus, we see that (2.47) holds. The rest of the proof proceeds as the proof of Theorem 2.10,
and hence the proof is complete. �

Theorem 2.12 Suppose that k is odd a = 0 and κ �= 0. Then, Eq. (E) has a periodic solution
of prime period two {. . . , τσ ,σ , τσ ,σ , . . .}, τ �= 1, if and only if

f (τ , 1) = f (1, τ ) =
1
σκ

ln b. (2.48)

Proof The proof is similar to the proof of Theorem 2.11, so it is omitted. �

3 Applications on biological models
The great importance of difference equations comes from their ability to describe natural
phenomena, in particular its ability to describe and study biological models. In this sec-
tion, by using our general results in the previous section, we study the qualitative behavior
of two biological models, and we answer some of the problems that have been raised pre-
viously.

3.1 Population model with two age classes
The discrete model with two age classes, adults and juveniles

⎧
⎨

⎩
ωn+1 = ωn–1er–(δωn+yn);

yn+1 = ωn,
(3.1)

where r, δ ∈ (0,∞). The term exp(r – (δωn + yn)) represents the reproduction rate and is a
decreasing exponential which captures the over crowding phenomenon as the population
grows. To apply our results, we set system (3.1) as follows:

ωn+1 = ωn–1er–(δωn+ωn–1). (3.2)

Note that k = 1, a = 0, b = er > 1 and f (u, v) = δu + v. Equilibrium points of Eq. (3.2) are
ω∗ = 0 and positive equilibrium point r/(δ + 1) [for system (3.1) is (r/(δ + 1), r/(δ + 1))]. For
stability of the equilibrium points, we introduce the following corollaries.

Corollary 3.1 Zero equilibrium point of (3.2) is unstable and repeller.

Corollary 3.2 The positive equilibrium point ω∗ = r/(δ + 1) of (3.2) has one of the following
cases; see Fig. 1:

(1) ω∗ is a locally asymptotically stable and sink if and only if δ < 1 < 2
r (δ + 1);

(2) ω∗ is an unstable and repeller if and only if max{δ, 2
r (δ + 1)} < 1;

(3) ω∗ is an unstable saddle point if and only if δ > 1;
(4) ω∗ is a nonhyperbolic point if and only if δ = 1 or δ = ( 1

2 r – 1) ≤ 1.
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Figure 1 The topological classification for the
positive equilibrium point of the model (3.2)

Corollary 3.3 Every solution of (3.2) is bounded and lim supn→∞ ωn ≤ er–1.

Corollary 3.4 Assume that 0 < r ≤ 1 and 0 < δ < 1. Then every positive solution of (3.2)
converges to ω∗.

Corollary 3.5 Let δ = 1. Then the model (3.2) has a periodic solution of prime period two
{. . . , r – σ ,σ , r – σ ,σ , . . .}.

3.2 The flour beetle model
Flour beetles are members of the darkling beetle genera Tribolium or Tenebrio. They are
pests of cereal silos and are widely used as laboratory animals, as they are easy to keep.
The flour beetles consume wheat and other grains, are adapted to survive in very dry en-
vironments, and can withstand even higher amounts of radiation than cockroaches [39].
They are a major pest in the agricultural industry and are highly resistant to insecticides.
The flour beetle model obeys

ωn+1 = aωn + bωn–2e–(η1ωn+η2ωn–2), (3.3)

where a, b ∈ (0,∞), η1,η2 ∈ [0,∞) and η1 + η2 > 0. The equilibrium points of (3.3) are
ω∗ = 0 and the positive point

ω∗ =
1

η1 + η2
ln

(
b

1 – a

)
, b > 1 – a > 0. (3.4)

By Theorem 2.1, we see the local stability behavior of the zero equilibrium point of (3.3);
see Fig. 2.

By Theorem 2.2, if we put κ = 1, α = η1, β = η2 and γ = η1 + η2, then we see the local
stability behavior of the positive equilibrium point of (3.3).

Corollary 3.6 Assume that a ∈ (0, 1). Then every solution of Eq. (3.3) is bounded and

lim sup
n→∞

ωn ≤ b
η2e(1 – a)

.

Corollary 3.7 Let a ∈ (0, 1) and a + b < 1. Then the zero equilibrium of (3.3) is globally
asymptotically stable.
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Figure 2 The topological classification for the zero
equilibrium point of equation (3.3)

Figure 3 Regions for which conditions of
Corollary 3.8 are satisfied

Corollary 3.8 Assume that a ∈ (0, 1), b/(1 – a) ∈ (1, e) and bη1 ≤ eaη2. Then every positive
solution of (3.3) converges to ω∗.

Remark 3.1 Let η1 = η2 = 1. Figure 3 shows the regions for which conditions of Corol-
lary 3.8 are satisfied, that is, the regions for which the positive equilibrium point of the
model (3.3) is globally asymptotically stable.

Corollary 3.9 The model (3.3) has a periodic solution of prime period two {. . . , τσ ,σ , τσ ,
σ , . . .}, if and only if

b(τ–1) =
τ (τ – a)τ

1 – aτ
. (3.5)

Example 3.1 Consider the model (3.3) with a = 1/4, b = 49/4, ω–2 = ω–1 = 1 and
ω0 = 2. By Corollary 3.9, we see that (3.3) has a periodic solution of prime period two
{. . . , ln 7, ln

√
7, ln 7, ln

√
7, . . .}; see Fig. 4.

4 Conclusion
Difference equations are widely being used as mathematical models for describing real life
situations in biology.
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Figure 4 Periodic solution of a prime period two for Eq. (3.3)

In this work, we studied the global behavior and the periodic character of the solution
of a general class of the nonlinear difference equations. In detail, we established criteria
for stability (local and global), boundedness and periodicity character of the solution of
(E). Moreover, by applying our general results on biological models (as special cases), we
examined several qualitative behaviors of the solutions of these models.

For the discrete model with two age classes, Corollaries 3.1–3.4 set the criteria for local
and global stability, and Corollary 3.5 studied the existence of periodic solutions for this
model. On the other hand, Corollaries 3.6–3.8 gave the global behavior of equilibrium
points of the flour beetle model (3.3). Furthermore, Corollary 3.9 gave the necessary and
sufficient condition for the existence of periodic solutions.

We can use our results to study many special cases of (E). For example, if f (u, v) =
ln(1/h(u, v)) and h is homogeneous with degree zero, then Eq. (E) becomes

ωn+1 = aωn + bωn–kh(ωn,ωn–k).

In particular, we can use our results to study the equation

ωn+1 = aωn +
bωnωn–k

cωn + dωn–k
.

Further, in future work, we can try to get some qualitative behavior of the more general
equation

ωn+1 = aωn + bωn–kΦ(ωn,ωn–k),

where Φ(u, v) is a homothetic function, that is, there exist a strictly increasing function
G : R →R and a homogeneous function H : R2 →R with degree β , such that Φ = G ◦ H .
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