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Abstract
The aim of this paper is to generalize the fractional Hadamard and Fejér–Hadamard
inequalities. By using a generalized fractional integral operator containing extended
Mittag-Leffler function via monotone function, for convex functions we generalize
well known fractional Hadamard and Fejér–Hadamard inequalities. Also we study the
error bounds of these generalized Hadamard and Fejér–Hadamard inequalities. We
also obtain some published results from presented inequalities.
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1 Introduction
Fractional integral operators are useful in the generalization of classical mathematical con-
cepts. Nowadays researchers of different fields are utilizing fractional integral operators
to get amazing results, for instance, fractional differential equations and fractional or-
der systems are used to interpret different physical and mathematical phenomena. In the
near past, fractional integral operators have been used in the formation of fractional ver-
sions of many well known integral inequalities. The inequalities of Hadamard, Ostrowski,
Grüss, Minkowski, and many others were studied in terms of fractional calculus opera-
tors (derivative and integral), see [1–5, 7, 9–18, 25]. Our goal in this paper is to establish
Hadamard and Fejér–Hadamard inequalities for a generalized fractional integral operator
containing Mittag-Leffler function for a monotone increasing function. The most classical
fractional derivative and integral formulas are renowned as Riemann–Liouville fractional
integral and derivative operators. The Riemann–Liouville fractional integral operators are
defined as follows [24]:

Definition 1 Let f ∈ L1[a, b]. Then Riemann–Liouville fractional integrals of order τ ∈C

where �(τ ) > 0 are defined as follows:

Iτ
a+ f (x) =

1
Γ (τ )

∫ x

a
(x – t)τ–1f (t) dt, x > a, (1.1)
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Iτ
b– f (x) =

1
Γ (τ )

∫ b

x
(t – x)τ–1f (t) dt, x < b. (1.2)

After establishing the existence of Riemann–Liouville fractional integral operators, the
researchers started to think in this direction and consequently they further generalized
and extended these operators in different ways, for instance, see [3, 8, 19, 26] and refer-
ences therein. A generalization of the Riemann–Liouville fractional integral operators by
a monotone increasing function is given in [19].

Definition 2 Let f : [a, b] → R be an integrable function. Also let g be an increasing and
positive function on (a, b], having a continuous derivative g ′ on (a, b). The fractional in-
tegrals of a function f with respect to another function g on [a, b] of order μ ∈ C where
�(μ) > 0 are defined as follows:

μ
g Ia+ f (x) =

1
Γ (μ)

∫ x

a

(
g(x) – g(t)

)μ–1g ′(x)f (t) dt, x > a,

μ
g Ib– f (x) =

1
Γ (μ)

∫ b

x

(
g(t) – g(x)

)μ–1g ′(x)f (t) dt, x < b,

where Γ (·) is the gamma function.

The Riemann–Liouville fractional integral operators were also generalized by using the
Mittag-Leffler function. In [24] Salim and Faraj defined the following fractional integral
operators involving an extended Mittag-Leffler function in the kernel.

Definition 3 Let α, β , k, l, γ be positive real numbers and ω ∈ R. Then the generalized
fractional integral operators containing Mittag-Leffler function, ε

γ ,δ,k
α,β ,l,ω,a+ f and ε

γ ,δ,k
α,β ,l,ω,b–

f ,
for a real valued continuous function f are defined as follows:

(
ε

γ ,δ,k
α,β ,l,ω,a+ f

)
(x) =

∫ x

a
(x – t)β–1Eγ ,δ,k

α,β ,l
(
ω(x – t)α

)
f (t) dt, (1.3)

(
ε

γ ,δ,k
α,β ,l,ω,b–

f
)
(x) =

∫ b

x
(t – x)β–1Eγ ,δ,k

α,β ,l
(
ω(t – x)α

)
f (t) dt, (1.4)

where the function Eγ ,δ,k
α,β ,l (t) is the Mittag-Leffler function defined as

Eγ ,δ,k
α,β ,l (t) =

∞∑
n=0

(γ )nktn

Γ (αn + β)(δ)ln
, (1.5)

where (γ )nk is the generalized Pochhammer symbol (γ )nk = Γ (γ +nk)
Γ (γ ) .

Further, fractional integral operators containing the extended generalized Mittag-Leffler
function in their kernels are defined as follows:

Definition 4 ([3]) Let ω,μ,α, l,γ , c ∈ C, �(μ),�(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0,
δ > 0 and 0 < k ≤ δ + �(μ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then the generalized fractional
operators ε

γ ,δ,k,c
μ,α,l,ω,a+ f and ε

γ ,δ,k,c
μ,α,l,ω,b– f are defined as follows:

(
ε

γ ,δ,k,c
μ,α,l,ω,a+ f

)
(x; p) =

∫ x

a
(x – t)α–1Eγ ,δ,k,c

μ,α,l
(
ω(x – t)μ; p

)
f (t) dt, (1.6)
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(
ε

γ ,δ,k,c
μ,α,l,ω,b– f

)
(x; p) =

∫ b

x
(t – x)α–1Eγ ,δ,k,c

μ,α,l
(
ω(t – x)μ; p

)
f (t) dt, (1.7)

where

Eγ ,δ,k,c
μ,α,l (t; p) =

∞∑
n=0

βp(γ + nk, c – γ )(c)nktn

β(γ , c – γ )Γ (μn + α)(l)nδ

(1.8)

is the extended generalized Mittag-Leffler function.

Recently, Farid defined a unified integral operator in [8] (see also [20]) as follows:

Definition 5 Let f , g : [a, b] → R, 0 < a < b be functions such that f is positive and f ∈
L1[a, b] and g are differentiable and strictly increasing. Also let φ

x be an increasing function
on [a,∞) and ω,α, l,γ , c ∈ C, �(α),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0, μ, δ > 0 and 0 <
ν ≤ δ + μ. Then for x ∈ [a, b] the left and right integral operators are defined as follows:

(
gFφ,γ ,δ,ν,c

μ,α,l,ω,a+ f
)
(x; p) =

∫ x

a

φ(g(x) – g(t))
g(x) – g(t)

Eγ ,δ,ν,c
μ,α,l

(
ω

(
g(x) – g(t)

)μ; p
)
f (t)d

(
g(t)

)
, (1.9)

(
gFφ,γ ,δ,ν,c

μ,α,l,ω,b– f
)
(x; p) =

∫ b

x

φ(g(t) – g(x))
g(t) – g(x)

Eγ ,δ,ν,c
μ,α,l

(
ω

(
g(t) – g(x)

)μ; p
)
f (t)d

(
g(t)

)
. (1.10)

The following definition of a generalized fractional integral operator containing ex-
tended Mittag-Leffler function in the kernel for a monotone increasing function g can
be extracted by setting φ(x) = xτ in Definition 5.

Definition 6 Let f , g : [a, b] → R, 0 < a < b be functions such that f is positive and f ∈
L1[a, b] and g are differentiable and strictly increasing. Also let ω, τ , δ,ρ, c ∈C, �(τ ),�(δ) >
0, �(c) > �(ρ) > 0 with p ≥ 0, σ , r > 0 and 0 < k ≤ r +σ . Then for x ∈ [a, b] the left and right
integral operators are defined as follows:

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ f

)
(x; p) =

∫ x

a

(
g(x) – g(t)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(x) – g(t)

)σ ; p
)
f (t)d

(
g(t)

)
, (1.11)

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– f

)
(x; p) =

∫ b

x

(
g(t) – g(x)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(t) – g(x)

)σ ; p
)
f (t)d

(
g(t)

)
. (1.12)

The following remark provides a connection of Definition 6 with already known opera-
tors:

Remark 1
(i) If we take p = 0 and g(x) = x in equation (1.11), then it reduces to the fractional

integral operator defined by Salim and Faraj in [24].
(ii) If we take δ = r = 1 and g(x) = x in (1.11), then it reduces to the fractional integral

operator defined by Rahman et al. in [23].
(iii) If we set p = 0, δ = r = 1 and g(x) = x in (1.11), then it reduces to the integral

operator introduced by Srivastava and Tomovski in [26].
(iv) If we take p = 0, δ = r = k = 1 and g(x) = x in (1.11), then it reduces to the integral

operator defined by Prabhaker in [22].
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(v) If we take p = ω = 0 and g(x) = x in (1.11), then it reduces to the Riemann–Liouville
fractional integral operator.

2 Preliminary results
The aim of this paper is to generalize the Hadamard and the Fejér–Hadamard-type in-
equalities for fractional integral operators containing extended generalized Mittag-Leffler
function given in [1, 11, 15]. The Hadamard inequality is an equivalent presentation of
convex function which has a fascinating graphical interpretation. Convex functions play
an important role in the formation of new functions and inequalities. A lot of mathemati-
cians have considered their analytical and geometrical properties to develop the theory of
inequalities.

Definition 7 A function f : [a, b] →R is said to be convex if

f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y)

holds for all x, y ∈ [a, b] and t ∈ [0, 1].

The Hadamard inequality is stated in the following theorem:

Theorem 1 Let f : [a, b] →R be a convex function. Then the following inequality holds:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
.

The very first generalization of Hadamard inequality is the Fejér–Hadamard inequality
which is its weighted version stated as follows:

Theorem 2 Let f : [a, b] →R be a convex function with a < b. Then the following inequal-
ity holds:

f
(

a + b
2

)∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤ f (a) + f (b)

2

∫ b

a
g(x) dx,

where g : [a, b] →R is a nonnegative, integrable and symmetric function about a+b
2 .

Clearly, for g(x) = 1, x ∈ [a, b], the Hadamard inequality can be obtained. In recent past
decades, by using fractional calculus operators, the Hadamard inequality has been stud-
ied extensively, see [1–5, 10–12, 15, 16, 18, 25]. For example, in [25] Sarikaya et al. gave
the fractional version of the Hadamard inequality by using Riemann–Liouville fractional
integral operators.

Theorem 3 Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈ L1[a, b]. If f is convex
on [a, b], then following inequality for the fractional integral operator holds:

f
(

a + b
2

)
≤ Γ (β + 1)

2(b – a)β
[
Iβ

a+ f (b) + Iβ

b– f (a)
] ≤ f (a) + f (b)

2
, β > 0. (2.1)
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In [25] the authors also studied the error bounds of inequality (2.1).
Farid in [6] proved the following version of Hadamard inequality using fractional inte-

gral operators given in (1.3) and (1.4).

Theorem 4 Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈ L1[a, b]. If f is convex
on [a, b], then following inequality for the fractional integral operator holds:

f
(

a + b
2

)(
ε

γ ,δ,k
α,β ,l,ω′,a+ 1

)
(b) ≤ 1

2
[(

ε
γ ,δ,k
α,β ,l,ω′,a+ f

)
(b) +

(
ε

γ ,δ,k
α,β ,l,ω′,b–

f
)
(a)

]

≤ f (a) + f (b)
2

(
ε

γ ,δ,k
α,β ,l,ω′ ,b–

1
)
(a), ω′ =

ω

(b – a)α
. (2.2)

Abbas and Farid in [1] studied the error bounds of inequality (2.2). In [16] Kang et al.
proved the following version of Hadamard inequality using fractional integral operators
given in (1.6) and (1.7).

Theorem 5 Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈ L1[a, b]. If f is convex
on [a, b], then following inequality for the extended generalized fractional integral holds:

f
(

a + b
2

)(
ε

ω′ ,δ,q,r,c
a+,α,β ,τ 1

)
(b; p) ≤ 1

2
[(

ε
ω′ ,δ,q,r,c
a+,α,β ,τ f

)
(b; p) +

(
ε

ω′ ,δ,q,r,c
b–,α,β ,τ f

)
(a; p)

]

≤ f (a) + f (b)
2

(
ε

ω′ ,δ,q,r,c
b–,α,β ,τ 1

)
(a; p), ω′ =

ω

(b – a)α
. (2.3)

In [11] Farid et al. studied the error bounds of (2.3). Many authors have analyzed the
fractional versions of the Hadamard inequality and further produced a plenty of such ver-
sions for other fractional integral operators (see [1, 4, 5, 10–12, 16, 21, 23, 25]). In Sect. 3
we will derive the generalized Hadamard and Fejér–Hadamard fractional integral inequal-
ities for fractional integral operators given in (1.11) and (1.12). In Sect. 4 we will study the
error estimates of these inequalities by proving two identities. The connection with al-
ready known results is described by considering particular functions and parameters of
Mittag-Leffler function.

3 Hadamard and Fejér–Hadamard inequalities
Theorem 6 Let f , g : [a, b] → R, 0 < a < b, Range(g) ⊂ [a, b], be functions such that f is
positive, f ∈ L1[a, b] and convex on [a, b], and g is differentiable and strictly increasing.
Then the following inequalities for the extended generalized fractional integral operators
defined in (1.11) and (1.12) hold:

f
(

g(a) + g(b)
2

)(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ 1

)
(b; p)

≤ 1
2
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ f ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– f ◦ g

)
(a; p)

]

≤ f (g(a)) + f (g(b))
2

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– 1

)
(a; p); ω′ =

ω

(g(b) – g(a))σ
.

Proof For the convex function f , we have

2f
(

g(a) + g(b)
2

)
≤ f

(
tg(a) + (1 – t)g(b)

)
+ f

(
(1 – t)g(a) + tg(b)

)
. (3.1)
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Further, from (3.1), one can obtain the following inequality:

2f
(

g(a) + g(b)
2

)∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
dt

≤
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(
tg(a) + (1 – t)g(b)

)
dt

+
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(
(1 – t)g(a) + tg(b)

)
dt. (3.2)

Setting tg(a) + (1 – t)g(b) = g(x), that is, t = g(b)–g(x)
g(b)–g(a) and (1 – t)g(a) + tg(b) = g(y), i.e., t =

g(y)–g(a)
g(b)–g(a) in (3.2), we get the following inequality:

2f
(

g(a) + g(b)
2

)(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ 1

)
(b; p)

≤ [(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ f ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– f ◦ g

)
(a; p)

]
. (3.3)

Further, by using the convexity of f , one can obtain

f
(
tg(a) + (1 – t)g(b)

)
+ f

(
(1 – t)g(a) + tg(b)

) ≤ f
(
g(a)

)
+ f

(
g(b)

)
. (3.4)

This leads to the following integral inequality:

∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtα ; p

)
f
(
tg(a) + (1 – t)g(b)

)
dt

+
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtα ; p

)
f
(
(1 – t)g(a) + tg(b)

)
dt

≤ (
f
(
g(a)

)
+ f

(
g(b)

))∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtα ; p

)
dt. (3.5)

Setting tg(a) + (1 – t)g(b) = g(x), that is, t = g(b)–g(x)
g(b)–g(a) and (1 – t)g(a) + tg(b) = g(y), i.e., t =

g(y)–g(a)
g(b)–g(a) in (3.5), and after some calculations, we get

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ f ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– f ◦ g

)
(a; p)

≤ (
f
(
g(a)

)
+ f

(
g(b)

))(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– 1

)
(a; p). (3.6)

Combining (3.3) and (3.6), we get the required result. �

Theorem 7 Let f , g, h : [a, b] →R, 0 < a < b, Range(g), Range(h) ⊂ [a, b], be functions such
that f , h are positive, f , h ∈ L1[a, b] and f convex on [a, b], where g is differentiable and
strictly increasing. If f (g(a) + g(b) – g(x)) = f (g(x)), then the following inequalities for the
extended generalized fractional integral operators defined in (1.11) and (1.12) hold:

f
(

g(a) + g(b)
2

)(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ h ◦ g

)
(b; p)
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≤ 1
2
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ (h ◦ g)(f ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– (h ◦ g)(f ◦ g)

)
(a; p)

]

≤ f (g(a)) + f (g(b))
2

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– h ◦ g

)
(a; p), ω′ =

ω

(g(b) – g(a))σ
.

Proof Multiplying both sides of (3.1) by tτ–1h(tg(a) + (1 – t)g(b))Eρ,r,k,c
σ ,τ ,δ (ωtσ ; p) and inte-

grating on [0, 1], we get

2f
(

g(a) + g(b)
2

)∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
h
(
tg(a) + (1 – t)g(b)

)
dt

≤
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
h
(
tg(a) + (1 – t)g(b)

)
f
(
tg(a) + (1 – t)g(b)

)
dt

+
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
h
(
tg(a) + (1 – t)g(b)

)
f
(
(1 – t)g(a) + tg(b)

)
dt. (3.7)

Setting tg(a) + (1– t)g(b) = g(x), that is, t = g(b)–g(x)
g(b)–g(a) and (1– t)g(a) + tg(b) = g(a) + g(b) – g(x),

in (3.7), also using f (g(a) + g(b) – g(x)) = f (g(x)), the following inequality is obtained:

2f
(

g(a) + g(b)
2

)(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ h ◦ g

)
(b; p)

≤ [(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ (h ◦ g)(f ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– (h ◦ g)(f ◦ g)

)
(a; p)

]
. (3.8)

Multiplying by tτ–1h(tg(a) + (1 – t)g(b))Eρ,r,k,c
σ ,τ ,δ (ωtα ; p) both sides of (3.4) and integrating

over [0, 1], we have

∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtα ; p

)
h(

(
tg(a) + (1 – t)g(b)

)
f
(
tg(a) + (1 – t)g(b)

)
dt

+
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtα ; p

)
h(

(
tg(a) + (1 – t)g(b)

)
f
(
(1 – t)g(a) + tg(b)

)
dt

≤ (
f
(
g(a)

)
+ f

(
g(b)

))∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtα ; p

)
h(

(
tg(a) + (1 – t)g(b)

)
dt. (3.9)

Setting tg(a) + (1 – t)g(b) = g(x) and using f (g(a) + g(b) – g(x)) = f (g(x)), we get

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,a+ (h ◦ g)(f ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– (h ◦ g)(f ◦ g)

)
(a; p)

≤ (
f
(
g(a)

)
+ f

(
g(b)

))(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,b– (h ◦ g)

)
(a; p). (3.10)

Combining (3.8) and (3.10), we get the required result. �

Remark 2 The Hadamard and Fejér–Hadamard inequalities given in Theorems 2–5 are
special cases of theorems of this section.

4 Estimates and error bounds of Hadamard and Fejér–Hadamard inequalities
To find error estimates of inequalities proved in Sect. 3, first we prove the following lem-
mas.
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Lemma 1 Let f , g : [a, b] →R, 0 < a < b, Range(g) ⊂ [a, b], be functions such that f is posi-
tive and f ∈ L1[a, b], and g is differentiable and strictly increasing. If f (g(t)) = f (g(a) + g(b) –
g(t)), then we have

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ f ◦ g

)
(b; p) =

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– f ◦ g

)
(a; p)

=
1
2
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ f ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– f ◦ g

)
(a; p)

]
. (4.1)

Proof By Definition 6 of the extended generalized fractional integral operator, we have

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ f ◦ g

)
(b; p)

=
∫ b

a

(
g(b) – g(t)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(t)

)σ ; p
)
f ◦ g(t)d

(
g(t)

)
. (4.2)

If we replace g(t) by g(a) + g(b) – g(t) in (4.2), then we get

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ f ◦ g

)
(b; p) =

∫ b

a

(
g(t) – g(a)

)τ–1Eρ,r,q,c
σ ,τ ,δ

(
ω

(
g(t) – g(a)

)σ ; p
)
f ◦ g(t)d

(
g(t)

)
.

This implies

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ f ◦ g

)
(b; p) =

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– f ◦ g

)
(a; p). (4.3)

By adding equations (4.2) and (4.3), we get (4.1). �

Lemma 2 Let f , g, h : [a, b] → R, 0 < a < b, Range(g) ⊂ [a, b], be functions such that f is
positive and f ◦g ∈ L1[a, b], where g is differentiable, strictly increasing and h is continuous.
If f ′ ◦ g ∈ L1[a, b] and h(g(t)) = h(g(a) + g(b) – g(t)), then the following equality for the
extended generalized fractional integral operators (1.11) and (1.12) holds:

(
f (g(a)) + f (g(b))

2

)[(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ h ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– h ◦ g

)
(a; p)

]

–
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ (h ◦ g)(f ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– (h ◦ g)(f ◦ g)

)
(a; p)

]

=
∫ b

a

[∫ t

a

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
)
h ◦ g(s)d

(
g(s)

)

–
∫ b

t

(
g(s) – g(a)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(s) – g(a)

)σ ; p
)
h ◦ g(s)d

(
g(s)

)]

× f ′(g(t)
)
d
(
g(t)

)
. (4.4)

Proof To prove this lemma, we consider its right-hand side. Upon integrating by parts and
after simplification, we have

∫ b

a

[∫ t

a

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)]
f ′(g(t)

)
d
(
g(t)

)

= f
(
g(b)

)(∫ b

a

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

))
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–
∫ b

a

((
g(b) – g(t)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(t)

)σ ; p
))

h
(
g(t)

)
f
(
g(t)

)
d
(
g(t)

)

= f
(
g(b)

)(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ h ◦ g

)
(b; p) –

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ (h ◦ g)(f ◦ g)

)
(b; p).

By using Lemma 1, we have

∫ b

a

[∫ t

a

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)]
f ′(g(t)

)
d
(
g(t)

)

=
f (g(b))

2
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ h ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– h ◦ g

)
(a; p)

]

–
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ (h ◦ g)(f ◦ g)

)
(b; p). (4.5)

Similarly,

∫ b

a

[
–

∫ b

t

(
g(s) – g(a)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(s) – g(a)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)]

× f ′(g(t)
)
d
(
g(t)

)

=
f (g(a))

2
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ h ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– h ◦ g

)
(a; p)

]

–
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,b– (h ◦ g)(f ◦ g)

)
(a; p). (4.6)

Adding (4.5) and (4.6), we get (4.4). �

In [3], Andric et al. proved the absolute convergence of the function Eρ,r,k,c
σ ,τ ,δ (t; p) for k <

r + �(σ ). If we let
∑∞

n=0 | βp(ρ+nk,c–ρ)(c)nktn

β(ρ,c–ρ)Γ (σn+τ )(δ)nr
| = M, then |Eρ,r,k,c

σ ,τ ,δ (t; p)| ≤ M, which we will use
to prove the next results.

Theorem 8 Let f , g, h : [a, b] → R, 0 < a < b, Range(g) ⊂ [a, b], be functions such that f
is positive and (f ◦ g)′ ∈ L1[a, b], where g is differentiable and strictly increasing, and h
is continuous. Also let h(g(t)) = h(g(a) + g(b) – g(t)) and |(f ◦ g)′| be convex. Then for k <
r + �(σ ), the following inequality holds:

∣∣∣∣
(

f (g(a)) + f (g(b))
2

)[(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ h

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– h

)
(a; p)

]

–
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ (f ◦ g)(h ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– (f ◦ g)(h ◦ g)

)
(a; p)

]∣∣∣∣

≤ ‖h‖∞M(g(b) – g(a))τ+1

τ (τ + 1)
(1 – Φ)

[∣∣f ′(g(a)
)∣∣ +

∣∣f ′(g(b)
)∣∣],

where ‖h‖∞ = supt∈[a,b] |h(t)| and

Φ =
1

τ + 2

[(g( a+b
2 ) – g(a)

g(b) – g(a)

)τ+2

+
(g(b) – g( a+b

2 )
g(b) – g(a)

)τ+2]

–
τ + 1
τ + 2

[(g( a+b
2 ) – g(a)

g(b) – g(a)

)τ+2

+
(g(b) – g( a+b

2 )
g(b) – g(a)

)τ+2]

–
(g( a+b

2 ) – g(a)
g(b) – g(a)

)τ+1(g(b) – g( a+b
2 )

g(b) – g(a)

)
+

(g( a+b
2 ) – g(a)

g(b) – g(a)

)(g(b) – g( a+b
2 )

g(b) – g(a)

)τ+1

.
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Proof By using Lemma 2, we have

∣∣∣∣ f (g(a)) + f (g(b))
2

[(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ h ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– h ◦ g

)
(a; p)

]

–
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ (f ◦ g)(h ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– (f ◦ g)(h ◦ g)

)
(a; p)

]∣∣∣∣

≤
∫ b

a

∣∣∣∣
[∫ t

a

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)

–
∫ b

t

(
g(s) – g(a)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(s) – g(a)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)]∣∣∣∣
× ∣∣f ′(g(t)

)∣∣d(
g(t)

)
. (4.7)

Using the convexity of |f ′(g)| on [a, b], we have

∣∣f ′(g(t)
)∣∣ ≤ g(b) – g(t)

g(b) – g(a)
∣∣f ′(g(a)

)∣∣ +
g(t) – g(a)
g(b) – g(a)

∣∣f ′(g(b)
)∣∣, t ∈ [a, b]. (4.8)

If we replace g(s) by g(a) + g(b) – g(s) and use h(g(s)) = h(g(a) + g(b) – g(s)), t′ = g–1(g(a) +
g(b) – g(t)) in the following second integral, we get

∣∣∣∣
∫ t

a

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)

–
∫ b

t

(
g(s) – g(a)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(s) – g(a)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)∣∣∣∣
=

∣∣∣∣–
∫ a

t

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)

–
∫ t′

a

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)∣∣∣∣

=
∣∣∣∣
∫ t′

t

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)
d
(
g(s)

)∣∣∣∣

≤
⎧⎨
⎩

∫ t′
t |(g(b) – g(s))τ–1Eρ,r,k,c

σ ,τ ,δ (ω(g(b) – g(s))σ ; p)h(g(s))|d(g(s)), t ∈ [a, a+b
2 ],∫ t

t′ |(g(b) – g(s))τ–1Eρ,r,k,c
σ ,τ ,δ (ω(g(b) – g(s))σ ; p)h(g(s))|d(g(s)), t ∈ [ a+b

2 , b].
(4.9)

From (4.7), (4.8), (4.9), and using the absolute convergence of Mittag-Leffler function, we
have

∣∣∣∣ f (g(a)) + f (g(b))
2

[(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ h ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– h ◦ g

)
(a; p)

]

–
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ (f ◦ g)(h ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– (f ◦ g)(h ◦ g)

)
(a; p)

]∣∣∣∣

≤
∫ a+b

2

a

(∫ t′

t

∣∣(g(b) – g(s)
)τ–1Eρ,r,k,c

σ ,τ ,δ
(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)∣∣d(
g(s)

))

×
(

g(b) – g(t)
g(b) – g(a)

∣∣f ′(g(a)
)∣∣ +

g(t) – g(a)
g(b) – g(a)

∣∣f ′(g(b)
)∣∣

)
d
(
g(t)

)
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+
∫ b

a+b
2

(∫ t

t′

∣∣(g(b) – g(s)
)τ–1Eρ,r,k,c

σ ,τ ,δ
(
ω

(
g(b) – g(s)

)σ ; p
)
h
(
g(s)

)∣∣d(
g(s)

))

×
(

g(b) – g(t)
g(b) – g(a)

∣∣f ′(g(a)
)∣∣ +

g(t) – g(a)
g(b) – g(a)

∣∣f ′(g(b)
)∣∣

)
d
(
g(t)

)

≤ ‖h‖∞M
τ (g(b) – g(a))

×
[∫ a+b

2

a

((
g(b) – g(t)

)τ –
(
g(t) – g(a)

)τ (g(b) – g(t)
)∣∣f ′(g(a)

)∣∣)d
(
g(t)

)

+
∫ a+b

2

a

((
g(b) – g(t)

)τ –
(
g(t) – g(a)

)τ (g(t) – g(a)
)∣∣f ′(g(b)

)∣∣)d
(
g(t)

)

+
∫ b

a+b
2

((
g(t) – g(a)

)τ –
(
g(b) – g(t)

)τ (g(b) – g(t)
)∣∣f ′(g(a)

)∣∣)d
(
g(t)

)

+
∫ b

a+b
2

((
g(t) – g(a)

)τ –
(
g(b) – g(t)

)τ (g(t) – g(a)
)∣∣f ′(g(b)

)∣∣)d
(
g(t)

)]
. (4.10)

After combining the terms of the above inequality, we have the following values:

∫ a+b
2

a

((
g(b) – g(t)

)τ –
(
g(t) – g(a)

)τ )(g(b) – g(t)
)
d
(
g(t)

)

=
∫ b

a+b
2

((
g(t) – g(a)

)τ –
(
g(b) – g(t)

)τ )(g(t) – g(a)
)
d
(
g(t)

)

=
(g(b) – g(a))τ+2

τ + 2
–

(g(b) – g( a+b
2 ))τ+2

τ + 2

–
(g( a+b

2 ) – g(a))τ+1

τ + 1

(
g(b) – g

(
a + b

2

))
–

(g( a+b
2 ) – g(a))τ+2

(τ + 1)(τ + 2)

and

∫ a+b
2

a

((
g(b) – g(t)

)τ –
(
g(t) – g(a)

)τ )(g(t) – g(a)
)
d
(
g(t)

)

=
∫ b

a+b
2

((
g(t) – g(a)

)τ –
(
g(b) – g(t)

)τ )(g(b) – g(t)
)
d
(
g(t)

)

= –
(g( a+b

2 ) – g(a))τ+1

τ + 1

(
g(b) – g

(
a + b

2

))

+
(g(b) – g(a))τ+2

(τ + 1)(τ + 2)
–

(g( a+b
2 ) – g(a))τ+2

(τ + 1)(τ + 2)
–

(g(b) – g( a+b
2 ))τ+2

τ + 2
.

Using the above calculations of integrals in (4.10), we get the required inequality. �

Remark 3
(i) In Theorem 8, if we put g = I , we get [11, Theorem 2.3],

(ii) In Theorem 8, if we put p = 0 and g = I , we get [1, Theorem 2.3].
(iii) In Theorem 8, if we put ω = p = 0 and g = I , we get [15, Theorem 2.36].



Rao et al. Advances in Difference Equations        (2020) 2020:421 Page 12 of 14

Theorem 9 Let f , g, h : [a, b] → R, 0 < a < b, Range(g) ⊂ [a, b], be functions such that f
is positive and (f ◦ g)′ ∈ L1[a, b], where g is differentiable and strictly increasing, and h is
continuous. Also let h(g(t)) = h(g(a) + g(b) – g(t)) and |(f ◦ g)′|q, q > 1 be convex. Then for
k < r + �(σ ), the following inequality holds:

∣∣∣∣
(

f (g(a)) + f (g(b))
2

)[(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ h ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– h ◦ g

)
(a; p)

]

–
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ (f ◦ g)(h ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– (f ◦ g)(h ◦ g)

)
(a; p)

]∣∣∣∣

≤ 2‖h‖∞M(g(b) – g(a))τ+1

τ (τ + 1)
[
(1 – Ψ )1– 1

q (1 – Φ)
1
q
]

×
( |f ′(g(a))|q + |f ′(g(b))|q

2

) 1
q

, (4.11)

where ‖h‖∞ = supt∈[a,b] |h(t)|, Ψ = ( g(b)–g( a+b
2 )

g(b)–g(a) )τ+1 + ( g( a+b
2 )–g(a)

g(b)–g(a) )τ+1, and

Φ =
1

τ + 2

[(g( a+b
2 ) – g(a)

g(b) – g(a)

)τ+2

+
(g(b) – g( a+b

2 )
g(b) – g(a)

)τ+2]

–
τ + 1
τ + 2

[(g( a+b
2 ) – g(a)

g(b) – g(a)

)τ+2

+
(g(b) – g( a+b

2 )
g(b) – g(a)

)τ+2]

–
(g( a+b

2 ) – g(a)
g(b) – g(a)

)τ+1(g(b) – g( a+b
2 )

g(b) – g(a)

)
+

(g( a+b
2 ) – g(a)

g(b) – g(a)

)(g(b) – g( a+b
2 )

g(b) – g(a)

)τ+1

.

Proof Using Lemma 2, power mean inequality, (4.9), and convexity of |f ′(g)|q, we get

∣∣∣∣
(

f (g(a)) + f (g(b))
2

)[(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ h ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– h ◦ g

)
(a; p)

]

–
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ (f ◦ g)(h ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– (f ◦ g)(h ◦ g)

)
(a; p)

]∣∣∣∣

≤
[∫ b

a

∣∣∣∣
(∫ a+b–t

t

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
))

× h
(
g(s)

)
d
(
g(s)

)∣∣∣∣d
(
g(t)

)]1– 1
q

×
[∫ b

a

∣∣∣∣
(∫ a+b–t

t

(
g(b) – g(s)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(b) – g(s)

)σ ; p
))

h
(
g(s)

)
d
(
g(s)

)∣∣∣∣

× ∣∣f ′(g(t)
)∣∣qd

(
g(t)

)] 1
q

. (4.12)

Since |f ′(g)|q is convex on [a, b], we have

∣∣f ′(g(t)
)∣∣q ≤ g(b) – g(t)

g(b) – g(a)
∣∣f ′(g(a)

)∣∣q +
g(t) – g(a)
g(b) – g(a)

∣∣f ′(g(b)
)∣∣q. (4.13)
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Using (4.13), ‖h‖∞ = supt∈[a,b] |h(t)|, and the absolute convergence of Mittag-Leffler func-
tion, inequality (4.12) becomes

∣∣∣∣ f (g(a)) + f (g(b))
2

[(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ h ◦ g

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– h ◦ g

)
(a; p)

]

–
[(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,a+ (f ◦ g)(h ◦ g)

)
(b; p) +

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– (f ◦ g)(h ◦ g)

)
(a; p)

]∣∣∣∣

≤ ‖h‖∞M
τ

[∫ a+b
2

a

{(
g(b) – g(t)

)τ –
(
g(t) – g(b)

)τ}d
(
g(t)

)

+
∫ b

a+b
2

{(
g(t) – g(a)

)τ –
(
g(b) – g(t)

)τ}d
(
g(t)

)]1– 1
q

×
[∫ a+b

2

a

{(
g(b) – g(t)

)τ –
(
g(t) – g(b)

)τ}

×
(

g(b) – g(t)
g(b) – g(a)

∣∣f ′(g(a)
)∣∣q +

g(t) – g(a)
g(b) – g(a)

∣∣f ′(g(b)
)∣∣q

)
d
(
g(t)

)

+
∫ b

a+b
2

{(
g(t) – g(a)

)τ –
(
g(b) – g(t)

)τ}

×
(

g(b) – g(t)
g(b) – g(a)

∣∣f ′(g(a)
)∣∣q +

g(t) – g(a)
g(b) – g(a)

∣∣f ′(g(b)
)∣∣q

)
d
(
g(t)

)] 1
q

.

After integrating and simplifying the above inequality, we get (4.11). �

Remark 4
(i) In Theorem 9, if we put g = I , we get [11, Theorem 2.5].

(ii) In Theorem 9, if we put p = 0 and g = I , we get [1, Theorem 2.6].
(iii) In Theorem 9, if we put ω = p = 0 and g = I , we get [15, Theorem 2.8].

5 Concluding remarks
The results of this paper provide the fractional Hadamard and Fejér–Hadamard inequali-
ties in a generalized form. By proving two identities, the error estimates of these inequal-
ities are established. Furthermore, the results deducible from the proved inequalities are
published in [1, 11, 15]. Also in special cases the reader can obtain results for fractional
integral operators described in Remark 1.
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