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Abstract
In this work, we formulate and analyze a new mathematical model for COVID-19
epidemic with isolated class in fractional order. This model is described by a system of
fractional-order differential equations model and includes five classes, namely, S
(susceptible class), E (exposed class), I (infected class), Q (isolated class), and R
(recovered class). Dynamics and numerical approximations for the proposed
fractional-order model are studied. Firstly, positivity and boundedness of the model
are established. Secondly, the basic reproduction number of the model is calculated
by using the next generation matrix approach. Then, asymptotic stability of the
model is investigated. Lastly, we apply the adaptive predictor–corrector algorithm
and fourth-order Runge–Kutta (RK4) method to simulate the proposed model.
Consequently, a set of numerical simulations are performed to support the validity of
the theoretical results. The numerical simulations indicate that there is a good
agreement between theoretical results and numerical ones.
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1 Introduction
Mathematical models describing infectious diseases have an important role both in the-
ory and practice (see, for example, [6–8, 18, 34]). The construction and analysis of models
of this type can help us understand the mechanism of the transmission as well as charac-
teristics of diseases, and therefore, we can propose effective strategies to predict, prevent,
and restrain diseases, as well as to protect population health. Up to now, many math-
ematical models for infectious diseases formulated by differential equations have been
constructed and analyzed to study the spreading of viruses, for instance, [6–8, 18, 34].
Recently, mathematical models for COVID-19 epidemic have attracted the attention of
many mathematicians, biologists, epidemiologists, pharmacists, chemists with many no-
table and important results (see, for instance, [1, 5, 9, 14, 15, 19, 23, 26, 28–30, 33, 35, 36]
and references therein). This can be considered an effective approach to study, simulate,
and predict the mechanism and transmission of COVID-19.

Motivated by the above reason, in this work, we formulate and analyze a new mathemati-
cal model for COVID-19 epidemic. This model is described by a system of fractional-order
differential equations model and includes five classes, namely, S (susceptible class), E (ex-
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posed class), I (infected class), Q (isolated class), and R (recovered class). This model is a
generalization of a well-known ODE model formulated in [35]. In the proposed fractional-
order model, we use the Caputo fractional derivative instead of the integer-order one be-
cause when modeling processes and phenomena arising in the real world, fractional-order
models are more accurate than integer-order ones. In particular, fractional-order models
provide more degrees of freedom in the model while an unlimited memory is also guar-
anteed in contrast to integer-models with limited memory [11, 24, 27].

Our main aim is to study the dynamics and numerical approximations for the proposed
fractional-order model. Firstly, the positivity and boundedness of the model are investi-
gated based on standard techniques of mathematical analysis. Secondly, the basic repro-
duction number of the model is calculated by using the next generation matrix approach.
Then, asymptotic stability of the model is investigated based on the Lyapunov stability the-
orem for fractional dynamical systems. Lastly, we apply the adaptive predictor–corrector
algorithm and fourth-order Runge–Kutta (RK4) method formulated in [20] to simulate
the proposed model. Consequently, a set of numerical simulations is performed to sup-
port the validity of the theoretical results. The numerical simulations indicate that there
is a good agreement between theoretical results and numerical ones.

This work is organized as follows. The fractional-order differential model is formulated
in Sect. 2. Dynamics of the model is investigated in Sect. 3. Numerical simulations by the
adaptive predictor–corrector algorithm are performed in Sect. 4. The last section present
some remarks, conclusions, and discussions.

2 Model formulation
The total population is divided into five compartments: susceptible (S), exposed (E), in-
fected (I), isolated (Q), and recovered (R) from the disease. We assume that all the classes
are normalized. This leads to the mathematical model formulation in which the interac-
tion of the exposed population and infected population is linked to the susceptible popu-
lation. In this model, we assume that the natural death rate includes the disease death rate.
When there is no symptom of the disease, the exposed class moves with a certain rate to
the isolated class, but in the case when symptoms are developed, it moves to the infected
class. Keeping in mind the above assumptions, we obtain the following ODE model (see
[35]):

dS(t)
dt

= Λ – μS(t) – βS(t)
(
E(t) + I(t)

)
,

dE(t)
dt

= βS(t)
(
E(t) + I(t)

)
– πE(t) – (μ + γ )E(t),

dI(t)
dt

= πE(t) – σ I(t) – μI(t),

dQ(t)
dt

= γ E(t) + σ I(t) – θQ(t) – μQ(t),

dR(t)
dt

= θQ(t) – μR(t),

(1)

where the parameters and variables used are described in Table 1.
Let us introduce the notation

N = S + E + I + Q + R. (2)
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Table 1 Parameters in the model

Symbols Description

S Susceptible population
E Exposed population
I Infected Population
Q Isolated population
R Recovered population
Λ =μN Recruitment rate
β Rate at which susceptible move to infected and exposed class
π Rate at which exposed population moves to infected one
γ Rate at which exposed people become isolated
σ Rate at which infected people are added to isolated individuals
θ Rate at which isolated persons become recovered
μ Natural death rate plus disease related death rate

From the ODE system (1), we obtain

dN
dt

= Λ – μN ,

which implies that the total population in this case we take as constant because Λ = μN .
To include into the model (1) the past history or hereditary properties, we replace the

first derivative by the Caputo fractional derivative. More precisely, we propose the follow-
ing system of fractional differential equations:

C
0 Dα

t S = Λα – μαS – βαS(E + I),
C
0 Dα

t E = βαS(E + I) – παE –
(
μα + γ α

)
E,

C
0 Dα

t I = παE – σαI – μαI,
C
0 Dα

t Q = γ αE + σαI – θαQ – μαQ,
C
0 Dα

t R = θαQ(t) – μαR(t),

(3)

where 0 < α < 1, and C
0 Dα

t denotes the fractional derivative in the Caputo sense. We refer
the readers to [2–4, 10, 25] for the definition of the fractional Caputo derivative.

3 Dynamics of the fractional-order model
3.1 Positivity and boundedness
Let us denote

R
4
+ =

{
(S, E, I, Q)|S, E, I, Q ≥ 0

}
.

The following theorem is proved by using a generalized mean value theorem [21, 22] and
a fractional comparison principle [16, Lemma 10].

Theorem 1 (Positivity and boundedness) Let (S0, E0, I0, Q0) be any initial data belonging
to R

4
+ and (S(t), E(t), I(t), Q(t)) be the solution corresponding to the initial data. Then, the
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set R4
+ is a positively invariant set of the model (3). Furthermore, we have

lim sup
t→∞

S(t) ≤ S∞ :=
Λα

μα
,

lim sup
t→∞

E(t) ≤ E∞ :=
Λα

πα + μα + γ α
,

lim sup
t→∞

I(t) ≤ I∞ :=
παE∞

σα + μα
,

lim sup
t→∞

Q(t) ≤ Q∞ :=
γ αE∞ + σαI∞

δα + μα
,

lim sup
t→∞

R(t) ≤ θα

μα
.

(4)

Proof First, it is easy to prove the existence and unique of solutions of the model thanks
to results proved in [17].

For the model (3), we have

C
0 Dα

t S|S=0 = Λα > 0,
C
0 Dα

t E|E=0 = βαSI ≥ 0,
C
0 Dα

t I|I=0 = παE ≥ 0,
C
0 Dα

t Q|Q=0 = γ αE + σαI ≥ 0.

(5)

By (5) and the generalized mean value theorem [21, 22], we deduce that S(t), E(t), I(t),
Q(t) ≥ 0 for all t ≥ 0.

From the first equation of the system (3), we obtain

C
0 Dα

t S ≤ Λα – μαS.

By using the fractional comparison principle, we have the first estimate of (4).
From the second equation of the system (3), we have

C
0 Dα

t (S + E) ≤ Λα – μαS – παE –
(
μα + γ α

)
E,

which implies that

lim sup
t→∞

(
S(t) + E(t)

) ≤ E∞.

Consequently, we have the second estimate of (4).
From the third equation of the system (3), we get

C
0 Dα

t I ≤ παE∞ – σαI – μαI

for t large enough. This implies the third estimate of (4).
From the fourth equation of the system (3), we have

C
0 Dα

t Q ≤ γ αE∞ + σαI∞ – θαQ – μαQ,

for t large enough. From this we get the fourth estimate of (4).
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Finally, the fifth equation of (3) implies that

C
0 Dα

t R ≤ θαQ∞ – μαR,

which implies the fifth estimate of (4). The proof is complete. �

3.2 Equilibria and the reproduction number
Firstly, to find equilibria of the model (3), we consider the following algebraic system:

Λα – μαS – βαS(E + I) = 0,

βαS(E + I) – παE –
(
μα + γ α

)
E = 0,

παE – σαI – μαI = 0,

γ αE + σαI – θαQ – μαQ = 0,

θαQ – μαR = 0.

(6)

By some algebraic manipulations, we obtain two solutions of the system (6) that are

S0 =
Λα

μα
, E0 = 0, I0 = 0, E0 = 0, R0 = 0, (7)

and

S∗ =
Λα – (πα + μα + γ α)E∗

μα
, I∗ =

πα

σα + μα
E∗,

Q∗ =
γ αE∗ + σαI∗

θα + μα
,

E∗ =
βαΛα(πα + σα + μα) – μα(μα + σα)(πα + μα + γ α)

βα(πα + μα + γ α)(πα + σα + μα)
, R∗ =

θαQ∗

μα
.

(8)

Note that S∗, E∗, I∗, Q∗ and R∗ are positive if and only if

βαΛα
(
πα + σα + μα

)
– μα

(
μα + σα

)(
πα + μα + γ α

)
> 0.

We now compute the reproduction number of the model (3) by using the next gener-
ation matrix approach developed by van den Driessche and Watmough [31]. Let x =
(E, I, Q, R, S). We rewrite the model (3) in the matrix form

C
0 Dα

t x = F (x) – V(x), (9)

where

F (x) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

βαS(E + I)
0
0
0
0

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

, V(x) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

παE + (μα + γ α)E
–παE + σαI + μαI

–γ αE – σαI + θαQ + μαQ
–θαQ + μαR

–Λα + μαS + βαS(E + I)

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

. (10)
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Hence, the reproduction number of the model (3) can be determined by

R0 = ρ
(
FV –1) =

βαΛα(πα + σα + μα)
μα(σα + μα)(πα + μα + γ α)

. (11)

It is easy to verify that S∗, E∗, I∗, Q∗, and R∗ > 0 if and only if R0 > 1.

Theorem 2 (Equilibria) The model (3) always possesses a disease-free equilibrium (DFE)
point F0 = (S0, E0, I0, Q0, R0) given by (8) for all values of the parameters. Moreover, the
model has a unique disease endemic equilibrium point F∗ = (S∗, E∗, I∗, Q∗, R∗) given by (9)
if and only if R0 > 1.

3.3 Stability analysis
Theorem 3 The DFE point of the model (3) is locally asymptotically stable if R0 < 1.

Proof The Jacobian matrix of the model (3) at the DFE point is

J(F0) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

–μα –βαS0 –βαS0 0 0
0 βαS0 – (πα + μα + γ α) βαS0 0 0
0 πα –(σα + μα) 0 0
0 γ α σα –(θα + μα) 0
0 0 0 θα –μα

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

. (12)

The characteristic polynomial of J is

PJ (x) =
(
λ + μα

)[
λ +

(
θα + μα

)](
λ + μα

)(
λ2 + τ1λ + τ2

)
,

where

τ1 = –
[
βS0 –

(
πα + μα + γ α

)
–

(
σα + μα

)]
,

τ2 =
(
πα + μα + γ α

)(
σα + μα

)
– βαS0

(
πα + σα + μα

)
.

(13)

It is easy to verify that if R0 < 1, then τ1 > 0 and τ2 > 0. This implies that two roots of
the polynomial λ2 + τ1λ + τ2 have negative real parts. Consequently, the real parts of five
eigenvalues of the matrix J(F0) are all negative, or equivalently, F0 is locally stable. The
proof is complete. �

We now prove the uniform asymptotical stability of the DFE point of the model (3) by
using the Lyapunov stability theorem [12, Theorem 3.1].

Theorem 4 If R0 < 1, then the DFE point of the model (3) is not only locally asymptotically
stable but also uniformly asymptotically stable.

Proof Since the first three equations of the model (3) do not depend on the states Q and
R, we need only consider the following subsystem:

C
0 Dα

t S = Λα – μαS – βαS(E + I),
C
0 Dα

t E = βαS(E + I) – παE –
(
μα + γ α

)
E,

C
0 Dα

t I = παE – σαI – μαI.

(14)
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From (4), it is sufficient to consider the model (3) in its feasible set defined by

Ω =
{

(S, E, I)|S, E, I ≥ 0, S ≤ Λα

μα

}
.

Consider a Lyapunov function V : Ω →R+ given by

V (S, E, I) =
(

S – S0 ln
S
S0

– S0

)
+ E +

πα + μα + γ α

πα + σα + μα
I. (15)

By using the linearity property of the Caputo derivative and [32, Lemma 3.1] and some
algebraic manipulations, we obtain

C
0 Dα

t V ≤ –(S – S0)2 + τ1I + τ2E,

where

τ1 = βα Λα

μα
–

(
πα + μα + γ α

)
+ πα πα + μα + γ α

πα + σα + μα
, τ2 = βα Λα

μα
–

πα + σα + γ α

πα + σα + μα
.

It is easy to check that if R0 < 1, then τ1, τ2 < 0. Consequently, by the Lyapunov stability
theorem for fractional dynamical systems, we deduce that F0 is uniformly asymptotically
stable. The proof is complete. �

Remark 1 The analysis of stability of F∗ is an interesting mathematical problem, but in
this work, we mainly focus on the case R0 < 1 to find an effective strategy to prevent the
disease.

3.4 R0 sensitivity analysis
Theorem 3 suggests that we should control the parameters such that R0 < 1. This provides
a good strategy to prevent and restrain the disease. More precisely, when R0 < 1, then

lim
t→∞ S(t) =

Λα

μα
, lim

t→∞ E(t) = lim
t→∞ I(t) = lim

t→∞ Q(t) = lim
t→∞ R(t) = 0,

which means that the disease will be completely controlled and prevented. Motivated by
this, we now perform an R0 sensitivity analysis to find ways to choose suitable parameters.

It is easy to verify that

∂R0

∂β
=

αβα–1Λα(πα + σα + μα)
μα(σα + μα)(πα + μα + γ α)

> 0,

∂R0

∂π
=

βαΛα

μα(σα + μα)
απα–1(γ α – μα)
(πα + μα + γ α)2 ,

∂R0

∂σ
= –

βαΛα

μα(μα + μα + γ α)
ασα–1πα

(σα + μα)2 < 0,

∂R0

∂γ
= –

βαΛα(πα + σα + μα)
μα(σα + μα)

αγ α–1

(πα + μα + γ α)
< 0.

(16)

Equation (16) suggests some ways to choose the parameters such thatR0 < 1. Hence, based
on this, we can propose suitable strategies to control and prevent the disease.
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4 Numerical simulations by the adaptive predictor–corrector algorithm
4.1 The adaptive predictor–corrector algorithm
In this section we review the method that is proposed by [20]. The proposed algorithm is
given as follows. Consider the initial value problem (IVP) governed by:

⎧
⎨

⎩
Dα,ρ

a+ y(t) = f (t, y(t)), t ∈ [0, T],

yk(a) = yk
0, k = 0, 1, 2, . . . , [α] – 1,

(17)

where Dα,ρ
a+ is the proposed generalized Caputo-type fractional derivative operator given

[20, Definition 4]. Initially, for m – 1 < α ≤ m, a ≥ 0, ρ > 0 and y ∈ Cm([a, T]), the IVP (17)
is equivalent, using [20, Theorem 3], to the Volterra integral equation:

y(t) = u(t) +
ρ1–α

Γ (α)

∫ t

a
(s)ρ–1(tρ – sρ

)α–1f
(
s, y(s)

)
ds, (18)

where

u(t) =
m–1∑

n=0

1
ρnn!

(
tρ – aρ

)n
[(

x1–ρ d
dx

)n

y(x)
]∣∣
∣∣
x=a

. (19)

The first step of our algorithm, under the assumption that the function f is such that a
unique solution exists on some interval [a, T], consists of dividing the interval [a, T] into
N unequal subintervals [tk , tk+1], k = 0, 1, . . . , N – 1 using the mesh points

⎧
⎨

⎩
t0 = a,

tk+1 = (tρ

k + h)
1
ρ k = 0, 1, 2, . . . , N – 1,

(20)

where h = (Tρ–aρ )
N . Now, we are going to generate the approximations yk , k = 0, 1, . . . , N , to

solve numerically the IVP (17). The basic step, assuming that we have already evaluated
the approximations yi ≈ y(tj) (j = 1, 2, . . . , k), is that we want to get the approximation yk ≈
y(tk+1) by means of the integral equation

y(tk+1) = u(tk+1) +
ρ–α

Γ (α)

∫ tk+1

a
sρ–1(tρ

k+1 – sρ
)α–1f

(
s, y(s)

)
ds. (21)

Making the substitution

z = (s)ρ , (22)

we get

y(tk+1) = u(tk+1) +
ρ–α

Γ (α)

∫ tρk+1

a

(
tρ

k+1 – z
)α–1f (z

1
ρ , y

(
z

1
ρ
)

dz, (23)

that is,

y(tk+1) = u(tk+1) +
ρ–α

Γ (α)

k∑

j=0

∫ tρj+1

tρj

(
tρ

k+1 – z
)α–1f (z

1
ρ , y

(
z

1
ρ
)

dz. (24)



Zhang et al. Advances in Difference Equations        (2020) 2020:420 Page 9 of 16

Next, if we use the trapezoidal quadrature rule with respect to the weight function (tρ

k+1 –
z)α–1 to approximate the integrals appear in the right-hand side of Eq. (24), replacing the
function f (z

1
ρ , y(z

1
ρ )) by its piecewise linear interpolant with nodes chosen at the tρ

j (j =
0, 1, . . . , k + 1), then we obtain

∫ tρj+1

tρj

(
tρ

k+1 – z
)α–1f (z

1
ρ , y

(
z

1
ρ
)

dz

≈ hα

α(α + 1)
[(

(k – j)α+1 – (k – j – α+)(k – j + 1)α
)
f
(
tj, y(tj)

)

+
(
(k – j + 1)α+1 – (k – j + α + 1)(k – j)α

)
f
(
tj+1, y(tj+1)

)]
. (25)

Thus, substituting the above approximations into Eq. (24), we obtain the corrector for-
mula for y(tk+1), k = 0, 1, . . . , N – 1,

y(tk+1) ≈ u(tk+1) +
ρ–α

Γ (α + 2)

k∑

j=0

aj,k+1f
(
tj, y(tj)

)
+

ρ–αhα

Γ (α + 2)
f
(
tk+1, y(tk+1)

)
, (26)

where

aj,k+1 =

⎧
⎨

⎩
kα+1 – (k – α)(k + 1)α if j = 0,

(k – j + 2)α+1 + (k – j)α+1 – 2(k – j + 1)α+1 if 1 ≤ j < k.
(27)

The last step of our algorithm is to replace the quantity y(tk+1) shown on the right-hand
side of formula (26) with the predictor value yp(tk+1) that can be obtained by applying the
one-step Adams–Bashforth method to the integral equation (23). In this case, by replacing
the function f (z

1
ρ , y(z

1
ρ )) with the quantity f (tj, y(tj)) at each integral in Eq. (24), we get

yp(tk+1) ≈ u(tk+1) +
ρ–α

Γ (α)

k∑

j=0

∫ tρj+1

tρj

(
tρ

k+1 – z
)α–1f

(
tj, y(tj)

)
dz

= u(tk+1) +
ρ–αhα

Γ (α + 1)

k∑

j=0

[
(k + 1 – j)α – (k – j)α

]
f
(
tj, y(tj)

)
. (28)

Therefore, the present adaptive predictor–corrector algorithm, for evaluating the approx-
imation yk+1 ≈ y(tk+1), is completely described by the formula

yk+1 ≈ u(tk+1) +
ρ–αhα

Γ (α + 2)

k∑

j=0

aj,k+1f (tj, yj) +
ρ–αhα

Γ (α + 2)
f
(
tk+1, yp

k+1
)
, (29)

where yj ≈ y(tj), j = 0, 1, . . . , k, and the predicted value yp
k+1 ≈ yp(tk+1) can be determined

as described in Eq. (28) with the weights aj,k+1 being defined according to (27). It is eas-
ily observed that when ρ = 1, the present adaptive predictor–corrector algorithm will be
reduced to the predictor–corrector approach presented in [13].
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4.2 Implementation with numerical simulation
In this section, we solve numerically Eq. (3) using the method given in the former section.
In view of the above algorithm, following the rule (27), the approximations Sk+1, Ek+1, Ik+1,
Qk+1, and Rk+1 can be simply evaluated using the iterative formulas, for N ∈N and T > 0,

Sk+1 ≈ S0 +
ρ–αhα

Γ (α + 2)

k∑

j=0

aj,k+1
[
Λα – μαSj – βαSj(Ej + Ij)

]

+
ρ–αhα

Γ (α + 2)
[
Aα – μαSp

k+1) – βαSp
k+1

(
Ep

k+1 + Ip
k+1

)]
,

Ek+1 ≈ E0 +
ρ–αhα

Γ (α + 2)

k∑

j=0

aj,k+1
[
βαSj(Ej + Ij) –

(
πα + μα + γ α

)
Ej

]

+
ρ–αhα

Γ (α + 2)
[
βαSp

k+1
(
Ep

k+1 + Ip
k+1

)
–

(
πα + μα + γ α

)
Ep

k+1
]
,

Ik+1 ≈ I0 +
ρ–αhα

Γ (α + 2)

k∑

j=0

aj,k+1
[
παEj –

(
σα + μα

)
Ij
]

+
ρ–αhα

Γ (α + 2)
[
παEp

k+1 –
(
σα + μα

)
Ip

k+1
]
,

Qk+1 ≈ Q0 +
ρ–αhα

Γ (α + 2)

k∑

j=0

aj,k+1
[
γ αEj + σαIj –

(
θα + μα

)
Qj

]

+
ρ–αhα

Γ (α + 2)
[
γ αEp

k+1 + σαIp
k+1 –

(
θα + μα

)
Qp

k+1
]
,

Rk+1 ≈ R0 +
ρ–αhα

Γ (α + 2)

k∑

j=0

aj,k+1
[
θαQj – μαRj

]

+
ρ–αhα

Γ (α + 2)
[
θαQp

k+1 – μαRp
k+1

]
,

where h = Tρ

N and

Sp
k+1 ≈ S0 +

ρ–αhα

Γ (α + 1)

k∑

j=0

(
(k + 1 – j)α – (k – j)α

)[
Λα – μαSj – βαSj(Ej + Ij)

]
,

Ep
k+1 ≈ E0 +

ρ–αhα

Γ (α + 2)

k∑

j=0

(
(k + 1 – j)α – (k – j)α

)[
βαSj(Ej + Ij) –

(
πα + μα + γ α

)
Ej

]
,

Ip
k+1 ≈ I0 +

ρ–αhα

Γ (α + 2)

k∑

j=0

(
(k + 1 – j)α – (k – j)α

)[
παEj –

(
σα + μα

)
Ij
]
,

Qp
k+1 ≈ Q0 +

ρ–αhα

Γ (α + 2)

k∑

j=0

(
(k + 1 – j)α – (k – j)α

)[
γ αEj + σαIj –

(
θα + μα

)
Qj

]
,

Rp
k+1 ≈ R0 +

ρ–αhα

Γ (α + 2)

k∑

j=0

(
(k + 1 – j)α – (k – j)α

)[
θαQj – μαRj

]
.
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Figure 1 S(t) against t: solid line presents the proposed approximation, dotted line stands for RK4 method

Figure 2 E(t) versus t: solid line presents the proposed approximation, dotted line stands for RK4 method

Parameter values which are calculated for basic time of coronavirus used in numeri-
cal example are Λ = 0.145; μ = 0.000411; β = 0.00038; π = 0.00211; γ = 0.0021; σ =
0.0169; θ = 0.0181, with total population N = 355 and initial data (S0, E0, I0, Q0, R0) =
(153, 55, 79, 68, 20).

In Figs. 1–5, we plot numerical solutions of the model (3) with T = 30 obtained us-
ing the proposed algorithm and the RK4 method when N = 355 and (S0, E0, I0, Q0, R0) =
(153, 55, 79, 68, 20) for α = 1. From the graphical results in Figs. 1–5, it can be seen that
the results obtained using the proposed algorithm match the results of the RK4 method
very well, which implies that the presented method can predict the behavior of these vari-
ables accurately in the region under consideration.

Figures 6–10 show the approximate solutions for S(t), E(t), I(t), Q(t), and R(t) obtained
for different values of α using the proposed algorithm. From the graphical results given
in Figs. 6–10, it is clear that the approximate solutions depend continuously on the time-
fractional derivative α. It is evident that the efficiency of this approach can be dramatically
enhanced by decreasing the step size.
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Figure 3 I(t) against t: solid line presents the proposed approximation, dotted line stands for RK4 method

Figure 4 Q(t) against t: solid line presents the proposed approximation, dotted line stands for RK4 method

Figure 5 R(t) against t: solid line presents the proposed approximation, dotted line stands for RK4 method
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Figure 6 S(t) against t: (solid line) a = 1.0, (dot-dashed line) a = 0.85, (dashed line) a = 0.75

Figure 7 E(t) against t: (solid line) a = 1.0, (dot-dashed line) a = 0.85, (dashed line) a = 0.75

Figure 8 I(t) against t: (solid line) a = 1.0, (dot-dashed line) a = 0.85, (dashed line) a = 0.75
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Figure 9 Q(t) against t: (solid line) a = 1.0, (dot-dashed line) a = 0.85, (dashed line) a = 0.75

Figure 10 R(t) against t: (solid line) a = 1.0, (dot-dashed line) a = 0.85, (dashed line) a = 0.75

5 Remarks and conclusions
In this paper, we have formulated and analyzed a new mathematical model for COVID-19
epidemic. The model is described by a system of fractional-order differential equations
and includes five classes, namely, S (susceptible class), E (exposed class), I (infected class),
Q (isolated class), and R (recovered class). It should be emphasized that the model is a
generalization of our recent work proposed in [35].

Firstly, the positivity, boundedness, and stability of the model have been established. Fur-
thermore, the basic reproduction number of the model has been calculated by using the
next generation matrix approach. Lastly, we have applied the adaptive predictor–corrector
algorithm and fourth-order Runge–Kutta (RK4) method to simulate the proposed model.
A set of numerical simulations has been performed to support the validity of the theoret-
ical results. The numerical simulations indicate that there is a good agreement between
theoretical results and numerical ones.
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In the near future, we will extend the results in this work to propose new mathematical
models for COVID-19 epidemic. Especially, effective strategies to control and prevent the
disease will be investigated.
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