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Abstract
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1 Introduction
Fractional differential equations have attracted much attention and have been the fo-
cus of many studies due mainly to their varied applications in many fields of science
and engineering. In other words, fractional differential equations are widely used to de-
scribe many important phenomena in various fields such as physics, biophysics, chem-
istry, biology, control theory, economy and so on; see [14, 19, 23, 29, 33]. For an ex-
tensive literature in the study of fractional differential equations, we refer the reader
to [2, 11, 15, 16, 18, 20, 21, 24, 26, 30, 32]. However, it should be noted that in recent
years, there have been many works related to fractional integro-differential equations, see
[1, 3, 4, 6, 8, 12, 17, 22, 28, 29] and the references therein. For some interesting and con-
siderable applied works, we refer to [5, 7, 9, 10].

In [13], Baleanu et al. studied the existence and uniqueness of solutions for the multiterm
nonlinear fractional integro-differential equation

⎧
⎨

⎩

cDαu(t) = f (t, u(t),ϕu(t),ψu(t), cDβ1 u(t), ·, cDβn u(t)) (0 < t < 1),

u(0) + au(1) = 0 and u′(0) – bu′(1) = 0.

where 1 < α < 2, 0 < βi < 1, α – βi ≥ 1, a, b �= –1, f : [0, 1] × R
n+3 → R is continuous, and

for the mappings γ ,λ : [0, 1] × [0, 1] → [0,∞) with the property

sup
t∈[0,1]

(∫ t

0
γ (t, s) ds

)

< ∞ and sup
t∈[0,1]

(∫ t

0
λ(t, s) ds

)

< ∞,

the maps ϕ and ψ being defined by (ϕu)(t) =
∫ t

0 γ (t, s) ds and (ψu)(t) =
∫ t

0 λ(t, s) ds.
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In [31], Wang et al. proved the existence and uniqueness of positive solutions for the
following fractional integro-differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

cDαu(t) + f (t, u(t),ϕu(t),ψu(t)) = 0 (0 < t < 1),

u(0) = b0, u′(0) = b1, . . . , u(n–3)(0) = bn–3,

u(n–1)(0) = bn–1, u(1) = μ
∫ 1

0 u(s) ds,

where n – 1 < α ≤ n, –1, n ≥ 3, bi ≥ 0 (i = 1, 2, . . . , n – 3, n – 1), cDα is the Caputo fractional
derivative, f : [0, 1] × R+ × R+ × R+ → R+ is continuous and (ϕu)(t) =

∫ t
0 K(t, s)u(s) ds,

(ψu)(t) =
∫ t

0 H(t, s)u(s) ds.
Motivated by the previous results, we discuss in this paper the existence of solutions for

the following nonlinear sequential fractional boundary value problem:
⎧
⎨

⎩

cDα(cDβu)(t) = f (t, u(t),ϕu(t),ψu(t)) (0 < t < 1),

u(1) = u(0) = u′(1) = 0,
(1.1)

where 1 < α ≤ 2, 0 < β ≤ 1, f : [0, 1] ×R
3 →R is continuous and

ϕu(t) =
∫ t

0
γ (t, s)u(s) ds, ψu(t) =

∫ t

0
λ(t, s)u(s) ds.

where γ ,λ : [0, 1] × [0, 1] → [0, +∞) are such that supt∈[0,1](
∫ 1

0 λ(t, s) ds) < ∞ and
supt∈[0,1](

∫ 1
0 γ (t, s) ds) < ∞.

2 Preliminaries
For convenience, in this section we recall some basic definitions and properties of the
fractional calculus theory and auxiliary lemmas which will be used throughout this paper,
see [23, 25, 27].

Definition 2.1 The Caputo fractional derivative of order α > 0 of a continuous function
u : (0,∞) →R is defined by

cDαu(t) =
1

Γ (n – α)

∫ t

0
(t – s)n–α–1u(n)(s) ds,

provided the right-hand side is pointwise defined on (0,∞).

Definition 2.2 The Riemann–Liouville fractional integral of order α > 0 of a continuous
function u : (0,∞) →R is defined by

Iαu(t) =
1

Γ (α)

∫ t

0
(t – s)α–1u(s) ds,

provided the right-hand side is pointwise defined on (0,∞).

Lemma 2.1 If α > 0, then the differential equation cDαu(t) = 0 has a unique solution given
by

u(t) = c0 + c1t + c2t2 + · · · + cn–1tn–1,

where ci ∈R, i = 0, 1, . . . , n – 1 (n is the smallest integer such that n ≥ α).
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Lemma 2.2 For α > 0, let u ∈ Cn[0, 1]. Then

Iα
(cDu

)
(t) = u(t) + c0 + c1t + c2t2 + · · · + cn–1tn–1.

where ci ∈R, i = 0, 1, . . . , n – 1 (n is the smallest integer such that n ≥ α).

Lemma 2.3 If y ∈ C[0, 1], then the boundary value problem

⎧
⎨

⎩

cDα(cDβu)(t) = y(t), 0 < t < 1, 1 < α ≤ 2 and 0 < β ≤ 1,

u(1) = u(0) = u′(1) = 0
(2.1)

has the unique solution given by

u(t) =
1

Γ (α + β)

∫ t

0
(t – s)β+α–1y(s) ds

+
tβ

Γ (α + β)
(–β – 1 + βt)

∫ 1

0
(1 – s)β+α–1y(s) ds

+
tβ

Γ (α + β – 1)
(1 – t)

∫ 1

0
(1 – s)α+β–2y(s) ds (2.2)

Proof In view of Lemma 2.2, FBVP (2.1) is equivalent to the following integral equation:

u(t) =
1

Γ (α + β)

∫ t

0
(t – s)β+α–1y(s) ds +

tβ

βΓ (β)
c0 +

tβ+1

β(β + 1)Γ (β)
c1 + c2. (2.3)

Differentiating both sides of (2.3), we get

u′(t) =
1

Γ (α + β – 1)

∫ t

0
(t – s)α+β–2y(s) ds +

tβ–1

Γ (β)
c0 +

tβ

βΓ (β)
c1.

Using the boundary conditions u(1) = u(0) = u′(1) = 0, we obtain

c0 = –
(

β(β + 1)Γ (β)
Γ (α + β)

)∫ 1

0
(1 – s)β+α–1y(s) ds +

βΓ (β)
Γ (α + β – 1)

∫ 1

0
(1 – s)α+β–2y(s) ds,

c1 =
β2(β + 1)Γ (β)

Γ (α + β)

∫ 1

0
(1 – s)β+α–1y(s) ds –

β(β + 1)Γ (β)
Γ (α + β – 1)

∫ 1

0
(1 – s)α+β–2y(s) ds,

c2 = 0.

Substituting the values of c0, c1, c2 in (2.3) we obtain (2.2). This completes the proof. �

3 Main results
Theorem 3.1 (Krasnoselskii fixed point theorem) Let X be a closed convex and nonempty
subset of a Banach space E. Let A and B be two operators such that

1. Ax + By ∈ X , whenever x, y ∈ X ;
2. A is compact and continuous;
3. B is a contraction.

Then there exists z ∈ X such that z = Az + Bz.
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Let X = C(I) be the space of all continuous real-valued functions on I = [0, 1] endowed
with the norm ‖u‖ = maxt∈I |u(t)|.

Theorem 3.2 Assume that α + β – 2 ≥ 0 and there exists a nonnegative function θ (t) ∈
L1(0, 1) such that

∣
∣f (t, x, y, z) – f

(
t, x′, y′, z′)∣∣ ≤ θ (t)

(∣
∣x – x′∣∣ +

∣
∣y – y′∣∣ +

∣
∣z – z′∣∣) (3.1)

for all t ∈ [0, 1] and t, x, y, z, t′, y′, z′ ∈ R. Then problem (1.1) has at least one solution on X
whenever

(1 + γ0 + λ0)(α + 2β + 1)θ∗

Γ (α + β)
< 1, (3.2)

where γ0 = supt∈I | ∫ t
0 γ (t, s) ds|, λ0 = supt∈I | ∫ t

0 λ(t, s) ds|, and θ∗ =
∫ 1

0 θ (s) ds.

Proof Choose

R ≥ 
 (α + 2β + 1)
1 – θ∗(1 + λ0 + γ0)(α + 2β + 1)

and set 
 = max{f (t, 0, 0, 0) : t ∈ I}. Consider the set BR = {u ∈ X : ‖u‖ ≤ R}, then BR is a
closed, bounded, and convex set of X. We define the operators A and B on X as

Au(t) =
1

Γ (α + β)

∫ t

0
(t – s)β+α–1f

(
s, u(s),ϕu(s),ψu(s)

)
ds,

Bu(t) =
tβ

Γ (α + β)
(–β – 1 + βt)

∫ 1

0
(1 – s)β+α–1f

(
s, u(s),ϕu(s),ψu(s)

)
ds

+
tβ (α + β – 1)

Γ (α + β)
(1 – t)

∫ 1

0
(1 – s)α+β–2f

(
s, u(s),ϕu(s),ψu(s)

)
ds.

For any u ∈ BR and t ∈ I , we get with the help of inequality (3.1)

∣
∣Au(t)

∣
∣ =

1
Γ (α + β)

∫ t

0
(t – s)β+α–1∣∣f

(
s, u(s),ϕu(s),ψu(s)

)∣
∣ds

≤ 1
Γ (α + β)

∫ t

0
(t – s)β+α–1∣∣f

(
s, u(s),ϕu(s),ψu(s)

)
– f (s, 0, 0, 0)

∣
∣ds

+
1

Γ (α + β)

∫ t

0
(t – s)β+α–1∣∣f (s, 0, 0, 0)

∣
∣ds

≤ 1
Γ (α + β)

∫ t

0
(t – s)β+α–1θ (s)

(∣
∣u(s)

∣
∣ +

∣
∣ϕu(s)

∣
∣ +

∣
∣ψu(s)

∣
∣
)

ds

+
1

Γ (α + β)

∫ t

0
(t – s)β+α–1∣∣f (s, 0, 0, 0)

∣
∣ds

≤ (1 + λ0 + γ0)‖u‖
Γ (α + β)

∫ 1

0
θ (s) ds +




Γ (α + β)

∫ t

0
(t – s)β+α–1 ds

≤ θ∗(1 + λ0 + γ0)
Γ (α + β)

‖u‖ +



Γ (α + β)
.
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Hence, we get

‖Au‖ ≤ θ∗(1 + λ0 + γ0)
Γ (α + β)

‖u‖ +



Γ (α + β)
. (3.3)

Similarly, we estimate ‖Bv‖. Let v ∈ BR and t ∈ I , then

∣
∣Bv(t)

∣
∣ ≤ tβ

Γ (α + β)
(β + 1 – βt)

∫ 1

0
(1 – s)β+α–1∣∣f

(
s, v(s),ϕv(s),ψv(s)

)∣
∣ds

+
tβ (α + β – 1)

Γ (α + β)
(1 – t)

∫ 1

0
(1 – s)α+β–2∣∣f

(
s, v(s),ϕv(s),ψv(s)

)∣
∣ds

≤ β + 1
Γ (α + β)

∫ 1

0
(1 – s)β+α–1θ (s)

(∣
∣v(s)

∣
∣ +

∣
∣ϕv(s)

∣
∣ +

∣
∣ψv(s)

∣
∣
)

ds

+
β + 1

Γ (α + β)

∫ 1

0
(1 – s)β+α–1∣∣f (t, 0, 0, 0)

∣
∣ds

+
(α + β – 1)
Γ (α + β)

∫ 1

0
(1 – s)α+β–2θ (s)

(∣
∣v(s)

∣
∣ +

∣
∣ϕv(s)

∣
∣ +

∣
∣ψv(s)

∣
∣
)

ds

+
(α + β – 1)
Γ (α + β)

∫ 1

0
(1 – s)α+β–2∣∣f (t, 0, 0, 0)

∣
∣ds

≤ θ∗(1 + λ0 + γ0)
(β + 1)

Γ (α + β)
‖v‖ +


 (β + 1)
Γ (α + β)

+
(α + β – 1)
Γ (α + β)

θ∗(1 + λ0 + γ0)‖v‖ +

 (α + β – 1)

Γ (α + β)

=
θ∗(1 + λ0 + γ0)(α + 2β)

Γ (α + β)
‖v‖ +


 (α + 2β)
Γ (α + β)

=
(α + 2β)
Γ (α + β)

(
θ∗(1 + λ0 + γ0)‖v‖ + 


)
.

Hence, we get

‖Bv‖ ≤ (α + 2β)
Γ (α + β)

(
θ∗(1 + λ0 + γ0)‖v‖ + 


)
. (3.4)

Taking estimates (3.3) and (3.4) into account, we get for any u, v ∈ BR and t ∈ I ,

‖Au + Bv‖ ≤ ‖Au‖ + ‖Bv‖
≤ θ∗(1 + λ0 + γ0)

Γ (α + β)
‖u‖ +




Γ (α + β)

+
(α + 2β)
Γ (α + β)

(
θ∗(1 + λ0 + γ0)‖v‖ + 


)

≤ R
θ∗(1 + λ0 + γ0)(α + 2β + 1)

Γ (α + β)

+

 (α + 2β + 1)

Γ (α + β)
,
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since if

R ≥ 
 (α + 2β + 1)
1 – θ∗(1 + λ0 + γ0)(α + 2β + 1)

then ‖Au + Bv‖ ≤ R.
Now, we prove that B is a contraction. Let v, u ∈ BR and t ∈ I . Then, thanks to (3.1), it

yields

∣
∣Bu(t) – Bv(t)

∣
∣ ≤ tβ (β + 1 – βt)

Γ (α + β)
×

∫ 1

0
(1 – s)β+α–1∣∣f

(
s, u(s),ϕu(s),ψu(s)

)

– f
(
s, v(s),ϕv(s),ψv(s)

)∣
∣ds

+
tβ (1 – t)

Γ (α + β – 1)
×

∫ 1

0
(1 – s)α+β–2∣∣f

(
s, u(s),ϕu(s),ψu(s)

)

– f
(
s, v(s),ϕv(s),ψv(s)

)∣
∣ds

≤ β + 1
Γ (α + β)

∫ 1

0
(1 – s)β+α–1θ (s)

(∣
∣u(s) – v(s)

∣
∣

+
∣
∣ϕu(s) – ϕv(s)

∣
∣ +

∣
∣ψu(s) – ψv(s)

∣
∣
)

ds

+
1

Γ (α + β – 1)

∫ 1

0
(1 – s)α+β–2θ (s)

(∣
∣u(s) – v(s)

∣
∣

+
∣
∣ϕu(s) – ϕv(s)

∣
∣ +

∣
∣ψu(s) – ψv(s)

∣
∣
)

ds

≤ (β + 1)(1 + γ0 + λ0)‖u – v‖
Γ (α + β)

∫ 1

0
θ (s) ds

+
(1 + γ0 + λ0)(α + β – 1)‖u – v‖

Γ (α + β)

∫ 1

0
θ (s) ds

≤ (1 + γ0 + λ0)(α + 2β)θ∗

Γ (α + β)
‖u – v‖,

thus

‖Bu – Bv‖ ≤ (1 + γ0 + λ0)(α + 2β)θ∗

Γ (α + β)
‖u – v‖,

so by (3.2) we conclude that B is a contraction.
Let us prove that A is compact and continuous. The continuity of f implies that A is

continuous. Also A is uniformly bounded on BR, indeed, from (3.3) we have

‖Au‖ ≤ θ∗(1 + λ0 + γ0)
Γ (α + β)

‖u‖ +



Γ (α + β)
≤ θ∗(1 + λ0 + γ0)

Γ (α + β)
R +




Γ (α + β)
.

Set L = max0≤s≤1{|f (s, u(s),ϕu(s),ψu(s))|, u ∈ BR}. Let u ∈ BR, t1, t2 ∈ I , with t1 ≤ t2. We
have

∣
∣Au(t2) – Au(t1)

∣
∣

=
1

Γ (α + β)

∣
∣
∣
∣

∫ t2

0
(t2 – s)β+α–1f

(
s, u(s),ϕu(s),ψu(s)

)
ds
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–
∫ t1

0
(t1 – s)β+α–1f

(
s, u(s),ϕu(s),ψu(s)

)
ds

∣
∣
∣
∣

≤ 1
Γ (α + β)

∫ t1

0

(
(t2 – s)β+α–1 – (t1 – s)β+α–1)∣∣f

(
s, u(s),ϕu(s),ψu(s)

)∣
∣ds

+
1

Γ (α + β)

∫ t2

t1

(t2 – s)β+α–1∣∣f
(
s, u(s),ϕu(s),ψu(s)

)∣
∣ds

≤ L
Γ (α + β)

∫ t1

0

(
(t2 – s)β+α–1 – (t1 – s)β+α–1)ds +

L
Γ (α + β)

∫ t2

t1

(t2 – s)β+α–1 ds

=
L

Γ (α + β + 1)
(
tβ+α
2 – tβ+α

1
)
.

Hence, if t2 → t1, then |Au(t2) – Au(t1)| → 0. Then A is equicontinuous and so, by Arzela–
Ascoli theorem, we deduce that A is compact on BR. So the operator A is completely con-
tinuous. Thus, by Theorem 3.1, problem (1.1) has at least one solution in X. The proof is
complete. �

Example 3.1 We consider the boundary value problem (1.1) with f (t, x1, x2, x3) = t
1
2 e–t

4 ×
∑3

i=1
1

1+x2
i (t) , α = 9

5 , β = 3
5 . Also we have f (t, 0, 0, 0) = 3t

1
2 e–t

4 thus 
 = 0.31. Let λ(t, s) =

γ (t, s) = ts, so that γ0 = λ0 = 1
2 .

Moreover, we can verify that condition (3.1) is satisfied

∣
∣f (t, x1, x2, x3) – f (t, y1, y2, y3)

∣
∣

≤ t 1
2 e–t

4

3∑

i=1

(∣
∣
∣
∣

1
1 + x2

i
–

1
1 + y2

i

∣
∣
∣
∣

)

≤ t 1
2 e–t

4

3∑

i=1

|xi – yi||xi + yi|
(1 + x2

i )(1 + y2
i )

≤ t 1
2 e–t

4

3∑

i=1

|xi – yi|,

so θ (t) = t
1
2 e–t

4 and θ∗ = 0.37894
4 . Also, condition (3.2) holds:

(1 + γ0 + λ0)(α + 2β + 1)θ∗

Γ (α + β)
= 0.61013 < 1.

Therefore, by Theorem 3.2, the problem has at least one solution in BR with

R ≥ 
 (α + 2β + 1)
1 – θ∗(1 + λ0 + γ0)(α + 2β + 1)

= 5.1214

Example 3.2 Consider the boundary value problem (1.1) with

f (t, x, y, z) = 10–2
(

t sin x + et sin 2y +
1 + t2

1 + z2

)

,
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α = 1.3, β = 0.4. Then f (t, 0, 0, 0) = 10–2(1 + t2), thus 
 = 0.02. Let λ(t, s) = et–s, γ (t, s) =
(t – s)β , thus γ0 = 1.7183, λ0 = 0.71429. Condition (3.1) is satisfied, in fact,

∣
∣f (t, x1, x2, x3) – f (t, y1, y2, y3)

∣
∣ ≤ 0.02et

3∑

i=1

|xi – yi|.

We choose θ (t) = 0.02et then θ∗ = 3.4366 × 10–2. We check condition (3.2):

(1 + γ0 + λ0)(α + 2β + 1)θ∗

Γ (α + β)
= 0.40246 < 1.

We conclude, by Theorem 3.2, that the problem has at least one solution in BR with

R ≥ 
 (α + 2β + 1)
1 – θ∗(1 + λ0 + γ0)(α + 2β + 1)

= 9.7744 × 10–2.

Conclusion. In the present work, we have studied the existence of solutions for a frac-
tional sequential boundary value problem. To demonstrate the existence results, we trans-
formed the posed problem into a sum of a contraction and a compact operator, then we
applied the Krasnoselskii’s fixed point theorem. We ended the article with some numerical
examples illustrating the obtain results.

Acknowledgements
The authors would like to thank the reviewers for their help in improving the quality of the article.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. Both authors read and
approved the final manuscript.

Author details
1Department of Mathematics, University Larbi Ben M’Hidi Oum El Bouaghi, P.O. Box 358, 04000 Oum El Bouaghi, Algeria.
2Department of Mathematics, University 8 Mai 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria. 3Advanced Materials
Laboratory, Department of Mathematics, University Badji Mokhtar Annaba, P.O. Box 12, 23000 Annaba, Algeria.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 April 2020 Accepted: 31 July 2020

References
1. Ahmad, B., Ntouyas, S.K.: Integro-differential equations of fractional order with nonlocal fractional boundary

conditions associated with financial asset model. Electron. J. Differ. Equ. 2013(60), 1 (2013)
2. Ahmad, B., Ntouyas, S.K.: Existence results for a coupled system of Caputo type sequential fractional differential

equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266, 615–622 (2015)
3. Ahmad, B., Ntouyas, S.K., Agarwal, R., Alsaedi, A.: Existence results for sequential fractional integro-differential

equations with nonlocal multi-point and strip conditions. Bound. Value Probl. 2016, 205 (2016)
4. Alsaedi, A., Ahmad, B.: Existence of solutions for nonlinear fractional integro-differential equations with three-point

nonlocal fractional boundary conditions. Adv. Differ. Equ. 2010, 691721 (2010)
5. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value

conditions. Bound. Value Probl. 2020, 64 (2020)



Bragdi et al. Advances in Difference Equations        (2020) 2020:418 Page 9 of 9

6. Baleanu, D., Ghafarnezhad, K., Rezapour, S.: On a three step crisis integro-differential equation. Adv. Differ. Equ.
2019(1), 153 (2019)

7. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver
with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020)

8. Baleanu, D., Khadijeh, G., Shahram, R., Mehdi, S.: On the existence of solutions of a three steps crisis
integro-differential, equation. Adv. Differ. Equ. 2018(1), 135 (2018)

9. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of CD4+ T-cell with a new
approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020)

10. Baleanu, D., Mohammadi, H., Rezapour, S.: A mathematical theoretical study of a particular system of Caputo–Fabrizio
fractional differential equations for the Rubella disease model. Adv. Differ. Equ. 2020, 184 (2020)

11. Baleanu, D., Rezapour, S., Mohammadi, H.: Some existence results on nonlinear fractional differential equation. Philos.
Trans. R. Soc. A 371, 20120144 (1990)

12. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional,
Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019)

13. Baleanu, D., Zahra Nazemi, S., Rezapour, S.: Existence and uniqueness of solutions for multi-term nonlinear fractional
integro-differential equations. Adv. Differ. Equ. 2013, 368 (2013)

14. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54,
3413–3442 (2003)

15. Ferreira, R.A.C., Pinto, G.: Lyapunov-type inequalities for some sequential fractional boundary value problems. Adv.
Dyn. Syst. Appl. 11(1), 33–43 (2016)

16. Guezane Lakoud, A., Khaldi, R., Kılıçman, A.: Solvability of a boundary value problem at resonance. SpringerPlus 5,
1504 (2016)

17. Guezane-Lakoud, A., Khaldi, R.: Solutions for a nonlinear fractional Euler–Lagrange type equation. SeMA 76, 195
(2019). https://doi.org/10.1007/s40324-018-0170-4

18. Guezane-Lakoud, A., Rodríguez-López, R.: On a fractional boundary value problem in a weighted space. SeMA 75(3),
435–443 (2018)

19. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
20. Khaldi, R., Guezane-Lakoud, A.: Upper and lower solutions, method for fractional oscillation equations. Proc. Inst.

Math. Mech. Natl. Acad. Sci. Azerb. 43(2), 214–220 (2017)
21. Khaldi, R., Guezane-Lakoud, A.: On generalized nonlinear Euler–Bernoulli beam type equations. Acta Univ. Sapientiae

Math. 10(1), 90–100 (2018)
22. Khaldi, R., Guezane-Lakoud, A.: On a generalized Lyapunov inequality for a mixed fractional boundary value problem.

AIMS Math. 4(3), 506–515 (2019). https://doi.org/10.3934/math.2018.3.506
23. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Boston

(2006)
24. Liu, L., Zhang, X., Jiang, J., Wu, Y.: The unique solution of a class of sum mixed monotone operator equations and its

application to fractional boundary value problems. J. Nonlinear Sci. Appl. 9, 2943–2958 (2016)
25. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York

(1993)
26. Momani, S.M., Hadid, S.B.: Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24,

379–387 (2003)
27. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering. Academic Press, San Diego

(1999)
28. Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular point-wise defined fractional

q-integro-differential equation. Bound. Value Probl. 2020, 38 (2020)
29. Shahram, A., Baleanu, D., Shahram, R.: Analyzing transient response of the parallel RCL circuit by using the

Caputo–Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 55 (2020)
30. Su, X., Zhang, S.: Solutions to boundary value problems for nonlinear differential equations of fractional order.

Electron. J. Differ. Equ. 2009, 26 (2009)
31. Wang, Y., Liu, L.: Uniqueness and existence of positive solutions for the fractional integro-differential equation. Bound.

Value Probl. 2017, 12 (2017)
32. Xinwei, S., Landong, L.: Existence of solution for boundary value problem of nonlinear fractional differential equation.

Appl. Math. J. Chin. Univ. Ser. B 22(3), 291–298 (2007)
33. Zhou, H., Alzabut, J., Rezapour, S., Samei, M.E.: Uniform persistence and almost periodic solutions of a

nonautonomous patch occupancy model. Adv. Differ. Equ. 2020, 143 (2020)

https://doi.org/10.1007/s40324-018-0170-4
https://doi.org/10.3934/math.2018.3.506

	Existence of solutions for nonlinear fractional integro-differential equations
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


