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Abstract
In this paper, a class of fourth-order differential equations with advanced type is
studied. Applying the generalized Riccati transformation, integral averaging
technique and the theory of comparison, a set of new criteria for oscillation or certain
asymptotic behavior of solutions of this equations is given. Our results essentially
improve and complement some earlier publications. Some examples are presented
to demonstrate the main results.
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1 Introduction
The present paper deals with the investigation of the oscillatory behavior of fourth-order
advanced differential equation

(
a(t)

(
y′′′(t)

)β)′ +
j∑

i=1

qi(t)g
(
y
(
ηi(t)

))
= 0, t ≥ t0, (1)

where j ≥ 1 and β is a quotient of odd positive integers. Throughout this work, we sup-
pose that a ∈ C1([t0,∞),R), a(t) > 0, a′(t) ≥ 0, qi,ηi ∈ C([t0,∞),R), qi(t) ≥ 0,ηi(t) ≥ t,
limt→∞ ηi(t) = ∞, i = 1, 2, . . . , j, g ∈ C(R,R) such that g(x)/xβ ≥ k > 0, for x �= 0 and under
the condition

∫ ∞

t0

1
a1/β(s)

ds = ∞. (2)

Definition 1.1 The function y ∈ C3[ty,∞), ty ≥ t0 is called a solution of (1), if a(t) ×
(y′′′(t))β ∈ C1[ty,∞), and y(t) satisfies (1) on [ty,∞). Moreover, Eq. (1) is oscillatory if all
its solutions oscillate.

Definition 1.2 Let

D =
{

(t, s) ∈R
2 : t ≥ s ≥ t0

}
and D0 =

{
(t, s) ∈R

2 : t > s ≥ t0
}

.
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A kernel function Hi ∈ C(D,R) is said to belong to the function class �, written H ∈ �, if,
for i = 1, 2,

(i) Hi(t, s) = 0 for t ≥ t0, Hi(t, s) > 0, (t, s) ∈ D0;
(ii) Hi(t, s) has a continuous and nonpositive partial derivative ∂Hi/∂s on D0 and there

exist functions τ ,ϑ ∈ C1([t0,∞), (0,∞)) and hi ∈ C(D0,R) such that

∂

∂s
H1(t, s) +

τ ′(s)
τ (s)

H1(t, s) = h1(t, s)Hβ/(β+1)
1 (t, s) (3)

and

∂

∂s
H2(t, s) +

ϑ ′(s)
ϑ(s)

H2(t, s) = h2(t, s)
√

H2(t, s). (4)

In this paper the following methods were used:
(a) The Riccati transformations technique.
(b) The method of comparison with second-order differential equations.
(c) The integral averaging technique.
From them we obtained new criteria for oscillation of Eq. (1).
Advanced differential equations can find application in dynamical systems, mathemat-

ics of networks, optimization, as well as, in the mathematical modeling of engineering
problems, such as concerning electrical power systems, materials, energy; see [1–4].

During the past few years, there has been constant interest to study the asymptotic prop-
erties for oscillation of differential equations in the canonical case, see [5–7], and the non-
canonical case, see [8–10]. One active area of research in this decade is the study of the
qualitative behavior for oscillation of differential equations, see [11–32].

Our aim in this paper is to complement and improve results in [33–35]. To this end, the
following results are presented.

In particular, by using the comparison technique, the equation

((
y(κ–1)(t)

)β)′ + q(t)yβ
(
η(t)

)
= 0 (5)

has been studied by Agarwal and Grace [33]. They proved that it is oscillatory, if

lim inf
t→∞

∫ η(t)

t

(
η(s) – s

)κ–2
(∫ ∞

s
q(t) dt

)1/β

ds >
(κ – 2)!

e
. (6)

Agarwal et al. in [34] extended the Riccati transformation to obtain new oscillatory criteria
for (5) under the condition

lim sup
t→∞

tβ(κ–1)
∫ ∞

t
q(s) ds >

(
(κ – 1)!

)β . (7)

Authors in [35] studied the oscillatory behavior of (5), for β = 1. Also, they proved it to be
oscillatory, if there exists a function τ ∈ C1([t0,∞), (0,∞)), by using the Riccati transfor-
mation. If

∫ ∞

t0

(
τ (s)q(s) –

(κ – 2)!(τ ′(s))2

23–2κsκ–2τ (s)

)
ds = ∞. (8)
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To prove this, we apply the previous results to the equation

y(κ)(t) + by(rt) = 0, t ≥ 1, (9)

where κ = 4, b = q0/t4 and r = 3, and we find:
1. By applying condition (6) in [33], we get

q0 > 13.6.

2. By applying condition (7) in [34], we get

q0 > 18.

3. By applying condition (8) in [35], we get

q0 > 576.

From the above we find that the results in [34] improve the results in [35].
Moreover, the results in [33] improve results [34, 35].

Our aim in the present paper is to employ the Riccati technique, the integral averaging
technique and the theory of comparison to establish some new conditions for the oscil-
lation of all solutions of Eq. (1) under the condition (2). Our results essentially improve
and complement the results in [33–35]. Some examples are provided to illustrate the main
results.

2 Some auxiliary lemmas
The proofs of our main results are essentially based on the following lemmas.

Lemma 2.1 ([36]) Suppose that y ∈ Cκ ([t0,∞), (0,∞)), y(κ) is of a fixed sign on [t0,∞), y(κ)

not identically zero and there exists a t1 ≥ t0 such that

y(κ–1)(t)y(κ)(t) ≤ 0,

for all t ≥ t1. If we have limt→∞ y(t) �= 0, then there exists tθ ≥ t1 such that

y(t) ≥ θ

(κ – 1)!
tκ–1∣∣y(κ–1)(t)

∣∣,

for every θ ∈ (0, 1) and t ≥ tθ .

Lemma 2.2 ([13]) Let β be a ratio of two odd numbers, V > 0 and U are constants. Then

Ux – Vx(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

V β
, V > 0.

Lemma 2.3 ([15]) Suppose that y is an eventually positive solution of (1). Then, there exist
two possible cases:

(S1) y(t) > 0, y′(t) > 0, y′′(t) > 0, y′′′(t) > 0, y(4)(t) < 0,
(S2) y(t) > 0, y′(t) > 0, y′′(t) < 0, y′′′(t) > 0, y(4)(t) < 0,

for t ≥ t1, where t1 ≥ t0 is sufficiently large.
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3 Main results
In this section, we shall establish some oscillation criteria for Eq. (1).

Remark 3.1 ([37]) It is well known that the differential equation

[
a(t)

(
y′(t)

)β]′ + q(t)yβ
(
g(t)

)
= 0, (10)

where β > 0 is the ratio of odd positive integers, a, q ∈ C([t0,∞),R+), is nonoscillatory
if and only if there exist a number t ≥ t0, and a function ς ∈ C1([t,∞),R), satisfying the
inequality

ς ′(t) + γ a–1/β(t)
(
ς (t)

)(1+β)/β + q(t) ≤ 0.

Theorem 3.1 Assume that (2) holds. If the differential equations

(
2a

1
β (t)

(θ t2)β
(
y′(t)

)β

)′
+ k

j∑

i=1

qi(t)yβ (t) = 0 (11)

and

y′′(t) + y(t)
∫ ∞

t

(
1

a(ς )

∫ ∞

ς

j∑

i=1

qi(s) ds

)1/β

dς = 0 (12)

are oscillatory, then every solution of (1) is oscillatory.

Proof Assume, for the sake of contradiction, that y is a positive solution of (1). Then,
we can suppose that y(t) and y(ηi(t)) are positive for all t ≥ t1 sufficiently large. From
Lemma 2.3, we have two possible cases, (S1) and (S2).

Let case (S1) hold. Using Lemma 2.1, we find

y′(t) ≥ θ

2
t2y′′′(t), (13)

for every θ ∈ (0, 1) and for all large t.
Defining

ϕ(t) := τ (t)
(

a(t)(y′′′(t))β

yβ (t)

)
, (14)

we see that ϕ(t) > 0 for t ≥ t1, where τ ∈ C1([t0,∞), (0,∞)) and

ϕ′(t) = τ ′(t)
a(t)(y′′′(t))β

yβ (t)
+ τ (t)

(a(y′′′)β )′(t)
yβ (t)

– βτ (t)
yβ–1(t)y′(t)a(t)(y′′′(t))β

y2β (t)
.

Combining (13) and (14), we obtain

ϕ′(t) ≤ τ ′
+(t)
τ (t)

ϕ(t) + τ (t)
(a(t)(y′′′(t))β )′

yβ (t)
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– βτ (t)
θ

2
t2 a(t)(y′′′(t))β+1

yβ+1(t)

≤ τ ′(t)
τ (t)

ϕ(t) + τ (t)
(a(t)(y′′′(t))β )′

yβ (t)

–
βθ t2

2(τ (t)a(t))
1
β

ϕ
β+1
β (t). (15)

From (1) and (15), we get

ϕ′(t) ≤ τ ′(t)
τ (t)

ϕ(t) – kτ (t)
∑j

i=1 qi(t)yβ (ηi(t))
yβ (t)

–
βθ t2

2(τ (t)a(t))
1
β

ϕ
β+1
β (t).

Note that y′(t) > 0 and ηi(t) ≥ t. Thus

ϕ′(t) ≤ τ ′(t)
τ (t)

ϕ(t) – kτ (t)
j∑

i=1

qi(t) –
βθ t2

2(τ (t)a(t))
1
β

ϕ(t)
β+1
β . (16)

If we set τ (t) = k = 1 in (16), we obtain

ϕ′(t) +
βθ t2

2a
1
β (t)

ϕ
β+1
β (t) +

j∑

i=1

qi(t) ≤ 0.

Thus, we can see that Eq. (11) is nonoscillatory, which is a contradiction.
Let case (S2) hold. Defining

ψ(t) := ϑ(t)
y′(t)
y(t)

,

we see that ψ(t) > 0 for t ≥ t1, where ϑ ∈ C1([t0,∞), (0,∞)). By differentiating ψ(t), we
find

ψ ′(t) =
ϑ ′(t)
ϑ(t)

ψ(t) + ϑ(t)
y′′(t)
y(t)

–
1

ϑ(t)
ψ2(t). (17)

Now, by integrating (1) from t to m and using y′(t) > 0, we have

a(m)
(
y′′′(m)

)β – a(t)
(
y′′′(t)

)β = –
∫ m

t

j∑

i=1

qi(s)g
(
y
(
ηi(s)

))
ds.

By virtue of y′(t) > 0 and ηi(t) ≥ t, we get

a(m)
(
y′′′(m)

)β – a(t)
(
y′′′(t)

)β ≤ –kyβ (t)
∫ u

t

j∑

i=1

qi(s) ds.

Letting m → ∞, we see that

a(t)
(
y′′′(t)

)β ≥ kyβ (t)
∫ ∞

t

j∑

i=1

qi(s) ds
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and so

y′′′(t) ≥ y(t)

(
k

a(t)

∫ ∞

t

j∑

i=1

qi(s) ds

)1/β

.

Integrating again from t to ∞, we get

y′′(t) + y(t)
∫ ∞

t

(
k

a(ς )

∫ ∞

ς

j∑

i=1

qi(s) ds

)1/β

dς ≤ 0. (18)

Combining (17) and (18), we obtain

ψ ′(t) ≤ ϑ ′(t)
ϑ(t)

ψ(t) – ϑ(t)
∫ ∞

t

(
k

a(ς )

∫ ∞

ς

j∑

i=1

qi(s) ds

)1/β

dς –
1

ϑ(t)
ψ2(t). (19)

If ϑ(t) = k = 1 in (19), then we get

ψ ′(t) + ψ2(t) +
∫ ∞

t

(
1

a(ς )

∫ ∞

ς

j∑

i=1

qi(s) ds

)1/β

dς ≤ 0.

Hence, we see that Eq. (12) is nonoscillatory, which is a contradiction. The proof of the
theorem is complete. �

Based on the above results and Theorem 3.1, we can easily obtain the following Hille
and Nehari type oscillation criteria for (1) with β = 1.

Theorem 3.2 Let β = k = 1. Assume that

∫ ∞

t0

θ t2

2a(t)
dt = ∞

and

lim inf
t→∞

(∫ t

t0

θs2

2a(s)
ds

)∫ ∞

t

j∑

i=1

qi(s) ds >
1
4

, (20)

for some constant θ ∈ (0, 1),

lim inf
t→∞ t

∫ t

t0

∫ ∞

v

(
1

a(ς )

∫ ∞

ς

j∑

i=1

qi(s) ds

)

dς dv >
1
4

, (21)

then all solutions of (1) are oscillatory.

In this theorem, we employ the integral averaging technique to establish an oscillation
criterion for (1).
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Theorem 3.3 Let (2) hold. If there exist positive functions τ ,ϑ ∈ C1([t0,∞),R) such that

lim sup
t→∞

1
H1(t, t1)

∫ t

t1

(

H1(t, s)kτ (s)
j∑

i=1

qi(s) – π (s)

)

ds = ∞ (22)

and

lim sup
t→∞

1
H2(t, t1)

∫ t

t1

(
H2(t, s)ϑ(s)� (s) –

ϑ(s)h2
2(t, s)

4

)
ds = ∞, (23)

where

π (s) =
hβ+1

1 (t, s)Hβ
1 (t, s)

(β + 1)β+1
2βτ (s)a(s)

(θs2)β
,

for all θ ∈ (0, 1), and

� (s) =
∫ ∞

t

(
k

a(ς )

∫ ∞

ς

j∑

i=1

qi(s) ds

)1/β

dς ,

then (1) is oscillatory.

Proof Assume, for the sake of contradiction, that y is a positive solution of (1). Then,
we can suppose that y(t) and y(ηi(t)) are positive for all t ≥ t1 sufficiently large. From
Lemma 2.3, we have two possible cases, (S1) and (S2).

Assume that (S1) holds. From Theorem 3.1, we find that (16) holds. Multiplying (16) by
H1(t, s) and integrating the resulting inequality from t1 to t, we find that

∫ t

t1

H1(t, s)kτ (s)
j∑

i=1

qi(s) ds ≤ ϕ(t1)H1(t, t1) +
∫ t

t1

(
∂

∂s
H1(t, s) +

τ ′(s)
τ (s)

H1(t, s)
)

ϕ(s) ds

–
∫ t

t1

βθs2

2(τ (s)a(s))
1
β

H1(t, s)ϕ
β+1
β (s) ds.

From (3), we get

∫ t

t1

H1(t, s)kτ (s)
j∑

i=1

qi(s) ds ≤ ϕ(t1)H1(t, t1) +
∫ t

t1

h1(t, s)Hβ/(β+1)
1 (t, s)ϕ(s) ds

–
∫ t

t1

βθs2

2(τ (s)a(s))
1
β

H1(t, s)ϕ
β+1
β (s) ds. (24)

Using Lemma 2.2 with V = βθs2/(2(τ (s)a(s))
1
β )H1(t, s), U = h1(t, s)Hβ/(β+1)

1 (t, s) and y =
ϕ(s), we get

h1(t, s)Hβ/(β+1)
1 (t, s)ϕ(s) –

βθs2

2(τ (s)a(s))
1
β

H1(t, s)ϕ
β+1
β (s)

≤ hβ+1
1 (t, s)Hβ

1 (t, s)
(β + 1)β+1

2βτ (s)a(s)
(θs2)β

,
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which with (24) gives

1
H1(t, t1)

∫ t

t1

(

H1(t, s)kτ (s)
j∑

i=1

qi(s) – π (s)

)

ds ≤ ϕ(t1).

This contradicts (22).
Assume that (S2) holds. From Theorem 3.1, (19) holds. Multiplying (19) by H2(t, s) and

integrating the resulting inequality from t1 to t, we obtain

∫ t

t1

H2(t, s)ϑ(s)� (s) ds ≤ ψ(t1)H2(t, t1)

+
∫ t

t1

(
∂

∂s
H2(t, s) +

ϑ ′(s)
ϑ(s)

H2(t, s)
)

ψ(s) ds

–
∫ t

t1

1
ϑ(s)

H2(t, s)ψ2(s) ds.

Thus, from (4), we get

∫ t

t1

H2(t, s)ϑ(s)� (s) ds ≤ ψ(t1)H2(t, t1) +
∫ t

t1

h2(t, s)
√

H2(t, s)ψ(s) ds

–
∫ t

t1

1
ϑ(s)

H2(t, s)ψ2(s) ds

≤ ψ(t1)H2(t, t1) +
∫ t

t1

ϑ(s)h2
2(t, s)

4
ds

and so

1
H2(t, t1)

∫ t

t1

(
H2(t, s)ϑ(s)� (s) –

ϑ(s)h2
2(t, s)

4

)
ds ≤ ψ(t1),

which contradicts (23). The proof of the theorem is complete. �

4 Examples
In this section, we give the following examples.

Example 4.1 Consider the equation

y(4)(t) +
q0

t4 y(2t) = 0, t ≥ 1, (25)

where q0 > 0 is a constant. Note that β = 1,κ = 4, a(t) = 1, q(t) = q0/t4 and η(t) = 2t. If we
set k = 1, then conditions (20) and (21) become

lim inf
t→∞

(∫ t

t0

θs2

2a(s)
ds

)∫ ∞

t

j∑

i=1

qi(s) ds = lim inf
t→∞

(
t3

3

)∫ ∞

t

q0

s4 ds

=
q0

9
>

1
4



Bazighifan and Chatzarakis Advances in Difference Equations        (2020) 2020:414 Page 9 of 10

and

lim inf
t→∞ t

∫ t

t0

∫ ∞

v

(
1

a(ς )

∫ ∞

ς

j∑

i=1

qi(s) ds

)1/β

dς dv = lim inf
t→∞ t

(
q0

6t

)
,

=
q0

6
>

1
4

,

respectively. From Theorem 3.2, all solutions of (25) are oscillatory, if q0 > 2.25.

Remark 4.1 We compare our result with the known related criteria

Condition (6) (7) (8)

Criterion q0 > 25.5 q0 > 18 q0 > 1728.

Therefore, our result improves results [33–35].

Example 4.2 Consider the differential equation (9), where q0 > 0 is a constant. Note that
β = 1,κ = 4, a(t) = 1, q(t) = q0/t4 and η(t) = 3t. If we set k = 1, then condition (20) becomes

q0

9
>

1
4

.

Therefore, from Theorem 3.2, all solutions of (9) are oscillatory, if q0 > 2.25.

Remark 4.2 Our result improves results [33–35].
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