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Abstract
The present paper deals with reconstruction of Gamma operators preserving some
exponential functions and studies their approximation properties: uniform
convergence, rate of convergence, asymptotic formula and saturation. The
effectiveness of new operators compared to classical ones is presented in certain
senses as well. The last section is devoted to numerical results which compare the
effectiveness of new constructions of Gamma operators.
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1 Introduction and preliminaries
The increasingly rapid developments in the field of approximation theory have been seen
for the past 70 years. A considerable amount of literature has been published to find the
answer to the question of how to find the best convergence to a given function. These
studies give a number of approaches to the construction of approximating functions. In
the meantime, Korovkin and Bohman introduced one of the most significant theorems in
approximation theory, known as Bohman–Korovkins’s approximation theorem in the lit-
erature, which presents a method to check whether a sequence of positive linear operators
(Ln)n≥1 converges to the identity operator with regard to the uniform norm of the space
C[a, b], that is, whether it represents or not an approximation process. This theorem pro-
vides insight into the studies on linear positive operators, and several new constructions of
approximation operators have been introduced in the literature. One of these studies is due
to King who provides new sequences of operators preserving the test functions ek(x) = xk ,
k = 0, 2, and their linear combinations, conditionally [17]. In other respects, Acar et al. [2]
introduced a new family of linear positive operators, that reproduce the functions e2ax,
a > 0, instead of the usual polynomials. Another modification of such a construction was
also considered in [3]. Further modifications and their approximation results showed the
effectiveness of operators preserving some exponential functions in certain senses, hence
many researchers have focused on the introduction and investigation of exponential-type
operators. Among others, we refer the readers to [4–10, 20] and the references therein.
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On the other hand, Gamma operators, introduced by Lupas and Müller [18], are one of
the most widely used groups in approximation theory and have been extensively used for
finding a better approximation to the target function. The classical Gamma operators are
defined by

Gn(f ; x) =
xn+1

n!

∫ ∞

0
e–xuunf

(
n
u

)
du, x ∈R

+ := (0,∞), n ∈ N.

In the literature, a number of approaches have appeared addressing to refine Gamma op-
erators, which showed that new operators have similar approximation properties as their
classical counterparts; see [1, 13, 15, 18, 19, 21] and the references therein. It is observed
that the modified Gamma operators reproduce only constant and linear functions.

Motivated by the above-mentioned papers, the main aim of this paper is to provide a
conceptual theoretical framework based on reconstruction of Gamma operators that re-
produce the functions ekωx, ω > 0, k = 1, 2, instead of the usual polynomials, and we formu-
late a sufficient condition under which the new operators perform better than the classical
ones.

The paper is organized as follows. In Sect. 2, the new construction of the Gamma opera-
tors is introduced, along with the preservation of the exponential test functions ekωx, ω > 0,
k = 1, 2. In Sect. 3, the uniform convergence of the operators is investigated, while in Sect. 4
the rate of convergence is presented. Section 5 is devoted to weighted approximation and
a Voronovskaya-type result, while comparisons, graphical and numerical examples are
discussed in Sect. 6.

2 Reconstruction of gamma operators
A new construction of Gamma operators for the function f ∈ C(R+), such that the gener-
alized integral is convergent, can be defined as

Γ ω
n (f ; x) =

eωxγ n+1
n (x)
n!

∫ ∞

0
e–γn(x)uune–ω x2u

n f
(

x2u
n

)
du, x ∈R

+, (2.1)

where

γn(x) :=
ωx2

n e
ωx

n+1

e ωx
n+1 – 1

, (2.2)

ω > 0 and n ∈N, such that the conditions

Γ ω
n

(
eωt ; x

)
= eωx,

Γ ω
n

(
e2ωt ; x

)
= e2ωx,

are satisfied for all x ∈ R
+ and all n ∈ N. Here we take attention of readers to the fact that

the limit γn(x) → x as n → ∞. The operators Γ ω
n are linear, positive, and preserve the

constant functions in the limit.
We shall introduce the moments, including central, of the operators (2.1) which will be

necessary to prove our main theorems.
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Integrating by parts, we easily get

Γ ω
n

(
eωt ; x

)
=

eωxγ n+1
n (x)
n!

∫ ∞

0
e–γn(x)uune–ω x2u

n e
ωx2u

n du

=
eωxγ n+1

n (x)
n!

∫ ∞

0
e–γn(x)uun du

= eωx

and by a similar consideration

Γ ω
n

(
e2ωt ; x

)
=

eωxγ n+1(x)
n!

∫ ∞

0
e–(γ (x)–ω x2

n )uun du

=
eωxγ n+1(x)

n!(γ (x) – ω x2
n )n+1

∫ ∞

0
e–ttn dt

=
eωxγ n+1(x)

(γ (x) – ω x2
n )n+1

= e2ωx.

Let us now evaluate the constant functions under the operators Γ ω
n (·; x):

Γ ω
n (1; x) =

eωxγ n+1
n (x)
n!

∫ ∞

0
e–(γn(x)+ω x2

n )uun du

=
eωxγ n+1

n (x)
(γn(x) + ω x2

n )n+1
.

Thus, using the above expression, we immediately reach a corollary:

Corollary 1 Let ω > 0, x ∈R
+, n ∈N. Then

Γ ω
n (1; x) =

eωxγ n+1
n (x)

(γn(x) + ω x2
n )n+1

,

Γ ω
n

(
eωt ; x

)
= eωx, (2.3)

Γ ω
n

(
e2ωt ; x

)
= e2ωx,

where γn(x) is as in (2.2).

Lemma 1 Let ω > 0, x ∈R
+ and ei(x) = xi, i ∈ N. Then

Γ ω
n (t; x) =

(n + 1)x2eωxγ n+1
n (x)

n(γn(x) + ω x2
n )n+2

, (2.4)

Γ ω
n

(
t2; x

)
=

(n + 1)(n + 2)x4eωxγ n+1
n (x)

n2(γn(x) + ω x2
n )n+3

. (2.5)

Besides, let us consider the central moment operator by ms
n(x) := Γ ω

n ((t – x)s; x), s ∈N. Then
we get

lim
n→∞ nm1

n(x) = –
3
2

x2ω, (2.6)
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lim
n→∞ nm2

n(x) = x2. (2.7)

Proof Let us first calculate e1(x):

Γ ω
n (t; x) =

x2eωxγ n+1
n (x)

n!n

∫ ∞

0
e–γn(x)uun+1e–ω x2u

n du

=
x2eωxγ n+1

n (x)
n!n(γn(x) + ω x2

n )n+2

∫ ∞

0
e–ttn+1 dt

=
x2eωxγ n+1

n (x)Γ (n + 2)
n!n(γn(x) + ω x2

n )n+2

=
(n + 1)x2eωxγ n+1

n (x)
n(γn(x) + ω x2

n )n+2
.

So, we get

Γ ω
n

(
t2; x

)
=

x4eωxγ n+1
n (x)

n!n2

∫ ∞

0
e–γn(x)uun+2e–ω x2u

n du

=
x4eωxγ n+1

n (x)Γ (n + 3)
n!n2(γn(x) + ω x2

n )n+3

=
(n + 1)(n + 2)x4eωxγ n+1

n (x)
n2(γn(x) + ω x2

n )n+3
.

Equalities (2.6) and (2.7) can be obtained as a result of (2.4) and (2.5). �

Remark 1 Here we note that

Γ ω
n (1; x) =

eωxγ n+1
n (x)

(γn(x) + ω x2
n )n+1

→ 1,

Γ ω
n (t; x) =

x2eωxγ n+1
n (x)

n(γn(x) + ω x2
n )n+2

→ x,

Γ ω
n

(
t2; x

)
=

(n + 1)(n + 2)x4eωxγ n+1
n (x)

n2(γn(x) + ω x2
n )n+3

→ x2

as n → ∞.

From Lemma 1, one can see that the operators Γ ω
n (t; x) and Γ ω

n (t2; x) do not repro-
duce the Korovkin test functions. However, Remark 1 shows that, based on the Bohman–
Korovkin theorem, the values of the limits of the moments guarantee that Γ ω

n (t; x) and
Γ ω

n (t2; x) are an approximation process on any compact K ⊂R
+.

Now, let us consider the exponential functions under the proposed operators.

Lemma 2 Let fλ(t) := e–λt , t ∈R
+, λ ∈R. Then for all λ ∈R, ω > 0, x ∈R

+,

lim
n→∞Γ ω

n
(
e–λt ; x

)
= e–λx

holds.
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Proof Indeed, considering the definition of the operators Γ ω
n , we immediately have

Γ ω
n

(
e–λt ; x

)
=

eωxγ n+1
n (x)
n!

∫ ∞

0
e–γn(x)uune–ω x2u

n e–λ x2u
n du

=
eωxγ n+1

n (x)
(γn(x) + (ω + λ) x2

n )n+1
(2.8)

which holds for all λ ∈R. Since γn(x) → x as n → ∞, equality (2.8) yields

lim
n→∞Γ ω

n
(
e–λt ; x

)
= eωx lim

n→∞

(
γn(x)

γn(x) + (ω + λ) x2
n

)n+1

= eωxe–(λ+ω)x = e–λx. �

3 Uniform convergence of (Γ ω
n )

To investigate the uniform convergence behavior of the sequences (Γ ω
n ), we shall use the

following theorem due to Boyanov and Veselinov [11], in which spaces of functions,

C[0,∞) and C∗[0,∞) =
{

f ∈ C[0,∞) : lim
x→∞ f (x) exists

}
,

are considered endowed with the uniform norm ‖ · ‖∞.

Theorem 1 ([11]) A sequence An : C∗[0,∞) → C∗[0,∞) of positive linear operators satis-
fies the conditions

lim
n→∞ An

(
fλ(t); x

)
= fλ(x), λ = 0, 1, 2,

uniformly in [0,∞) if and only if

lim
n→∞ An(f ; x) = f (x) (3.1)

uniformly in [0,∞) for all f ∈ C∗[0,∞).

Let us show that (Γ ω
n ) is a sequence of positive linear operators acting on C∗(R+).

Proposition 1 The sequence (Γ ω
n ) is a sequence of positive linear operators acting on

C∗[0,∞).

Proof Let ω > 0 be fixed, n be a natural number, u, x ∈ [0,∞), and

K(x, u) :=
eωxγ n+1

n (x)
n!

e–γn(x)uune–ω x2u
n .

Then

Γ ω
n (f ; x) =

∫ ∞

0
K(x, u)f

(
x2u
n

)
du, Γ ω

n (1; x) =
eωxγ n+1

n (x)
(γn(x) + ω x2

n )n+1
.

Also γ n+1
n (x) vanishes for x = 0. It has polynomial growth at infinity; un has the same prop-

erty, too. Also, since Γ ω
n (1; x) → 1, Γ ω

n (1; x) < C1. When we consider both functions and
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e–γn(x)u, we can say that K(x, u) is bounded, i.e., there is C = C(n,ω) such that K(x, u) ≤ C,
u, x ≥ 0. Let f ∈ C[0,∞), f 
= 0, limx→∞ f (x) = 0. Fix ε > 0. Then there is M > 0 such that
|f (x)| ≤ ε

2 , ∀x ≥ M. Let a := ε
2C1‖f ‖∞ and x ≥ ( nM

a )1/2. We have

∫ ∞

a
K(x, u) du ≤

∫ ∞

0
K(x, u) du < C1,

and x2u
n ≥ x2a

n ≥ M, hence |f ( x2u
n )| ≤ ε

2 , ∀u ≥ a. Now,

∣∣Γ ω
n (f ; x)

∣∣ ≤
∫ ∞

0
K(x, u)

∣∣∣∣f
(

x2u
n

)∣∣∣∣du

≤
∫ a

0
K(x, u)‖f ‖∞ du +

∫ ∞

a
K(x, u)

ε

2
du

≤ aC1‖f ‖∞ +
ε

2

∫ ∞

a
K(x, u) du

≤ ε

2
+

ε

2
= ε,

that is, |Γ ω
n (f ; x)| ≤ ε, ∀x ≥ ( nM

a )1/2, i.e., limx→∞ Γ ω
n (f ; x) = 0, hence Γ ω

n (f ) ∈ C∗[0,∞), Γ ω
n :

C∗[0,∞) → C∗[0,∞). �

Theorem 2 Let ω > 0. Then, the sequence of operators Γ ω
n : C∗(R+) → C∗(R+) converges to

f (x) as n → ∞ uniformly in R
+, for all f ∈ C∗(R+).

Proof Due to Theorem 1, let us check supx∈R+ |Γ ω
n (fλ(t); x) – fλ(x)| for λ = 0, 1, 2. Since

Γ ω
n (f0(t); x) = Γ ω

n (e0(t); x), using equality (2.3), we have

sup
x∈R+

∣∣Γ ω
n

(
f0(t); x

)
– f0(x)

∣∣

=
ω2x2

n
+

ω4x4 – 2ω3x3 – 2ω2x2

2n2 + O
(

1
n3

)

=
ω2

n

[
4e–2 + 27e–3 + 128e–4 +

3125
6

e–5 + O
(
e–6)]

+
ω4

2n2

[
256e–4 + 3125e–5 + 23328e–6 +

823543
6

e–7 + O
(
e–8)]

–
ω3

n2

[
27e–3 + 256e–4 +

3125
3

e–5 + 7776e–6 + O
(
e–7)]

–
ω2

n2

[
4e–2 + 27e–3 + 128e–4 +

3125
6

e–5 + O
(
e–6)] + O

(
1
n3

)

= αn.

Also, using Lemma 2, we can write the expansion

∥∥Γ ω
n (f1) – f1

∥∥ ≤ 2e–2

n
(ω + 1)(2ω + 1) +

32e–4

3n2 (ω + 1)
(
12ω3 + 24ω2 + 15ω + 3

)

–
9e–3

8n2 (ω + 1)
(
24ω2 + 28ω + 8

)
–

e–2

6n2 (ω + 1)(24ω + 12) + O
(

1
n3

)



Acar et al. Advances in Difference Equations        (2020) 2020:423 Page 7 of 13

:= βn,

which is indeed O(n–1). Finally, we also get in a similar manner that

∥∥Γ ω
n (f2) – f2

∥∥ ≤ e–2

n
(ω + 2)(ω + 1) +

8e–4

3n2 (ω + 2)
(
3ω3 + 12ω2 + 15ω + 6

)

–
9

16n2 (ω + 2)
(
6ω2 + 14ω + 8

)
–

e–2

6n2 (ω + 2)(6ω + 6) + O
(

1
n3

)

:= σn.

Here note that σn = O(n–1). Also note that the sequences (βn) and (σn) tend to zero as
n → ∞ uniformly in R

+, which establishes the desired result. �

4 Rate of convergence
An estimate with appropriate modulus of continuity for a sequence of operators satisfying
the conditions of Theorem 1 was presented by Holhos [14]. The modulus of continuity
ω∗(f ; δ) considered there is defined by

ω∗(f ; δ) = sup
x,t≥0,|e–x–e–t |≤δ

∣∣f (x) – f (t)
∣∣

for δ > 0 and f ∈ C∗[0,∞). The modulus of continuity satisfies

ω∗(f ; δ) = ω
(
Φ(f ); δ

)
,

where ω(·; δ) is the usual modulus of continuity and Φ : C∗[0,∞) → C[0, 1] is an isometric
isomorphism given by

Φ(f )(t) =

⎧⎨
⎩

f (– ln t), 0 < t ≤ 1,

limx→∞ f (x), t = 0,
for every f ∈ C∗[0,∞).

Hence, the above-mentioned quantitative result is given in [14] as:

Theorem 3 Let An : C∗[0,∞) → C∗[0,∞) be a sequence of positive linear operators and
set

∥∥An(f0) – f0
∥∥∞ = αn,

∥∥An(f1) – f1
∥∥∞ = βn,

∥∥An(f2) – f2
∥∥∞ = σn.

Under the hypothesis that all sequences (αn), (βn), (σn) vanish at infinity, the following es-
timate holds: for every f ∈ C∗[0,∞),

∥∥An(f ) – f
∥∥∞ ≤ ‖f ‖∞αn + (2 + αn)ω∗(f ;

√
αn + 2βn + σn).

As a consequence of Theorem 3, we have the following corollary.
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Corollary 2 For f ∈ C∗(R+), the following inequality holds:

∥∥Γ ω
n (f ) – f

∥∥∞ ≤ 2ω∗(f ;
√

αn + 2βn + σn), (4.1)

where (αn), (βn), and (σn) are as in the proof of Theorem 2.

Note that inequality (4.1) presents uniform convergence Γ ω
n (f ) → f . Furthermore, since

both (βn) and (σn) are O(n–1), the rate of uniform convergence (4.1) is 1/
√

n.

5 Weighted approximation
Let ϕ(x) = 1 + e2ωx, x ∈R

+,ω > 2. Then we consider spaces of functions:

Bϕ

(
R

+)
=

{
f : R+ →R | ∣∣f (x)

∣∣ ≤ Mf ϕ(x), x ≥ 0
}

,

Cϕ

(
R

+)
= C

(
R

+) ∩ Bϕ

(
R

+)
,

Ck
ϕ

(
R

+)
=

{
f ∈ Cϕ

(
R

+)
: lim

x→∞
f (x)
ϕ(x)

= kf exists
}

,

where Mf and kf are constants depending only on f . The spaces of functions are also
normed spaces with

‖f ‖ϕ = sup
x∈R+

|f (x)|
ϕ(x)

.

Remark 2 Let f ∈ Cϕ(R+). Then the operators Γ ω
n satisfy

∥∥Γ ω
n (f )

∥∥
ϕ

≤ C‖f ‖ϕ .

Here we note that the fundamental concepts of weighted approximation of a sequence of
linear positive operators can be found in [12]. Our first result on weighted approximation
of the sequence (Γ ω

n ) is as follows.

Theorem 4 Let f ∈ Ck
ϕ(R+). Then

lim
n→∞

∥∥Γ ω
n (f ) – f

∥∥
ϕ

= 0

holds.

Proof According to the method presented in [12], assuming the conditions

lim
n→∞

∥∥Γ ω
n

(
ekω·) – ekω·∥∥

ϕ
= 0, k = 0, 1, 2

is sufficient to prove the uniform convergence of the corresponding operators. Since
Γ ω

n (eωt ; x) = eωx and Γ ω
n (e2ωt ; x) = e2ωx, the condition follows immediately for k = 1 and

k = 2. To complete the proof, it is enough to check that for k = 0,

lim
n→∞

∥∥Γ ω
n (e0) – e0

∥∥
ϕ

= 0,

which completes the proof. �
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6 Pointwise convergence
Theorem 5 Let f ∈ Cϕ(R+) be twice differentiable at any x ∈R

+ such that f ′′ is continuous
at x ∈R

+, then we have

lim
n→∞ 2n

[
Γ ω

n (f ; x) – f (x)
]

= –3x2ωf ′(x) + 2x2f ′′(x). (6.1)

Proof By the Taylor’s formula, there exists ξ lying between x and t such that

f (t) = f (x) + f ′(x)(t – x) +
f ′′(x)(t – x)2

2
+ h(t, x)(t – x)2, (6.2)

where

h(t, x) =
f ′′(ξ ) – f ′′(x)

2
,

which is a continuous function vanishing as t → x. When we apply the operators Gω
n to

both sides of equality (6.2), we have

Γ ω
n (f ; x) – f (x) = f ′(x)m1

n(x) +
f ′′(x)

2
m2

n(x) + Γ ω
n

(
h(t, x)(t – x)2; x

)

and

n
[
Γ ω

n (f ; x) – f (x)
]

= f ′(x)nm1
n(x) +

f ′′(x)
2

nm2
n(x) + nΓ ω

n
(
h(t, x)(t – x)2; x

)
.

On the other hand, by Lemma 1, we get

lim
n→∞ nm1

n(x) = –
3
2

x2ω,

lim
n→∞ nm2

n(x) = x2.

We know from [3, p. 1402] that

∣∣h(t, x)(t – x)2∣∣ ≤ εm2
n(x) +

M
δ2 m4

n(x).

Since m4
n(x) = O(n–2), we conclude that

lim
n→∞ nΓ ω

n
(
h(t, x)(t – x)2; x

)
= 0.

Hence we have the desired result. �

7 Comparisons
In this section, we compare the operators Γ ω

n (f ; x) with classical Gamma operators. The
consequences obtained in this part reveal that the newly introduced operators provide a
better approximation.
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Theorem 6 Let f ∈ C2(R+). Assume that there exists n0 ∈N such that

f (x) ≤ Γ ω
n (f ; x) ≤ Gn(f ; x) for all n ≥ n0, x ∈R

+,ω > 0. (7.1)

Then

0 ≤ 3ωf ′(x) ≤ f ′′(x). (7.2)

Conversely, if inequality (7.2) holds at a given point x ∈ R
+, then there exists n0 ∈ N such

that

f (x) ≤ Γ ω
n (f ; x) ≤ Gn(f ; x) for all n ≥ n0.

Proof Rempulska et al. [19] obtained Voronovskaya-type theorem for the operators
Gn(f ; ·) as 2n(Gn(f ; x) – f (x)) → x2f ′′(x).

By inequality (7.1), we have

0 ≤ 2n
(
Γ ω

n (f ; x) – f (x)
) ≤ 2n

(
Gn(f ; x) – f (x)

)
.

Hence we get

0 ≤ –3ωf ′(x) + f ′′(x) ≤ f ′′(x),

which allows us to write

0 ≤ 3ωf ′(x) ≤ f ′′(x).

Thus, we immediately have inequality (7.2).
Conversely, if inequality (7.2) holds with strict inequalities for a given x ∈ R

+, then di-
rectly

0 ≤ –3ωf ′(x) + f ′′(x) ≤ f ′′(x),

which directly implies inequality (7.1). �

8 Numerical and graphical examples
In this section, we present a series of numerical experiments highlighting the good perfor-
mance of the proposed new construction of Gamma operators. All the implementations
of these operators are performed in MATLAB.

Example 1 We shall now illustrate the convergence of the new Gamma operator based
on its classical counterparts. The new construction of Gamma operator and its standard-
version algorithm is applied to the test function f (x) : [5, 6] →R, with

f (x) = xlog(1+x).
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Table 1 Root-mean-square errors for classical Gamma operators and newly constructed Gamma
operators with μ = 0.25 for different values of n, test function f (x) = xlog(1+x) , on an equally spaced
10000 evaluation grid

n RMS Error for Gn(f ; x) RMS Error for Γ μ
n (f ; x)

1 6.402506e–01 2.202781e–02
5 2.846635e–01 5.771027e–03
10 9.328952e–02 2.756072e–03
20 6.356742e–02 1.305979e–03
30 2.464479e–02 8.495264e–04
40 1.747821e–02 6.284498e–04

Here RMS Error for Gn(f ; x) and RMS Error for Γ ω
n (f ; x) are root-mean-square (L-norm)

errors for Gn(f ; x) and Γ ω
n (f ; x), respectively. We consider the problem with a fixed dimen-

sion and investigate the error behavior for the different values of n and ω = 0.25. We see
in Table 1 that, as expected, the new construction of Gamma operators achieves better
convergence when compared with classical Gamma operators with the same level n. The
error is tested on a 1000 uniform grid.

In Fig. 1(a), we graph the results of standard Gamma operators, new construction of
Gamma operators, and target function. Obviously, the proposed operator shows better
convergence behavior than its classic counterparts to the target functions.

Figure 1(b) shows convergence plots for the proposed method for n = 1, 5, 10, 20, and
40 with ω = 0.25 for all levels. Clearly, the observed increase in convergence rate of ap-
proximations of the introduced operators could be attributed to increasing n as might be
expected.

Example 2 Next, we consider another test function g(x) : [1, 6] → R, given by

g(x) = x4 log
(
1 + x4),

with ω = 0.3. Similarly, Figur 2(a) has also confirmed that the introduced operators are
generally superior to the standard Gamma operators in terms of convergence rate. On the
other hand, Fig. 2(b), as expected, confirms that the bigger n gives better convergence.

9 Conclusions
The new construction of Gamma operators which preserve the functions eωt and e2ωt ,
ω > 0 is proposed and tested. One of the most significant positive aspects of the newly
proposed algorithm is that it can yield better approximation behavior in comparison to its
standard counterparts for large classes of functions. Numerical experiments also suggest
that the introduced technique provides better approximation accuracy. The findings of
this research might have a number of important implications for future practice.

There is a direction for further research if we define the degenerate Gamma operators
by using the definition of the degenerate Gamma function. Recently, the concept of the
degenerate gamma function and degenerate Laplace transformation was introduced by
Kim–Kim [16]. For each λ ∈ (0,∞), the degenerate gamma function for the complex vari-
able s with 0 < Re(s) < 1/λ as follows:

Γλ(s) =
∫ ∞

0
(1 + λt)– 1

λ ts–1 dt = λ–sβ

(
s,

1
λ

– s
)

,
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Figure 1 Approximation of target function f (x) on a equally spaced evaluation grid of [1, 6]

Figure 2 Approximation of target function g(x) on an equally spaced evaluation grid of [5, 6]

where β(x, y) is the Beta function. They studied some properties of the degenerate gamma
and degenerate Laplace transformation and obtained their properties. The degenerate
gamma and degenerate Laplace transformation can be included into engineer’s mathe-
matical toolbox to solve linear ODEs and related initial value problems.
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