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Abstract
In this work, we study the dengue dynamics with fractal-factional Caputo–Fabrizio
operator. We employ real statistical data of dengue infection cases of East Java,
Indonesia, from 2018 and parameterize the dengue model. The estimated basic
reduction number for this dataset isR0 ≈ 2.2020. We briefly show the stability results
of the model for the case when the basic reproduction number isR0 < 1. We apply
the fractal-fractional operator in the framework of Caputo–Fabrizio to the model and
present its numerical solution by using a novel approach. The parameter values
estimated for the model are used to compare with fractal-fractional operator, and we
suggest that the fractal-fractional operator provides the best fitting for real cases of
dengue infection when varying the values of both operators’ orders. We suggest
some more graphical illustration for the model variables with various orders of fractal
and fractional.

Keywords: Fractal-fractional; Caputo–Fabrizio operator; Dengue model; Real cases;
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Dengue infection is a vector-borne infection that is caused through a female mosquito
from genus Flavivirus, family Flaviviridae. DENV1 to DENV4 are different serotypes as-
sociated with the dengue virus. A person infected with one DENV serotype has a lifetime
of immunity from that serotype, but is not guaranteed immunity against other serotypes.
Thus, it is possible for a person to be infected four times, once with each serotype [1].
Dengue fever is transmitted through the bite of female Aedes Aegypti and Aedes albopic-
tus. Aedes Aegypti mosquitoes will attack healthy humans and people with dengue fever
so that the virus enters the human body and reproduces itself; it will be in the blood for
one week. If the human immune system is weak, it will be easy for humans to become
dengue sufferers.

Dengue fever is a growing public health concern worldwide. As mobility and population
density increase, the number of sufferers and the area of its spread are increasing. In recent
years, dengue fever has become endemic in more than 100 countries including Africa,
America, the Eastern Mediterranean, Southeast Asia, and the Western Pacific. The worst
areas affected are in the United States, the Western Pacific, and Southeast Asia [2, 3].
These areas had the highest number of dengue cases, with a total of 1.2 million cases in
2008 and more than 3.34 million cases in 2016 reported [4].
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In Indonesia, dengue was first discovered in the city of Surabaya in 1968, where as many
as 58 people were infected and 24 of them died, with a mortality rate of 41.3%. Since
then, the disease has spread widely throughout Indonesia [5]. In 2015, there were 126,675
dengue fever sufferers across 34 provinces in Indonesia, and 1229 of them died. This num-
ber is higher than the previous year, as many as 907 patients died and there were 100,347
sufferers due to dengue fever. This increasing figure could be caused by climate change
and low awareness to maintain environmental cleanliness [6].

Many researchers have utilized mathematical modeling to capture complexities of
dengue infection transmission [7–14]. All of the models are stated in the form of ordi-
nary integer-order derivative to describe the dynamics of the dengue infection. The lim-
itation of these models is that they do not present the information about memory and
learning mechanisms. In addition, it is difficult to explore the dynamics between two dif-
ferent points using the models based on integer-order derivatives. In order to address
these concerns, various fractional-order derivative models were proposed in the litera-
ture (see [15, 16] and the references therein). Recently, some important results regarding
the fractional operators were considered in [17–24]. In these works, the authors utilized
the concepts of the fractional operators and obtained results for their proposed models.

Recently, some new results regarding the fractional operators in fractal-fractional the
sense were considered in [16] and utilized in [25, 26] by the real statistical applications to
banking data. The authors showed in their works that the fractal-fractional operators are
effective for data fitting of real data. The fractal-fractional operators used in [25, 26] were
in Caputo and Atangana–Baleanu sense. Due to the recent application of fractal-fractional
operators, we aim in this work to apply the fractal-fractional operator in Caputo–Fabrizio
sense and consider its application to real statistical data of Indonesia for dengue fever.
Some more published work on the fractal-fractional and fractional modeling and its ap-
plications to science and engineering problems can be seen in [27–33]. For example, the
authors considered a fractal-fractional model of an oscillator and presented the results
in [27]. Avian influenza model with fractal-fractional derivative has been studied in [28].
The Valles model and its multiple attractors have been obtained using fractional derivative
in [29]. A new chaotic model using fractal-fractional differentiation has been considered
in [30]. A malaria model with fractal-fractional derivative was studied in [31]. Chaotic
attractors with simple illustrations have been considered in [32]. The fractal-fractional
applications to complex systems have been studied in [33].

The present work explores the dengue dynamics with hospitalization class in the frame-
work of the fractal-fractional operator where the fractional operator is considered in the
sense of Caputo–Fabrizio. Using this new idea, we formulate a dengue model and investi-
gate its parameters using the real data of East Java, Indonesia, for the year 2018. We give a
comparison of the fractal-fractional orders versus the real data of dengue cases and show
some interesting results. We structure the rest of the paper as follows: The dengue model
formulation and the related mathematical results are shown in Sect. 2. The basic concepts
of fractal-fractional operators, the model construction using fractal-fractional operators,
and associated results are shown in Sect. 3. The numerical solution of the fractal-fractional
dengue model is presented in Sect. 4. Parameter estimates and the numerical results of the
model using the fractal-fractional operator are discoursed in Sect. 5. Section 6 summarizes
the work.
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1 Dengue model transmission
In this present section, we describe a host–vector model for dengue transmission. The
host–vector model is divided into three mosquito populations, susceptible (Sm), exposed
(Em), and infectious (Im), and five human (host) populations, susceptible (Sh), exposed
(Eh), infectious (Ih), hospitalized and/or notified infectious (Ph), and recovered (Rh). Thus,
the total human population, denoted by Nh, is given as Nh = Sh + Eh + Ih + Ph + Rh, where
the total dynamics of mosquitos, denoted by Nm, is Nm = Sm + Em + Im. The system of
differential equations that describes the host–vector model is written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSm
dt = Πm – ταhSm

Ih
Nh

– μmSm,
dEm

dt = ταhSm
Ih
Nh

– (βm + μm)Em,
dIm
dt = βmEm – μmIm,

dSh
dt = Πh – ταvIm

Sh
Nh

– νhSh,
dEh
dt = ταvIm

Sh
Nh

– (βh + νh)Eh,
dIh
dt = βhEh – (ψh + ωh + νh)Ih,

dPh
dt = ψhIh – (τh + σh + νh)Ph,

dRh
dt = ωhIh + σhPh – νhRh,

(1)

subject to the initial conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm(0) = Sm0 ≥ 0,

Em(0) = Em0 ≥ 0,

Im(0) = Im0 ≥ 0,

Sh(0) = Sh0 ≥ 0,

Eh(0) = Eh0 ≥ 0,

Ih(0) = Ih0 ≥ 0,

Ph(0) = Ph0 ≥ 0,

Rh(0) = Rh0 ≥ 0.

(2)

In model (1) above, the populations of vectors and humans are denoted by Πm and Πh.
The natural death rate of mosquitoes and humans are given by μm and νh. The parameter
τ measures the biting rate per mosquito per person. The transmission probability from an
infected human to susceptible mosquitos, and the transmission probability from infected
mosquitos to susceptible humans are shown respectively by αh and αv. The intrinsic in-
cubation period of mosquitos is given by βm, and that of the humans is shown by βh. The
human infected cases that are notified and get hospitalization increase at a rate ψh. The in-
fected human recover naturally at a rate ωh while the hospitalized individuals get recovery
at a rate σh. The hospitalized individuals die due to disease at a rate τh. The complete de-
tails of the parameter descriptions of the dengue model (1) are presented briefly in Table 1.

1.1 Positivity and boundedness of the solution
In order to show that the dengue model given by (1) is epidemiologically meaningful, we
have to prove that the associated state variables of the model stay nonnegative. It can also
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Table 1 Biological meaning of parameters for dengue model (1)

Parameter Description

Πm Recruitment rate of mosquito
τ Average biting rate per mosquito per person
αh Transmission probability from infected human to susceptible mosquito
μm Natural death rate of mosquito
βm Extrinsic incubation of mosquito
Πh Recruitment rate of human
αv Transmission probability from infected mosquito to susceptible human
βh Extrinsic incubation of human
ψh Rate of hospitalization and/or notification of infected human
ωh Natural recovery rate of infected human
σh Recovery rate of hospitalized and/or notified infected human
τh Disease-related death rate of human
νh Natural death rate of human

be explained that the solution of the dengue model with nonnegative initial conditions
will remain nonnegative for every time greater than zero. We have the following lemma.

Lemma 1 Consider the initial data G(0) ≥ 0, where

G(t) =
(
Sm(t), Em(t), Im(t), Sh(t), Eh(t), Ih(t), Ph(t), Rh(t)

)
.

Then the solutions of the model given by (1) are nonnegative for every time t > 0. Further,

lim
t→∞ Nm(t) ≤ Πm

μm
and lim

t→∞ Nh(t) ≤ Πh

νh
,

with Nm(t) = Sm(t) + Em(t) + Im(t) and Nh(t) = Sh(t) + Eh(t) + Ih(t) + Ph(t) + Rh(t).

Proof Consider t1 = sup{t > 0 : G(t) > 0}. So, t1 > 0. The first equation of the dengue model
(1) leads to the following:

dSm

dt
= Πm – ταhSm

Ih

Nh
– μmSm, (3)

with λv = ταh
Ih
Nh

, then the above equation (3) becomes

dSm

dt
= Πm – λvSm – μmSm. (4)

The equation given by (4) can be expressed further as follows:

d
dt

{

Sm(t) exp

(

μmt +
∫ t

0
λv(φ) dφ

)}

= λv exp

(

μmt +
∫ t

0
λv(φ) dφ

)

. (5)

Hence,

Sm(t1) exp

(

μmt1 +
∫ t1

0
λv(φ) dφ

)

– Sm(0)

= λv exp

(

μmy +
∫ y

0
λv(ψ) dψ

)

dy, (6)
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so that

Sm(t1) = Sm(0) exp

{

–
(

μmt1 +
∫ t1

0
λv(φ) dφ

)}

+ exp

{

–
(

μmt1 +
∫ t1

0
λv(φ) dφ

)}

×
∫ t1

0
λv exp

(

μmy +
∫ y

0
λv(ψ) dψ

)

dy > 0. (7)

Similar steps can be followed for the rest of the equations of the dengue model (1) that
is, G(t) > 0 for every t > 0. In order to show the second part of the result, note that 0 <
Sm(0) ≤ Nm(t), 0 < Em(0) ≤ Nm(t), 0 < Im(0) ≤ Nm(t), 0 < Sh(0) ≤ Nh(t), 0 ≤ Eh(0) ≤ Nh(t),
0 ≤ Ih(0) ≤ Nh(t), 0 ≤ Ph(0) ≤ Nh(t), 0 ≤ Rh(0) ≤ Nh(t). Now, summing the mosquito and
human compartments leads to the following:

dNm

dt
= Πm – μmNv

and

dNh

dt
= Πh – νhNh.

Thus,

lim
t−→∞ Nm(t) ≤ Πm

μm
and lim

t−→∞ Nh(t) ≤ Πh

νh
,

which is the required claim. �

Next, we show the invariant regions for the given dengue model (1). Consider the feasible
region Θ = Θv × Θh ⊂R

3
+ ×R

5
+, with

Θv =
{
(
Sm(t), Em(t), Im(t)

) ∈ R
3
+ : Nm(t) ≤ Πm

μm

}

and

Θh =
{
(
Sh(t), Eh(t), Ih(t), Ph(t), Rh(t)

) ∈R
5
+ : Nh(t) ≤ Πh

νh

}

.

We have the following results for this feasible region.

Lemma 2 The region given by Θ = Θv ×Θh ⊂R
3
+ ×R

5
+ is positively invariant for the dengue

model (1) with the nonnegative initial conditions in (2).

Proof The summation of the mosquito and human populations of the dengue model (1)
leads to

dNm

dt
= Πm – μmNm

and

dNh

dt
= Πh – νhNh.
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Hence, dNm(t)
dt ≤ 0, if Nm(0) ≥ Πm

μm
and dNh(t)

dt ≤ 0, if Nh(0) ≥ Π
νh

. So, Nm(t) ≤ Nm(0)e–μmt +
Πm
μm

(1 – e–μmt) and Nh(t) ≤ Nh(0)e–νht + Πh
νh

(1 – e–νht). Thus, the region given by Θ is pos-
itively invariant. Also, if Nm(0) > Πm

μm
and Nh(0) > Πh

νh
, then either the solutions enter Θ

in finite time, or Nm(t) tends to Πm
μm

and Nh(t) tends to Πh
νh

asymptotically. So, the regions
given by Θ attract all the solutions in R

8
+. �

2 Preliminaries
This section explores the related results regarding fractal-fractional calculus, the model
construction in fractal-fractional Caputo–Fabrizio operator and model stability results.
We consider first the basic of fractal-fractional (FF) calculus by following the literature in
[34, 35].

Definition 1 If a function g(t) is continuous and fractally differentiable over the given
interval (a1, a2) with order θ2, then the definition of the FF derivative of g(t) with order θ1

in Riemann–Liouville sense with exponentially decaying kernel is given by:

FFEDθ1,θ2
0,t

(
g(t)

)
=

M(θ1)
1 – θ1

d
dtθ2

∫ t

0
exp

(

–
θ1

1 – θ1
(t – s)

)

g(s) ds, (8)

with θ1 > 0, θ2 ≤ m ∈ N and M(0) = M(1) = 1.

Definition 2 For a function g(t) which is continuous and fractally differentiable over the
given interval (a1, a2), the definition of FF integral of g(t) with order θ1 and exponentially
decaying kernel is given by:

FFEJθ1
0,t

(
g(t)

)
=

θ1θ2

M(θ1)

∫ t

0
sθ1–1g(s) ds +

θ2(1 – θ1)tθ2–1g(t)
M(θ1)

. (9)

2.1 Fractal-fractional dengue model
In the present subsection, we apply the fractal-fractional operator in the sense of Caputo–
Fabrizio to the dengue model (1) described above. And we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FF Dθ1,θ2
0,t (Sm(t)) = Πm – ταhSm

Ih
Nh

– μmSm, Sm(0) = Sm0 ≥ 0,
FF Dθ1,θ2

0,t (Em(t)) = ταhSm
Ih
Nh

– (βm + μm)Em, Em(0) = Em0 ≥ 0,
FF Dθ1,θ2

0,t (Im(t)) = βmEm – μmIm, Im(0) = Im0 ≥ 0,
FF Dθ1,θ2

0,t (Sh(t)) = Πh – ταvIm
Sh
Nh

– νhSh, Sh(0) = Sh0 ≥ 0,
FF Dθ1,θ2

0,t (Eh(t)) = ταvIm
Sh
Nh

– (βh + νh)Eh, Eh(0) = Eh0 ≥ 0,
FF Dθ1,θ2

0,t (Ih(t)) = βhEh – (ψh + ωh + νh)Ih, Ih(0) = Ih0 ≥ 0,
FF Dθ1,θ2

0,t (Ph(t)) = ψhIh – (τh + σh + νh)Ph, Ph(0) = Ph0 ≥ 0,
FF Dθ1,θ2

0,t (Rh(t)) = ωhIh + σhPh – νhRh, Rh(0) = Rh0 ≥ 0,

(10)

where θ1 and θ2 respectively represent the fractional and fractal order. The model (10) de-
scribed above for the dengue infection using the fractal-fractional Caputo–Fabrizio oper-
ator is used further to obtain its numerical solution by using a novel numerical procedure
in the following section.
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2.2 Stability analysis of the disease-free case
This section explores the stability results for the dengue model given at the disease-free
equilibrium (DFE) at E0. We set the right-hand side of the dengue model (10) equal to zero
and obtain the following expressions:

E0 =
(
S0

m, 0, 0, S0
h, 0, 0, 0, 0

)
=

(
Πm

μm
, 0, 0,

Πh

νh
, 0, 0, 0, 0

)

.

The stability of DFE at E0 can be analyzed by using the next generation matrix of the
dengue model (10). Considering the infected compartments in the dengue model (10),
namely Em, Im, Eh, Ih, Ph, and following the instructions given in [36], the matrices F and
V are obtained as follows:

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 ταhνhΠm
Πhμm

0
0 0 0 0 0
0 ταv 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, and V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

π1 0 0 0 0
–βm μm 0 0 0

0 0 π2 0 0
0 0 –βh π3 0
0 0 0 –ψh π4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

where π1 = (βm + μm), π2 = (βh + νh), π3 = (ψh + ωh + νh), and π4 = (τh + σh + νh). The
required basic reproduction number of the given model is obtained through the spectral
radius of the matrix R0 = ρ(FV –1), which is given by the following expression:

R0 =

√
τ 2αhβhμhαvβmΠm

π1π2π3Πhμ2
m

.

In the following theorem, we show that the dengue model given by (10) is locally asymp-
totically stable at E0. We give the following result:

Theorem 1 The dengue model given by (10) at E0 is locally asymptotically stable whenever
R0 < 1.

Proof In order to prove the given theorem, we need to obtain the Jacobian matrix by eval-
uating the model (10) at E0, and we have

J(E0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–μm 0 0 0 0 – ταhΠvνh
Πhμm

0 0
0 –π1 0 0 0 ταhΠvνh

Πhμm
0 0

0 βv –μm 0 0 0 0 0
0 0 –ταv –νh 0 0 0 0
0 0 ταv 0 –π2 0 0 0
0 0 0 0 γh –π3 0 0
0 0 0 0 0 ψh –π4 0
0 0 0 0 0 ωh σh –νh

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It can be seen from the above matrix J(E0) that the eigenvalues –μm, –νh, –νh, and –π4

are obviously negative, while the remaining four eigenvalues with negative real parts can
be obtained through the following equation:

λ4 + �1λ
3 + �2λ

2 + �3λ + �4 = 0,
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where

�1 = π1 + π2 + π3 + μm,

�2 = π3μm + π2(π3 + μm) + π1(π2 + π3 + μm),

�3 = π2π3μm + π1
(
π3μm + π2(π3 + μm)

)
,

�4 = π1π2π3μm
(
1 – R2

0
)
.

The coefficients given by �i for i = 1, 2, . . . , 4 are obviously positive for �i, i = 1, 2, 3 while
�4 can be positive or negative based on the value of R0. For the DFE case, the value of the
basic reproduction number should be less than 1, so the last coefficient is positive when
R0 < 1. So, for all the coefficients �i for i = 1, 2, . . . , 4 to be positive, they should satisfy
the Rough–Hurtwiz criterion, which is easy to be satisfied, for the conditions supplied,
�1�2�3 > � 2

3 + � 2
1 �4, where �i > 0 for all i = 1, 2, . . . , 4. Thus, the condition of Rough–

Hurtwiz criterion ensures the local asymptotic stability of the dengue model given by (10)
at E0. �

2.3 Endemic equilibria and their stability
This subsection presents the endemic equilibria of the dengue model (10) denoted by E1 =
(S∗

m, E∗
m, I∗

m, S∗
h, E∗

h, I∗
h , P∗

h, R∗
h) and given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
m = Πm

λ∗
v +μm

,

E∗
m = λ∗

v Πv
π1(λv+μm) ,

I∗
m = βmλ∗

v Πm
π1μm(λ∗

v +μm) ,

S∗
h = Πh

λ∗
h+νh

,

E∗
h = Πhλ∗

h
π2(λ∗

h+νh) ,

I∗
h = Πhβhλ∗

h
π2π3(λ∗

h+νh) ,

P∗
h = ψhΠhβhλ∗

h
π2π3π4(λ∗

h+νh) ,

R∗
h = Πhβhλ∗

h(π4ωh+ψhσh)
π2π3π4νh(λ∗

h+νh) ,

(11)

where

λ∗
v =

ταhI∗
h

N∗
h

, λ∗
h =

τ I∗
mαv

N∗
h

. (12)

Using the expressions given by (11) in (12), this leads to the following:

g1λ
∗2

h + g2λ
∗
h + g3 = 0,

where

g1 = π1Πhμm
(
π4

(
νh(βh + π3) + ωhβh

)
+ ψhβh(νh + σh)

)

× (
π4

(
ταhβhνh + μm

(
νh(βh + π3) + ωhβh

))
+ ψhβhμm(νh + σh)

)
,

g2 = π2π3π4νh
(
π4

(
2π1Πhμ

2
m
(
νh(βh + π3) + ωhβh

)
+ ταhβhνh(π1Πhμm – ταvβmΠm)

))
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+ 2π2π3π4νhψhπ1Πhβhμ
2
m(νh + σh),

g3 = π1π
2
2 π2

3 π2
4 Πhν

2
hμ2

m
(
1 – R2

0
)
.

Here, g1 > 0, g3 depends on the sign of R0, and is positive when R0 < 1 and negative when
R0 > 1. We establish the following result:

Theorem 2 The dengue model given by (10) has the following properties:
(i) If g3 < 0 and R0 > 1, then there exists a unique endemic equilibrium;

(ii) If g2 < 0 and g3 = 0, then we have a unique endemic equilibrium;
(iii) If g3 > 0, g2 < 0, and their discriminant is positive, then two endemic equilibria exist;

and
(iv) there are no equilibria otherwise.

It can be seen from the first point (i) of Theorem 2 that for the case of R0 > 1, we clearly
have a unique positive endemic equilibrium. Theorem 2(iii) shows the possible existence
of the backward bifurcation when R0 < 1.

3 Novel solution procedure for fractal-fractional model
For the numerical solution of the fractal-fractional dengue model (10), we present a novel
procedure here that is based on the Adams–Bashforth technique. In order to have nu-
merical scheme for the fractal-fractional model (10), we first express the model (10) in the
following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF Dθ1
0,t(Sm(t)) = θ2tθ2–1f1(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t),

CF Dθ1
0,t(Em(t)) = θ2tθ2–1f2(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t),

CF Dθ1
0,t(Im(t)) = θ2tθ2–1f3(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t),

CF Dθ1
0,t(Sh(t)) = θ2tθ2–1f4(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t),

CF Dθ1
0,t(Eh(t)) = θ2tθ2–1f5(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t),

CF Dθ1
0,t(Ih(t)) = θ2tθ2–1f6(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t),

CF Dθ1
0,t(Rh(t)) = θ2tθ2–1f7(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t),

CF Dθ1
0,t(Im(t)) = θ2tθ2–1f8(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t).

(13)

We apply the CF integral on equation (13), which leads to the following:

Sm(t) = Sm(0) +
θ2

Γ (θ1)

∫ t

0
λθ2–1(t – λ)θ1–1f1(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Em(t) = Em(0) +
θ2

Γ (θ1)

∫ t

0
λθ2–1(t – λ)θ1–1f2(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Im(t) = Im(0) +
θ2

Γ (θ1)

∫ t

0
λθ2–1(t – λ)θ1–1f3(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Sh(t) = Sh(0) +
θ2

Γ (θ1)

∫ t

0
λθ2–1(t – λ)θ1–1f4(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Eh(t) = Eh(0) +
θ2

Γ (θ1)

∫ t

0
λθ2–1(t – λ)θ1–1f5(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ, (14)
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Ih(t) = Ih(0) +
θ2

Γ (θ1)

∫ t

0
λθ2–1(t – λ)θ1–1f6(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Ph(t) = Ph(0) +
θ2

Γ (θ1)

∫ t

0
λθ2–1(t – λ)θ1–1f7(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Rh(t) = Rh(0) +
θ2

Γ (θ1)

∫ t

0
λθ2–1(t – λ)θ1–1

× f8(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

where

f1(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) = Πm – ταhSm
Ih

Nh
– μmSm,

f2(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) = ταhSm
Ih

Nh
– (βm + μm)Em,

f3(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) = βmEm – μmIm,

f4(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) = Πh – ταvIm
Sh

Nh
– νhSh,

f5(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) = ταvIm
Sh

Nh
– (βh + νh)Eh,

f6(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) = βhEh – (ψh + ωh + νh)Ih,

f7(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) = ψhIh – (τh + σh + νh)Ph,

f8(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) = ωhIh + σhPh – νhRh.

We are presenting now a novel approach for the above model and use the approach at tn+1.
We have the following:

Sm(t) = S0
m +

θ2tθ2–1(1 – θ1)
M(θ1)

f1(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t)

+
θ1θ2

M(θ1)

∫ t

0
λθ2–1f1(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Em(t) = E0
m +

θ2tθ2–1(1 – θ1)
M(θ1)

f2(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t)

+
θ1θ2

M(θ1)

∫ t

0
λθ2–1f2(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Im(t) = I0
m +

θ2tθ2–1(1 – θ1)
M(θ1)

f3(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t)

+
θ1θ2

M(θ1)

∫ t

0
λθ2–1f3(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Sh(t) = S0
h +

θ2tθ2–1(1 – θ1)
M(θ1)

f4(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t)

+
θ1θ2

M(θ1)

∫ t

0
λθ2–1f4(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Eh(t) = E0
h +

θ2tθ2–1(1 – θ1)
M(θ1)

f5(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t)
(15)
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+
θ1θ2

M(θ1)

∫ t

0
λθ2–1f5(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Ih(t) = I0
h +

θ2tθ2–1(1 – θ1)
M(θ1)

f6(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t)

+
θ1θ2

M(θ1)

∫ t

0
λθ2–1f6(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Ph(t) = P0
h +

θ2tθ2–1(1 – θ1)
M(θ1)

f7(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t)

+
θ1θ2

M(θ1)

∫ t

0
λθ2–1f7(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Rh(t) = R0
h +

θ2tθ2–1(1 – θ1)
M(θ1)

f8(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh, t)

+
θ1θ2

M(θ1)

∫ t

0
λθ2–1f8(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ.

At tn+1, we have the following:

Sn+1
m = S0

m +
θ2tθ2–1(1 – θ1)

M(θ1)
f1

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

+
θ1θ2

M(θ1)

∫ tn+1

0
λθ2–1f1(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

En+1
m = E0

m +
θ2tθ2–1(1 – θ1)

M(θ1)
f2

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

+
θ1θ2

M(θ1)

∫ tn+1

0
λθ2–1f2(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

In+1
m = I0

m +
θ2tθ2–1(1 – θ1)

M(θ1)
f3

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

+
θ1θ2

M(θ1)

∫ tn+1

0
λθ2–1f3(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Sn+1
h = S0

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f4

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

+
θ1θ2

M(θ1)

∫ tn+1

0
λθ2–1f4(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

En+1
h = E0

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f5

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)
(16)

+
θ1θ2

M(θ1)

∫ tn+1

0
λθ2–1f5(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

In+1
h = I0

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f6

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

+
θ1θ2

M(θ1)

∫ tn+1

0
λθ2–1f6(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Pn+1
h = P0

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f7

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)
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+
θ1θ2

M(θ1)

∫ tn+1

0
λθ2–1f7(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Rn+1
h = R0

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f8

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

+
θ1θ2

M(θ1)

∫ tn+1

0
λθ2–1f8(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ.

The following is obtained by taking the difference between consecutive terms:

Sn+1
m = Sn

m +
θ2tθ2–1(1 – θ1)

M(θ1)
f1

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f1
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

∫ tn+1

tn

λθ2–1f1(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

En+1
m = En

m +
θ2tθ2–1(1 – θ1)

M(θ1)
f2

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f2
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

∫ tn+1

tn

λθ2–1f2(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

In+1
m = In

m +
θ2tθ2–1(1 – θ1)

M(θ1)
f3

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f3
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

∫ tn+1

tn

λθ2–1f3(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Sn+1
h = Sn

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f4

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f4
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

∫ tn+1

tn

λθ2–1f4(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

En+1
h = En

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f5

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)
(17)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f5
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

∫ tn+1

tn

λθ2–1f5(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

In+1
h = In

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f6

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f6
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
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+
θ1θ2

M(θ1)

∫ tn+1

tn

λθ2–1f6(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Pn+1
h = Pn

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f7

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f7
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

∫ tn+1

tn

λθ2–1f7(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ,

Rn+1
h = Rn

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f8

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f8
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

∫ tn+1

tn

λθ2–1f8(Sm, Em, Im, Sh, Eh, Ih, Ph, Rh,λ) dλ.

It follows from the Lagrange polynomial interpolation and integrating the following ex-
pressions that

Sn+1
m = Sn

m +
θ2tθ2–1(1 – θ1)

M(θ1)
f1

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f1
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

[
3h
2

tθ2–1
n f1

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
h
2

tθ2–1
n–1 f1

(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
]

,

En+1
m = En

m +
θ2tθ2–1(1 – θ1)

M(θ1)
f2

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f2
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

[
3h
2

tθ2–1
n f2

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
h
2

tθ2–1
n–1 f2

(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
]

,

In+1
m = In

m +
θ2tθ2–1(1 – θ1)

M(θ1)
f3

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f3
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

[
3h
2

tθ2–1
n f3

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
h
2

tθ2–1
n–1 f3

(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
]

,

Sn+1
h = Sn

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f4

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)
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–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f4
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

[
3h
2

tθ2–1
n f4

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
h
2

tθ2–1
n–1 f4

(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
]

,

En+1
h = En

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f5

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)
(18)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f5
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

[
3h
2

tθ2–1
n f5

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
h
2

tθ2–1
n–1 f5

(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
]

,

In+1
h = In

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f6

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f6
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

[
3h
2

tθ2–1
n f6

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
h
2

tθ2–1
n–1 f6

(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
]

,

Pn+1
h = Pn

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f7

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f7
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

[
3h
2

tθ2–1
n f7

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
h
2

tθ2–1
n–1 f7

(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
]

,

Rn+1
h = Rn

h +
θ2tθ2–1(1 – θ1)

M(θ1)
f8

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
θ2tθ2–1

n–1 (1 – θ1)
M(θ1)

f8
(
Sn–1

v , En–1
v , In–1

v , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)

+
θ1θ2

M(θ1)

[
3h
2

tθ2–1
n f8

(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

–
h
2

tθ2–1
n–1 f8

(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
]

.

Further simplifications of (18) lead to the following:

Sn+1
m = Sn

m + θ2tθ2–1
n

(
1 – θ1

M(θ1)
+

3θ1h
2M(θ1)

)

f1
(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

– θ2tθ2–1
n–1

(
1 – θ1

M(θ1)
+

θ1h
2M(θ1)

)
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× f1
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
,

En+1
m = En

m + θ2tθ2–1
n

(
1 – θ1

M(θ1)
+

3θ1h
2M(θ1)

)

f2
(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

– θ2tθ2–1
n–1

(
1 – θ1

M(θ1)
+

θ1h
2M(θ1)

)

× f2
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
,

In+1
m = In

m + θ2tθ2–1
n

(
1 – θ1

M(θ1)
+

3θ1h
2M(θ1)

)

f3
(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

– θ2tθ2–1
n–1

(
1 – θ1

M(θ1)
+

θ1h
2M(θ1)

)

× f3
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
,

Sn+1
h = Sn

h + θ2tθ2–1
n

(
1 – θ1

M(θ1)
+

3θ1h
2M(θ1)

)

f4
(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

– θ2tθ2–1
n–1

(
1 – θ1

M(θ1)
+

θ1h
2M(θ1)

)

× f4
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
,

En+1
h = En

h + θ2tθ2–1
n

(
1 – θ1

M(θ1)
+

3θ1h
2M(θ1)

)

f5
(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

) (19)

– θ2tθ2–1
n–1

(
1 – θ1

M(θ1)
+

θ1h
2M(θ1)

)

× f5
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
,

In+1
h = In

h + θ2tθ2–1
n

(
1 – θ1

M(θ1)
+

3θ1h
2M(θ1)

)

f6
(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

– θ2tθ2–1
n–1

(
1 – θ1

M(θ1)
+

θ1h
2M(θ1)

)

× f6
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
,

Pn+1
h = Pn

h + θ2tθ2–1
n

(
1 – θ1

M(θ1)
+

3θ1h
2M(θ1)

)

f7
(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

– θ2tθ2–1
n–1

(
1 – θ1

M(θ1)
+

θ1h
2M(θ1)

)

× f7
(
Sn–1

v , En–1
v , In–1

v , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
,

Rn+1
h = Rn

h + θ2tθ2–1
n

(
1 – θ1

M(θ1)
+

3θ1h
2M(θ1)

)

f8
(
Sn

m, En
m, In

m, Sn
h , En

h , In
h , Pn

h , Rn
h, tn

)

– θ2tθ2–1
n–1

(
1 – θ1

M(θ1)
+

θ1h
2M(θ1)

)

× f8
(
Sn–1

m , En–1
m , In–1

m , Sn–1
h , En–1

h , In–1
h , Pn–1

h , Rn–1
h , tn–1

)
.

4 Numerical results
In order to graphically illustrate the numerical results for the fractal-fractional model in
the sense of Caputo–Fabrizio operator, we first estimate the model parameters and the
initial conditions for the model. We present the following subsection for parameter esti-
mates.
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4.1 Parameter estimation of dengue model
In the present section, we estimate the parameters of the model (10) for the case when
θ1 = θ2 = 1 of dengue fever cases in East Java, Indonesia, for the year 2018. Based on data
obtained from the East Java provincial health office, it was reported that the incidence rate
of Dengue Hemorrhagic Fever (DHF) in East Java in 2016 was 64.8 per 100,000 people, an
increase compared to 2015 which was 54.18 per 100,000 people, while the incidence rate
of DHF in 2017 was 20 per 100,000 people [37]. Although in 2017 the number of cases of
DHF decreased compared to the previous year, the awareness of the surge in cases in the
next year needs to be improved. In 2017, the total number of DHF in East Java reached
7854 people, while in 2018 it reached 9452 people [38]. From this, it appears that there is
an increase in the number of DHF cases in 2018 compared to 2017. Hence, the cumulative
monthly reported DHF cases from January to December 2018 are used to parameterize
the model (10). In order to get a good fit to the real data, we estimate the parameters
using the least square curve fitting technique except for the recruitment rate of human
Πh and the natural death rate of human νh. The parameter νh is calculated as the inverse
of the average lifespan in East Java so that νh = 1/70.97 per year, where 70.97 year is the
average lifespan population in East Java province [39]. The parameter Πh is computed as
follows. Since the total population of East Java province as of 2018 was 39,507,370, we have
that Πh/νh = 39,507,370 is the maximum human population without the disease, therefore
Πh = 556,677.0466 per year. The other parameters are obtained using the least-squares
curve fitting method. The fitted and estimated parameter values of the model (10) are
listed in Table 2. The result of fitting the model (10) to the actual data of dengue incidence
is displayed in Fig. 1. Using the parameter values in Table 2, the basic reproduction number
in East Java is R0 ≈ 2.2020. The parameters listed in Table 2 are used further to obtain the
graphical results for the fractal-fractional model (10).

4.2 Simulation results
In this subsection, we apply the novel approach considered above for the fractal-fractional
model of dengue in the sense of Caputo–Fabrizio operator to illustrate its numerical
results graphically. Throughout these simulation results, the subgraphs in Figs. 2, 4,
6, 8, which represent respectively the dynamics of susceptible, exposed, and infected
mosquitos and the susceptible humans, while the subgraphs in Figs. 3, 5, 7, 9 show re-
spectively the components of the exposed, infected, hospitalized, and recovered humans.

Table 2 Fitted and estimated values for the parameters of the model (10)

Parameter Units Baselines value References

Πm month–1 3839.9 Fitted
τ month–1 0.9961 Fitted
αh – 0.6341 Fitted
μm month–1 1/42 [12, 40]
βm month–1 0.586 Fitted
Πh month–1 46390 Estimated
αv – 0.989 Fitted
βh month–1 0.8850 Fitted
ψh month–1 0.0184 Fitted
ωh month–1 0.00154 Fitted
σh month–1 0.440 Fitted
τh month–1 0.0769 Fitted
νh month–1 1

(70.97×12) Estimated
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Figure 1 Model versus data fitting for different values of fractional order θ1 and fractal order θ2

Figure 2 Simulation of the fractal-fractional model (10) when θ1 = 1, 0.95, 0.9, 0.85 and fractal order θ2 = 1
where (a) susceptible mosquitos, (b) exposed mosquitos, (c) infected mosquitos, (d) susceptible humans
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Figure 3 Simulation of the fractal-fractional model (10) when θ1 = 1, 0.95, 0.9, 0.85 and fractal order θ2 = 1
where (a) exposed humans, (b) infected humans, (c) hospitalized humans, (d) recovered humans

Figure 4 Simulation of the fractal-fractional model (10) when θ2 = 1, 0.95, 0.9, 0.85 and fractional order θ1 = 1
where (a) susceptible mosquitos, (b) exposed mosquitos, (c) infected mosquitos, (d) susceptible humans
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Figure 5 Simulation of the fractal-fractional model (10) when θ2 = 1, 0.95, 0.9, 0.85 and fractional order θ1 = 1
where (a) exposed humans, (b) infected humans, (c) hospitalized humans, (d) recovered humans

Figure 6 Simulation of the fractal-fractional model (10) when θ1 = θ2 = 1, 0.9, 0.8, 0.7 where (a) susceptible
mosquitos, (b) exposed mosquitos, (c) infected mosquitos, (d) susceptible humans
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Figure 7 Simulation of the fractal-fractional model (10) when θ1 = θ2 = 1, 0.9, 0.8, 0.7 where (a) exposed
humans, (b) infected humans, (c) hospitalized humans, (d) recovered humans

Figure 8 Simulation of the fractal-fractional model (10) when θ1 = 1, 0.95, 0.9, 0.85 and fractal order
θ2 = 1, 0.9, 0.85, 0.8 where (a) susceptible mosquitos, (b) exposed mosquitos, (c) infected mosquitos,
(d) susceptible humans
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Figure 9 Simulation of the fractal-fractional model (10) when θ1 = 1, 0.95, 0.9, 0.85 and fractal order
θ2 = 1, 0.9, 0.85, 0.8 where (a) exposed humans, (b) infected humans, (c) hospitalized humans, (d) recovered
humans

We use the estimated and fitted parameters in Table 2 for the simulation results and the
units are taken in months. We present the graphical results using the fractal and frac-
tional order parameters θ1 and θ2 in different scenarios. Initially, we choose θ1 as varying,
fix the fractal order θ2 and obtain the graphical results shown in Figs. 2 and 3. We ob-
tain Figs. 4 and 5 by choosing the fractal order as varying and fixing the fractional order.
Figures 6 and 7 are obtained by setting equal values to the fractional and fractal orders,
θ1 and θ2. Figures 7 and 9 are presented for different orders of fractal and fractional pa-
rameters simultaneously. We observe from these numerical results that by varying the
fractal and fractional orders, the dynamics of infected compartments in both humans and
mosquitos decrease much faster than that when using integer order equations, either by
varying only fractal order or only fractional orders. Thus, it is concluded that the fractal-
fractional operator provides a better understanding for the epidemic disease model with
real data.

5 Conclusions
We obtained a dengue fever model in the framework of fractal-fractional operator. We
obtained the basic reproduction number for the proposed dengue model equal to R0 ≈
2.2020 for the real cases of East Java, Indonesia, for 2018. We presented the model stability
results and found that the model is locally asymptotically stable at the disease-free case
when R0 < 1. Then, the application of fractal-fractional operator in the sense of Caputo–
Fabrizio was applied to the model, and we obtained a generalized model. The latter model
was then used to present a novel numerical procedure and solution. The numerical re-
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sults for the fractal and fractional orders have been compared with the real cases of dengue
fever, and we have found that, by varying the values of the fractal and fractional orders arbi-
trary, the best fitting has been obtained. Moreover, we used the fractal and fractional order
parameter values and presented numerous graphical results for the model. We fixed the
fractal order and varied the fractional order, showing the graphical results. We also fixed
the fractional order and varied the fractal order to obtain the numerical results. Similarly,
we varied both fractal and fractional orders equally and unequally and obtained many
graphical results. Based on these numerical results, we came to a conclusion that varying
both fractal and fractional orders provides the best results for the minimization of infected
compartments in mosquitoes and humans and for the increase of the noninfected com-
partments of humans and mosquitos by decreasing the fractal and fractional orders. From
the present analysis of the dengue infection model, we suggest to the readers that the ap-
plication of fractal-fractional operators to a real life problem provides better results than
using the ordinary order.
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