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1 Introduction
Fractional calculus is a generalization of the standard integer calculus. The advantage of
fractional calculus over integer-order calculus is that it provides a great deal for the kind
of thought and hereditary characteristics of diversified materials and methods. From the
past two decades, fractional calculus has attracted research attention towards itself due to
its importance in several parts of science, like physics, fluid mechanics, heat conduction
[1, 19, 21, 24, 26, 27, 32, 33, 37–42]. We can relate to the monographs [2, 22, 30, 36] for
the fundamentals and to [4, 44, 45] for the current developments in the field of fractional
calculus.

In recent years, non-autonomous differential equations of integer order, as well as frac-
tional order, have been studied by many researchers. One can see the references [5–8, 10–
13, 15–17, 20, 25, 35] for more details. In [14], Chen et al. discussed the existence of
mild solutions as well as approximate controllability for a class of non-autonomous evo-
lution systems of parabolic type with nonlocal conditions in Banach spaces by using the
Schauder’s fixed-point theorem as well as the theory of an evolution family. In the same
year, Chen et al. [9] explored the existence of mild solutions for the initial value problem to
a new class of abstract evolution equations with non-instantaneous impulses on ordered
Banach spaces by using a perturbation technique and by dropping the compactness con-
dition on the semigroup. Malik et al. [28] used the Rothe’s fixed point theorem to study the
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controllability of non-autonomous nonlinear differential system with non-instantaneous
impulses in the space R

n. By using Krasnoselskii’s fixed point theorem, Wang et al. [43]
formed a set of sufficient conditions for the existence and stability for a class of impul-
sive non-autonomous differential equations. Kucche [23] investigated the existence and
uniqueness of mild solutions for impulsive delay integrodifferential equations with inte-
gral impulses in Banach spaces by using Krasnoselskii–Schaefer fixed point theorem.

Motivated by the above, we discuss the non-autonomous fractional differential system
with integral impulses in the following form:

CDqu(s) + A(s)u(s) = f
(
s, u(s)

)
, (1.1)

u(0) = u0, (1.2)

�u(sk) = Ik

(∫ sk –θk

sk –τk

(
G, u(t)

)
dt

)
, (1.3)

where CDq denotes the CFD of order 0 < q ≤ 1, J = [0, S], S ∈ R is a positive constant.
Suppose that F is a Banach space and {A(s)}s∈J is a family of closed linear operator from F
to F . The domain of {A(s)} is D(A) which is independent of s and dense in F ; f : J × F → F
is continuous and with G : J × F → F are given functions; 0 = s0 < s1 < · · · < sm < sm+1 =
S, Ik ∈ C(F , F) are bounded functions, 0 ≤ θk ≤ τk ≤ sk – sk–1 for k = 1, 2, . . . , m, �u(s) =
u(s+

k ) – u(s–
k ), u(s+

k ) = limε→0 u(sk + ε), u(s–
k ) = limε→0 u(sk – ε).

2 Preliminaries
Let F be a Banach space with norm ‖ · ‖. Further C(J , F) = {u : u : J → F is continuous} de-
notes a Banach space with norm ‖u‖C = sups∈J ‖u(s)‖ and L(F) denotes the Banach space
of all bounded linear operators in F with the operator norm topology. Let L1(J , F) be the
Banach space of all Bochner integrable functions with the norm ‖u‖1 =

∫ S
0 ‖u(s)‖ds.

Now, we recall some definitions of fractional derivatives and integral.

Definition 2.1 ([22]) The fractional integral operator (in Riemann–Liouville sense) of
order q > 0 of a function u is defined as

Iqu(s) =
1

Γ (q)

∫ s

0
(s – t)q–1u(t) dt,

here Γ (·) denotes the Euler Gamma function.

Definition 2.2 ([22]) We define the derivative of u of the fractional order q > 0 in the
Caputo sense as

CDqu(s) =
1

Γ (1 – q)

∫ s

0
(s – t)–qu′(t) dt, (2.1)

here 0 < q ≤ 1 and u′(t) = du(t)
dt .

A measurable function f : [0,∞) → F is called Bochner integrable if ‖f ‖ is Lebesgue
integrable. The integrals which appear in (2.1) and (2.2) are taken in Bochner’s sense. Let
the operator –A(s) satisfies the following conditions:
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(H1) A(s) is a closed operator, the domain of A(s) is independent of s, and dense in F .
(H2) For any λ ≥ 0, the operator λI + A(s) has a bounded inverse operator [λI + A(s)]–1

in L(F) and

∥∥[
λI + A(s)

]–1∥∥ ≤ C
|λ| + 1

,

where C is a positive constant independent of s and λ.
(H3) For any s, τ , t ∈ J , there is a constant p ∈ (0, 1] such that

∥∥[
A(s) – A(τ )

]
A

–1(t)
∥∥ ≤ C|s – τ |p,

where the constants p and C > 0 are independent of s, τ , and t.
Following Pazy [34], (H1) means that for each t ∈ J , –A(t) generates an analytic

semigroup e–sA(t) (s > 0), and there is a C > 0 independent of both s and t such that
‖An(t)e–sA(t)‖ ≤ C

sn , where n = 0, 1, s > 0, t ∈ J .
By [18], we can give the definition of operators Ψ̃ (s, t), Φ̃(s,σ ), and Ũ(s):

Ψ̃ (s, t) = q
∫ ∞

0
θsq–1ξqe–sqθA(t) dθ , (2.2)

Φ̃(s,σ ) =
∞∑

k=1

Φ̃k(s,σ ), (2.3)

Ũ(s) = –A(s)A–1(0) –
∫ s

0
Φ̃(s, t)A(t)A–1(0) dt, (2.4)

where ξq is probability density function defined on [0,∞) such that it’s Laplace transform
is given by

∫ ∞

0
e–θxξq(θ ) dθ =

∞∑

i=0

(–x)i

Γ (1 + qi)
, 0 < q ≤ 1, z > 0,

Φ̃1(s,σ ) =
[
A(s) – A(σ )

]
Ψ̃ (s – σ ,σ ),

Φ̃k+1(s,σ ) =
∫ s

σ

Φ̃k(s, t)Φ̃1(t,σ ) dσ , k = 1, 2, . . . .

Using the above facts, we define the mild solution of problem (1.1)–(1.3).

Definition 2.3 ([29]) A function u ∈ C(J , F) is called a mild solution of (1.1)–(1.3) if it
satisfies the integral equation

u(s) = u0 +
∫ s

0
Ψ̃ (s – σ ,σ )Ũ(σ )A(0)u0 dσ

+
∫ s

0
Ψ̃ (s – σ ,σ )f

(
σ , u(σ )

)
dσ

+
∫ s

0

∫ σ

0
Ψ̃ (s – σ ,σ )Φ̃(σ , t)f

(
t, u(t)

)
dt dσ

+
∑

0<sk<s

Ψ̃ (sk – σ ,σ )Ik

(∫ sk –θk

sk–τk

G
(
t, u(t)

)
dt

)
.
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The following lemma gives some properties of Ψ̃ (s, t), Φ̃(s,σ ), and Ũ(s) that are required
to prove our main result.

Lemma 2.1 ([18]) Functions Ψ̃ (s –σ ,σ ) and A(s)Ψ̃ (s –σ ,σ ) are continuous in the uniform
topology in s and σ , where s ∈ J , 0 ≤ σ ≤ s – ε for any ε > 0 and

∥∥Ψ̃ (s – σ ,σ )
∥∥ ≤ (s – σ )q–1, (2.5)

where C > 0 is independent of both s and σ . Moreover,

∥
∥Φ̃(s,σ )

∥
∥ ≤ (s – σ )p–1 (2.6)

and

∥∥Ũ(s)
∥∥ ≤ C

(
1 + tp). (2.7)

Next, we define the MNC, which is required in our results.

Definition 2.4 ([3]) Assume that G is a bounded set of F . Then the Kuratowski MNC μ(·)
defined on G is

μ(G) = inf

{

δ > 0 : G =
n⋃

k=1

Gk and diam(Gk) ≤ δ for k = 1, 2, . . . , n

}

.

Some properties of μ(·) are given in the following lemma.

Lemma 2.2 ([3]) Let Z, W be bounded subsets of F and λ ∈R. Then
1. μ(Z) = 0 if and only if Z is compact, where Z denotes the closure of Z;
2. Z ⊆ W implies μ(Z) ≤ μ(W );
3. μ(Z) = μ(conv Z) = μ(Z), where conv Z denotes the convex hull of Z;
4. μ(Z ∪ W ) = max{μ(Z),μ(W )};
5. μ(λZ) = |λ|μ(Z), where λZ = {λz : z ∈ Z};
6. μ(Z + W ) ≤ μ(Z) + μ(W ), where Z + W = {z + w : z ∈ Z, w ∈ W };
7. If G is any bounded subset of D(P), and if P : D(P) ⊂ F → F is a Lipschitz-continuous

mapping with constant k, then μ(P(G)) ≤ kμ(G).

In this article, MNC on the set F and C(J , F) is denoted by μ(·) and μC(·), respectively.
For any s ∈ J and B ⊂ C(J , F), we denote B(s) = {u(s) : u ∈ B}, then B(s) ⊂ F . The bounded-
ness of B(s) ⊂ C(J , F) implies the boundedness of B(s) in F and μ(B(s)) ≤ μC(B).

The prove our main result, the following lemmas are required.

Lemma 2.3 ([3]) Assume that B is a bounded subset of F . Then there is a countable subset
B0 of B such that μ(B) ≤ 2μ(B0).

Lemma 2.4 ([31]) If B = {un}∞1 ⊂ C([0, S], F) is a countable set in a Banach space F and
there is a function m ∈ L1([0, S],R+) such that for every n ∈N,

∥∥un(s)
∥∥ ≤ m(s), a.e. s ∈ [0, S],
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then μ(B(s)) is Lebesgue integrable on [0, S] and

μ

({∫ S

0
μn(s) ds : n ∈N

})
≤ 2

∫ S

0
μ

(
B(s)

)
ds.

Lemma 2.5 ([2]) If B ⊂ C(J , F) is equicontinuous and bounded in a Banach space F then
μ(B(s)) is continuous on [0, S] and μC(B) = maxs∈[0,S] μ(B(s)).

Definition 2.5 ([3]) If G is a nonempty subset of F , then P : G → F is called to k-set
contractive if it is continuous and there is a constant k ∈ [0, 1) such that for every bounded
subset D of G, we have

q
(
P(D)

) ≤ kq(D).

Lemma 2.6 ([3]) Assuming that D is a closed, bounded, and convex subset of F , P : D → D
has at least one fixed point in D if it is k-set contractive.

3 Main results
(F1) For r > 0 there are constants 0 < q1 < min(q, p), ρ > 0 and a function hr ∈ L

1
q1 (J ,R+)

such that for any s ∈ J and u ∈ F with ‖u‖ ≤ r, ‖f (s, u)‖ ≤ hr(s) and

lim
r→∞ inf

‖hr‖
L

1
q1 [0,S]

r
= ρ ≤ ∞;

(F2) There is an L > 0 such that for every bounded, countable, and equicontinuous set
D ⊂ F ,

μ
(
f (s, D)

) ≤ Lμ(D) for all s ∈ J .

(F3) There are constants LN , M such that

∥∥N(s, v1) – N(s, v2)
∥∥ ≤ LN‖v1 – v2‖,

M = sup
s∈[0,S]

∥∥N(s, 0)
∥∥;

(3.1)

(F4) There are constants Dk (k = 1, 2, 3, . . . , m) such that

∥∥Ik(w1) – Ik(w2)
∥∥ ≤ Dk‖w1 – w2‖; k = 1, 2, . . . , m for w1, w2 ∈ F . (3.2)

In this study, B(q, p) =
∫ 1

0 sq–1(1 – s)p–1 ds is the Beta function.

Theorem 3.1 If f : J × F → F is continuous and satisfies conditions (F1)–(F4) then there is
at least one mild solution of (1.1)–(1.3) in C(J , F) provided that

CSq–q1ρ

(1 – C∗Sq+1)

[(
1 – q1

q – q1

)1–q1

+ CB(q, p)Sp
(

1 – q1

q + p – q1

)1–q1]
< 1, (3.3)
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and

CSq
[

L1

q
+

2CLB(q, p)Sp

q + p
+ 2LN S

]
≤ 1

4
(3.4)

Proof: Let the operator P : C(J , F) → C(J , F) be defined by

(Pu)(s) = u0 +
∫ s

0
Ψ̃ (s – σ ,σ )Ũ(n)A(0)u0 dσ

+
∫ s

0
Ψ̃ (s – σ ,σ )f

(
σ , u(σ )

)
dσ

+
∫ s

0

∫ σ

0
Ψ̃ (s – σ ,σ )Φ̃(σ , t)f

(
t, u(t)

)
dt dσ

+
∑

0<sk <s

Ψ̃ (sk – σ ,σ )Ik

(∫ sk –θk

sk –τk

N
(
t, u(t)

)
dt

)
. (3.5)

First, we show that P maps GR to GR which is a bounded, closed and convex set, where
R is a positive constant such that GR = {u ∈ C(J , F) : ‖u(s)‖ ≤ R for ∀s ∈ J}. If this were not
true, then there would exist sr ∈ J and ur ∈ GR such that ‖(Pur)(sr)‖ > r for each r > 0. Now
by using Hölder inequality, (F1) and Lemma 2.1, we get

r <
∥
∥(
Pur)(sr)∥∥

≤ ‖u0‖ +
∥∥
∥∥

∫ sr

0
Ψ̃

(
sr – σ ,σ

)
Ũ(σ )A(0)u0 dσ

∥∥
∥∥

+
∥
∥∥
∥

∫ sr

0
Ψ̃

(
sr – σ ,σ

)
f
(
σ , ur(σ )

)
dσ

∥
∥∥
∥

+
∥∥
∥∥

∫ sr

0

∫ σ

0
Ψ̃

(
sr – σ ,σ

)
Φ̃(σ , t)f

(
t, ur(t)

)
dt dσ

∥∥
∥∥

+
∥∥
∥∥

∑

0<sk<s

Ψ̃
(
sr

k – σ ,σ
)
Ik

(∫ sk –θk

sk–τk

N
(
t, ur(t)

)
dt

)∥∥
∥∥

≤ ‖u0‖ + C2
∥
∥∥
∥

∫ sr

0

(
sr – σ

)q–1(1 + σ p)dσ

∥
∥∥
∥
∥∥A(0)u0

∥∥

+ C
∫ sr

0

(
sr – σ

)q–1hr(σ ) dσ

+ C2
∫ sr

0

∫ σ

0

(
sr – σ

)q–1(σ – t)p–1hr(t) dt dσ

+
∑

0<sk<s

CLN Dk
(
sr

k – σ
)q–1

(∫ sk –θk

sk –τk

[∥∥ur∥∥ +
∥∥N(t, 0)

∥∥]
dt

)

≤ ‖u0‖ + C2(sr)q
[

1
q

+
(
sr)pB(q, p + 1)

]∥∥A(0)u0
∥∥

+ C
∫ sr

0

(
sr – σ

)q–1hr(σ ) dσ + C2B(q, p)
∫ sr

0

(
sr – σ

)q+p–1hσ (t) dt dσ

+
∑

0<sk<s

CLN DkSp(r + M)2S
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≤ ‖u0‖ + C2Sq
[

1
q

+ (S)pB(q, p + 1)
]∥
∥A(0)u0

∥
∥

+ C
(∫ sr

0

(
sr – σ

) q–1
1–q1 dσ

)1–q(∫ sr

0
h

1
q1
r (σ ) dσ

)q1

+ C2B(q, p)
(∫ sr

0

(
sr – σ

) q+p–1
1–q1 dσ

)1–q(∫ sr

0
h

1
q1
r (σ ) dσ

)q1

+
∑

0<sk<s

2CLN DkSq+1(r + M)

≤ ‖u0‖ + C2Sq
[

1
q

+ (S)pB(q, p + 1)
]∥
∥A(0)u0

∥
∥

+ CSq–q1

(
1 – q1

q – q1

)1–q1

‖hr‖
L

1
q1 [0,S]

+ C2B(q, p)Sq+p–q1

(
1 – q1

q + p – q1

)1–q1

‖hr‖
L

1
q1 [0,S]

+ rC∗Sq+1 + MC∗Sq+1,

which gives

r
(
1 – C∗Sq+1) ≤ ‖u0‖ + C2Sq

[
1
q

+ (S)pB(q, p + 1)
]∥∥A(0)u0

∥∥

+ CSq–q1

(
1 – q1

q – q1

)1–q1

‖hr‖
L

1
q1 [0,S]

+ C2B(q, p)Sq+p–q1

(
1 – q1

q + p – q1

)1–q1

‖hr‖
L

1
q1 [0,S]

+ MC∗Sq+1. (3.6)

Dividing both sides of (3.6) by r(1 – C∗Sq+1), using (F1), and taking the limit as r → ∞, we
get

1 ≤ CSq–q1ρ

(1 – C∗Sq+1)

[(
1 – q1

q – q1

)1–q1

+ CB(q, p)Sp
(

1 – q1

q + p – q1

)1–q1]
< 1,

which is a contradiction. Therefore P : GR → GR.
Now, we prove that P : GR → GR is a continuous operator. Consider {un}∞n=1 ⊂ GR such

that limn→∞ un = u in GR. Since the function f is continuous in the second variable, for
any s ∈ J , we get

lim
n→∞

∥
∥f

(
s, un(s)

)
– f

(
s, u(s)

)∥∥ = 0. (3.7)

From (3.5) and Lemma 2.1, we get

∥∥(Pun)(s) – (Pu)(s)
∥∥ =

∥
∥∥
∥

∫ s

0
Ψ̃ (s – σ ,σ )

[
f
(
σ , un(σ )

)
– f

(
σ , u(σ )

)]
dσ

∥
∥∥
∥

+
∥∥
∥∥

∫ s

0

∫ σ

0
Ψ̃ (s – σ ,σ )Φ̃(σ , t)

[
f
(
t, un(t)

)
– f

(
t, u(t)

)]
dt dσ

∥∥
∥∥
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+
∥∥∥
∥

∑

0<sk <s

Ψ̃ (sk – σ ,σ )Ik

(∫ sk –θk

sk –τk

[
G

(
t, un(t)

)
– G

(
t, u(t)

)]
dt

)∥∥∥
∥

≤ C
∫ s

0
(s – σ )q–1∥∥f

(
σ , un(σ )

)
– f

(
σ , u(σ )

)∥∥dσ

+ C2
∫ s

0

∫ σ

0
(s – σ )q–1(σ – t)p–1∥∥f

(
t, un(t)

)
– f

(
t, u(t)

)∥∥dt dσ

+ 2SCLN‖un – u‖
∑

0<sk <s

(sk – σ )q–1Dk ,

which gives that, for every s ∈ J , ‖(Pun)(s) – (Pu)(s)‖ → 0 as n → ∞,
Therefore, P : GR :→ GR is a continuous operator. It remains to prove that {Pu : u ∈ GR}

is an equicontinuous function set. For any u ∈ SR and s1, s2 ∈ [0, S], s1 < s2, we get

∥∥(Pu(s2) – (Pu)(s1)
∥∥

≤
∥
∥∥∥

∫ s1

0

[
Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )

]
Ũ(σ )A(0)u0 dσ

∥
∥∥∥

+
∥∥
∥∥

∫ s1

0

[
Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )

]
f
(
σ , u(σ )

)
dσ

∥∥
∥∥

+
∥
∥∥
∥

∫ s1

0

∫ σ

0

[
Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )

]
Φ̃(σ , t)f

(
t, u(t)

)
dt dσ

∥
∥∥
∥

+
∥∥
∥∥

∫ s2

s1

Ψ̃ (s2 – σ ,σ )Ũ(σ )A(0)u0 dσ

∥∥
∥∥

+
∥∥
∥∥

∫ s2

s1

Ψ̃ (s2 – σ ,σ )f
(
σ , u(σ )

)
dσ

∥∥
∥∥

+
∥∥
∥∥

∫ s2

s1

∫ σ

0
Ψ̃ (s2 – σ ,σ )Φ̃(σ , t)f

(
t, u(t)

)
dt dσ

∥∥
∥∥

+
∥∥
∥∥

∑

0<sk<s2–s1

Ψ̃ (sk – σ ,σ )Ik

(∫ sk –θk

sk–τk

N
(
t, u(t)

)
dt

)∥∥
∥∥

≤ I1 + I2 + I3 + I4 + I5 + I6 + It ,

where

I1 =
∫ s1

0

∥∥Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )]Ũ(σ )A(0)u0
∥∥dσ ,

I2 =
∫ s1

0

∥∥[
Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )

]∥∥hR(σ ) dσ ,

I3 =
∫ s1

0

∫ σ

0

∥∥Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )]Φ̃(σ , t)
∥∥hR(t) dt dσ ,

I4 =
∫ s2

s1

∥∥Ψ̃ (s2 – σ ,σ )Ũ(σ )A(0)u0
∥∥dσ ,

I5 =
∫ s2

s1

∥∥Ψ̃ (s2 – σ ,σ )
∥∥hR(σ ) dσ ,

I6 =
∫ s2

s1

∫ σ

0

∥
∥Ψ̃ (s2 – σ ,σ )Φ̃(σ , t)

∥
∥hR(t) dt dσ ,

It =
∑

0<sk<s2–s1

∥∥
∥∥Ψ̃ (sk – σ ,σ )Ik

(∫ sk–θk

sk –τk

N
(
t, u(t)

)
dt

)∥∥
∥∥.
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Now, we prove that Ij → 0 independently of u ∈ SR as s2 – s1 → 0 for j = 1, 2, 3, 4, 5, 6, t.
First, we prove I1 = 0. For ε > 0 and s1 > 0, by the continuity of Ψ̃ (s –σ ,σ ) in the uniform

topology in s and σ , for 0 ≤ s ≤ S and 0 ≤ σ ≤ s – ε, by Lemma 2.1, we have

I1 ≤ sup
σ∈[0,s1–ε]

∥∥Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )
∥∥.C

∥∥A(0)u0
∥∥

∫ s1–ε

0

(
1 + σ p)dσ

+ C2∥∥A(0)u0
∥
∥

∫ s1

s1–ε

[
(s2 – σ )q–1 – (s1 – σ )q–1](1 + σ p)dσ

→ 0 as ε → 0 and s2 → s1.

Obviously, I2 = 0. For ε > 0 and s1 > 0, using the continuity of Ψ̃ (s – σ ,σ ) in the uniform
topology in t and σ , for 0 ≤ s ≤ S and 0 ≤ σ ≤ s – ε, by Lemma 2.1, we get

I2 ≤ (s1 – ε)1–q‖hR‖
L

1
q1 [0,S]

sup
σ∈[0,s1–ε]

∥∥Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )
∥∥

+ C
∫ s1

s1–ε

[
(s2 – σ )q–1 – (s1 – σ )q–1]hR(σ ) dσ

→ 0 as ε → 0 and s2 → s1.

Obviously, I3 = 0, for s1 = 0 and 0 < s2 ≤ S. For s1 > 0 and ε > 0, by Lemma 2.1, (F1),
and since the functions σ → (s2 – σ )q–1Ip

σ hR(σ ) and σ → (s1 – σ )q–1Ip
σ hR(σ ) are Lebesgue

integrable, as well as Ψ̃ (s – σ ,σ ) is continuous in the uniform operator topology in s and
σ , for 0 ≤ s ≤ S and 0 ≤ σ ≤ s – ε, we get

I3 ≤ sup
σ∈[0,s1–ε]

∥∥Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )
∥∥.C

∫ s1–ε

0

∫ σ

0
(σ – t)p–1 dt dσ

+ C2
∫ s1

s1–ε

∫ σ

0

[
(s2 – σ )q–1 – (s1 – σ )q–1](σ – t)p–1hR(t) dt dσ

≤
(

1 – q1

q – q1

)1–q1 Csp
1‖hR‖

L
1

q1 [0,S]

p
sup

σ∈[0,s1–ε]

∥∥Ψ̃ (s2 – σ ,σ ) – Ψ̃ (s1 – σ ,σ )
∥∥

+ C2p(p)
∫ s1

s1–ε

[
(s2 – σ )q–1Ip

σ hR(σ ) – (s1 – σ )q–1Ip
σ hR(σ )

]
dσ

→ 0 as ε → 0 and s2 → s1.

For I4, by Lemma 2.1, we see that

I4 ≤ C2∥∥A(0)u0
∥∥

∫ s2

s1

(s2 – σ )q–1(1 + σ p)dσ → 0 as s2 → s1.

For I5, using Lemma 2.1, (F1), and Hölder inequality, we have

I5 ≤ C
∫ s2

s1

(s2 – σ )q–1hR(σ ) dσ

≤ C
(∫ s2

s1

(s2 – σ )
q–1

1–q1

)1–q1(∫ s2

s1

h
1

q1
R (σ ) dσ

)q1
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≤ C
(

1 – q1

q – q1

)1–q1

‖hR‖
L

1
q1 [0,S]

(s2 – s1)q–q1

→ 0 as s2 → s1.

For I6, using Lemma 2.1, (F1), and the fact that the function σ → (s1 – σ )q–1Ip
σ hR(σ ) is

Lebesgue integrable, we get

I6 ≤ C2
∫ s2

s1

∫ σ

0
(s2 – σ )q–1(σ – t)p–1hR(t) dt dσ

≤ C2p(p)
∫ s2

s1

(s2 – σ )q–1Ip
σ hR(σ ) dσ

→ 0 as s2 → s1.

Also It = 0 as s2 → s1.
Hence ‖(Pu)(s2) – (Pu)(s1)‖ tends to 0 independently of u ∈ GR as s2 → s1, which means

that the operator P : GR → GR is equicontinuous.
Let D = coP(GR), where co denotes the closure of the convex hull. Then it can be easily

seen that the operator P : D → D (D ⊂ C(J , F)) is equicontinuous.
Now, we show that P : D → D is a condensing operator. For any B ⊂ D, by Lemma 2.3,

there exists a countable set B0 = {un} ⊂ B such that

μC
(
P(B)

) ≤ 2
(
P(B0)

)
. (3.8)

From the equicontinuity of B, B0 ⊂ B is also equicontinuous. Consequently, from
Lemma 2.4 and (F2), we get

μ
(
P

(
B0(s)

))
= μ

(
u0 +

∫ s

0
Ψ̃ (s – σ ,σ )Ũ(σ )A(0)u0 dσ

)

+ μ

(∫ s

0
Ψ̃ (s – σ ,σ )f

(
σ , un(σ )

)
dσ

)

+ μ

(∫ s

0

∫ σ

0
Ψ̃ (s – σ ,σ )Φ̃(σ , t)f

(
t, un(t)

)
dt dσ

)

+ μ

( ∑

0<sk<s

Ψ̃ (sk – σ ,σ )Ik

(∫ sk –θk

sk –τk

(
N , un(t)

)
dt

))

≤ 2C
∫ s

0
(s – σ )q–1μ

(
f
(
σ , un(σ )

))
dσ

+ 4C2
∫ s

0

∫ σ

0
(s – σ )q–1(σ – t)p–1μ

(
f
(
t, un(t)

))
dt dσ

+ 2C
( ∑

0<sk<s

(s – σ )q–1Ik

(∫ sk –θk

sk –τk

μ
(
N , un(t)

)
dt

))

≤ 2C
∫ s

0
(s – σ )q–1Lμ

(
B0(σ )

)
dσ

+ 4C2
∫ s

0

∫ σ

0
(s – σ )q–1(σ – t)p–1Lμ

(
B0(t)

)
dt dσ
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+ 2C
( ∑

0<sk<s

(s – σ )q–1Ik

(∫ sk –θk

sk –τk

LNμ
(
B0(t)

)
dt

))

≤ 2CL
∫ s

0
(s – σ )q–1 dσμC(B)

+ 4C2LB(q, p)
∫ s

0
(s – σ )q+p–1 dσμC(B)

+ 2CLN

( ∑

0<sk<s

(s – σ )q–1Ik

(∫ sk –θk

sk –τk

μC(B) ds
))

≤ 2CSq
[

L
q

+
2CLB(q, p)Tp

q + p
+ 2LN S

]
μC(B).

From Lemma 2.5 and since P(B0) ⊂ B is bounded and equicontinuous, we have

μC
(
P(B0)

)
= max

s∈[0,S]
μ

(
P(B0)(s)

)
. (3.9)

Therefore, by (2.5)–(2.6), we have

μC
(
P(B)

) ≤ 4CSq
[

L
q

+
2CLB(q, p)Tp

q + p
+ 2LN S

]
μC(B). (3.10)

By combining (3.10), (3.4) and Definition 2.5, we know that P : GR → GR is a k-set con-
tractive operator. By Lemma 2.6, P has at least one fixed point u ∈ GR. Therefore P is a
mild solution of (1.1)–(1.3).

4 Example
Consider the following nonlinear reaction–diffusion equation with integral impulse con-
dition:

CDqu(z, s) – b(s)�u(z, s) = f
(
z, s, u(z, s)

)
, (4.1)

u(z, s) = 0, z ∈ ∂G, s ∈ J , (4.2)

�∗u(z, s1) = I1

(∫ s1–θ1

s1–τ1

N
(
z, t, u(z, t)

)
dt

)
, (4.3)

where CDq is a CFD of order 0 < q ≤ 1, b(s) is diffusion coefficient which is continuous on
J = [0, S], and |b(s2) – b(s1)| ≤ C|s2 – s1|p, s1, s2 ∈ J , 0 < p ≤ 1, C is a positive constant inde-
pendent of s1 and s2, � is Laplace operator; S ⊂R

m is a bounded domain with a sufficiently
smooth boundary ∂G; f , N : G × J ×R →R are nonlinear functions.

Let ‖ · ‖ denote the L2-norm on the Banach space F = L2(G). In F we define a linear
operator by

A(s)u = b(s)�u (4.4)

with the domain

D(A) = H2(G) ∩ H1
0 (G), (4.5)
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where H2(G) is the completion of C2(G) with respect to the norm

‖u‖H2(G) =
(∫

G

∑

|ν|≤2

∣∣Dνu(z)
∣∣2 dz

) 1
2

,

H1
0 (G) is the completion of C1(G) with respect to the norm ‖u‖H1(G), and C1

0(G) is the set of
all functions u ∈ C1(G) with compact support on the domain G. From [34], we know that
–A(t) generates an analytic semigroup e–sA(t) in E satisfying (H3) and (H4). Let u(s) = u(·, s),
f (s, u(s)) = f (·, s, u(·, s)), N(s, u(s)) = N(·, s, u(·, s)). Then system (4.1)–(4.3) can be modified
into system (1.1)–(1.3).

Let the function f satisfy the following condition:
(i) There is a bounded function hr(s) such that for any s ∈ [0, S], z ∈ G, and u ∈ L2(G)

satisfying (
∫

G |u(z)|2 dz) 1
2 ≤ r for some r > 0,

(∫

G

∣∣f
(
s, u(z, s)

)∣∣2 dz
) 1

2 ≤ hr(s).

Theorem 4.1 Consider the nonlinear function f (z, s, u(z, s)) = cos(z,s,u(z,s))
es and the function

I1 : R → R defined by I1(z) = cos z. Then for the choices θ1 = 0, τ1 = 1, problem (4.1)–(4.3)
has at least one mild solution.

Proof: By the definition of f , condition (F1) is clearly satisfied. Also I1 and N are Lip-
schitz functions. Condition (3.4) is satisfied with q = 1

2 and 0 ≤ q1 < 1
2 , hr(s) =

√
meas(G)

es ,
ρ = 0. So all the assumptions of Theorem 3.4 are satisfied. Hence the initial boundary value
problem to the nonlinear reaction–diffusion equation with integral impulse condition has
at least one mild solution due to Theorem 3.1.

5 Conclusions
The existence of solutions of non-autonomous fractional differential equations with inte-
gral impulse condition by using the measure of non-compactness has been discussed in
this article. One can extend this work for impulsive non-autonomous fractional differen-
tial equations with integral impulse condition by using the fixed point theorems.
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