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Abstract
Recently, Kim and Kim (Russ. J. Math. Phys. 27(2):227–235, 2020) have studied new
type degenerate Bernoulli numbers and polynomials by making use of degenerate
logarithm. Motivated by (Kim and Kim in Russ. J. Math. Phys. 27(2):227–235, 2020), we
consider a special class of polynomials, which we call a new type of degenerate
Daehee numbers and polynomials of the second kind. By using their generating
function, we derive some new relations including the degenerate Stirling numbers of
the first and second kinds. Moreover, we introduce a new type of higher-order
degenerate Daehee polynomials of the second kind. We also derive some new
identities and properties of this type of polynomials.
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1 Introduction and preliminaries
Special polynomials have their origin in the solutions of differential equations under some
conditions. Special polynomials can be described in various ways such as by generating
functions, by p-adic integrals, by recurrence relations, by degenerate versions, and so on.

The degenerate versions of some special numbers and polynomials have been studied
by many researchers. The notion of degeneracy provides a powerful tool in defining spe-
cial numbers and polynomials of their degenerate versions. The most important applica-
tions of these polynomials are in the theory of finite differences, analytic number theory,
and applications in the classical analysis and statistics. Despite the applicability of special
functions in classical analysis and statistics, they also arise in communications systems,
quantum mechanics, nonlinear wave propagation, electric circuit theory, electromagnetic
theory, and so on.

Recent investigations involving degenerate Daehee polynomials and numbers of the
third kind [3], degenerate λ–q-Daehee polynomials [5], degenerate polyexponential func-
tions and degenerate Bell polynomials [14], degenerate binomial coefficients and degener-
ate hypergeometric functions [15], new type degenerate Bernoulli numbers [8], degener-
ate Stirling polynomials of the second kind [19], degenerate poly-Bernoulli numbers and
polynomials [18], degenerate Daehee polynomials of the second kind [9], new type de-
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generate Daehee numbers and polynomials [17], some results on degenerate Daehee and
Bernoulli numbers and polynomials [20], degenerate Laplace transform and degenerate
gamma function [11], some identities on type 2 degenerate Bernoulli polynomials of the
second sind [10], some identities for degenerate complete and incomplete r-Bell polyno-
mials [21] have been investigated in detail.

We are now in a position to state some special numbers and polynomials, which will be
used in the paper.

Let B(r)
n (x) be the generalized Bernoulli polynomials of order r given by the following

generating function (see [1, 6, 12]):

∞∑

n=0

B(r)
n (x)

tn

n!
=

(
t

et – 1

)r

ext (
r ∈C; 1r := 1; |t| < 2π

)
. (1)

In the case where x = 0, B(r)
n =: B(r)

n (0) are called the generalized Bernoulli numbers of or-
der r.

The notion of degenerate of the exponential function

ez = lim
λ→0

(1 + λz)
1
λ

is considered without the limit case. That is, the degenerate of the exponential function ez

is equal to (1 + λz)
1
λ . It follows that the degenerate of the parameter z is log(1+λz)

λ . This idea
was first considered for Bernoulli polynomials by Carlitz [1] as follows:

∞∑

n=0

βn,λ(x)
tn

n!
=

t

(1 + λt)
1
λ – 1

(1 + λt)
x
λ (λ ∈R). (2)

At the point x = 0 in (2), βn,λ =: βn,λ(0) are called the degenerate Bernoulli numbers.
Let (x)n be the falling factorial sequence given by

(x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1) (3)

with the assumption (x)0 := 1.
As is well known, the degenerate Bernoulli polynomials of higher order were considered

by Carlitz [1] as follows:

∞∑

n=0

β
(r)
n,λ(x)

tn

n!
=

(
t

(1 + λt)
1
λ – 1

)r

(1 + λt)
x
λ . (4)

Obviously,

lim
λ→0

β
(r)
n,λ(x) = B(r)

n (x),

which represents the Bernoulli polynomials of higher order.
For λ ∈ R, Kim and Kim [8] defined the degenerate version of the logarithm function,

denoted by logλ(1 + t), as follows:

logλ(1 + t) =
∞∑

n=1

λn–1(1)n,1/λ
tn

n!
, (5)
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which is the inverse of the degenerate version of the exponential function eλ(t) as

eλ

(
logλ(t)

)
= logλ

(
eλ(t)

)
= t.

Note that

lim
λ→0

logλ(1 + t) =
∞∑

n=1

(–1)n–1 tn

n!
= log(1 + t).

The degenerate polyexponential function (see [7, 14]) is defined by

eλ(x, δ|k) =
∞∑

n=0

(1)n,λ

n!(n + δ)k xn (
k ∈N0 and δ ∈C with �e(δ) > 0

)
. (6)

The degenerate Stirling numbers of the second kind (see [9]) are defined by

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(k ≥ 0). (7)

Note that

lim
λ→0

S1,λ(n, k) = S1(n, k),

which stands for the Stirling numbers of the first kind given by (see [20])

1
k!

(
log(1 + t)

)k =
∞∑

n=k

S1(n, k)
tn

n!
.

The degenerate Stirling numbers of the second kind (see [16, 19]) are given by

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0). (8)

It is clear that

lim
λ→0

S2,λ(n, k) = S2(n, k),

which are called the Stirling numbers of the second kind given by means of the following
generating function:

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
(see [25]).

Roman [24] defined the Bernoulli polynomials of the second kind given by the generat-
ing function

t
log(1 + t)

(1 + t)x =
∞∑

n=0

bn(x)
tn

n!
. (9)
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It is worth noting that (cf. [9])

bn(x) = B(n)
n (x + 1) (n ≥ 0).

The degenerate version of Eq. (9) is given by Kim and Kim [14] as follows:

∞∑

n=0

bn,λ(x)
tn

n!
=

t
logλ(1 + t)

(1 + t)x, (10)

satisfying

lim
λ→0

bn,λ(x) = bn(x).

The Daehee polynomials are defined by

log(1 + t)
t

(1 + t)x =
∞∑

n=0

Dn(x)
tn

n!
. (11)

In the case where x = 0 in (11), Dn =: Dn(0) are called the Daehee numbers (see [2–4, 8, 13,
14, 17, 18, 20, 22, 23, 25]).

Very recently, Kim et al. [17] introduced a new class of degenerate Daehee polynomials
via the following generating function:

∞∑

n=0

dn,λ(x)
tn

n!
=

logλ(1 + t)
t

(1 + t)x. (12)

Putting x = 0 in (12) yields dn =: dn(0), the degenerate Daehee numbers.
By (2) and (12) we get

∞∑

n=0

βn,λ(x)
tn

n!
=

∞∑

m=0

dm,λ(x)
1

m!
(
eλ(t) – 1

)m

=
∞∑

m=0

dm,λ(x)
∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

S2,λ(n, m)dm,λ(x)

)
tn

n!
. (13)

By comparing the coefficients on both sides of (13) we have the following summation for-
mula for the products S2,λ(n, m) and dm,λ(x):

βn,λ(x) =
n∑

m=0

S2,λ(n, m)dm,λ(x) (n ≥ 0). (14)

In 2017, Kim and Kim [9] considered the degenerate Daehee polynomials of the second
kind defined by

log(1 + t)
(1 + λ log(1 + t))

1
λ – 1

(
1 + λ log(1 + t)

) x
λ =

∞∑

n=0

Dn,λ(x)
tn

n!
. (15)
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When x = 0 in (15), Dn,λ = Dn,λ(0) stand for the degenerate Daehee numbers of the second
kind.

Motivated by the works of Kim and Kim [8, 17], we first define a new type of degenerate
Daehee numbers and polynomials of the second kind. We investigate some new properties
of these numbers and polynomials and derive some new identities and relations between
the new type of degenerate Daehee numbers and polynomials of the second kind and Car-
litz’s degenerate Bernoulli polynomials.

2 New type degenerate Daehee polynomials of the second kind
In this section, we begin with the following definition.

Definition 2.1 Let λ be a real number. The new type degenerate Daehee polynomials of
the second kind are given by means of the following generating function:

∞∑

n=0

D̃n,λ(x)
tn

n!
=

logλ(1 + t)
(1 + λ logλ(1 + t))

1
λ – 1

(
1 + λ logλ(1 + t)

) x
λ . (16)

In the case where x = 0, D̃n,λ =: D̃n,λ(0) are called the new type degenerate Daehee poly-
nomials of the second kind.

It follows from (16) that

lim
λ→0

D̃n,λ(x) = Dn(x), cf. [2, 4, 13, 22, 23].

Theorem 2.1 Let n be a nonnegative number. Then

D̃n,λ(x) =
n∑

m=0

βm,λ(x)S1,λ(n, m).

Proof By using (2) and (16) we get

∞∑

n=0

D̃n,λ(x)
tn

n!
=

logλ(1 + t)
(1 + λ logλ(1 + t))

1
λ – 1

(
1 + λ logλ(1 + t)

) x
λ (17)

=
∞∑

m=0

βm,λ(x)
1

m!
(
logλ(1 + t)

)m

=
∞∑

m=0

βm,λ(x)
∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

βm,λ(x)S1,λ(n, m)

)
tn

n!
. (18)

Therefore by (17) and (18) we complete the proof. �

Theorem 2.2 Let n be nonnegative number. Then we have the identity

D̃n,λ(x) =
n∑

k=0

k∑

l=0

(
n
k

)
(x)l,λS1,λ(k, l)D̃n–k,λ.
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Proof Recall from (16) that

∞∑

n=0

D̃n,λ(x)
tn

n!
=

logλ(1 + t)
(1 + λ logλ(1 + t))

1
λ – 1

(
1 + λ logλ(1 + t)

) x
λ .

By the binomial theorem

(
1 + λ logλ(1 + t)

) x
λ =

∞∑

l=0

(
x
λ

)

l
λl 1

l!
(
logλ(1 + t)

)l

we have

∞∑

n=0

D̃n,λ(x)
tn

n!
=

logλ(1 + t)
(1 + λ logλ(1 + t))

1
λ – 1

∞∑

l=0

(
x
λ

)

l
λl 1

l!
(
logλ(1 + t)

)l (19)

=

( ∞∑

m=0

D̃m,λ
tm

m!

)( ∞∑

l=0

(x)l,λ

∞∑

k=0

S1,λ(k, l)
tk

k!

)

=

( ∞∑

m=0

D̃m,λ
tm

m!

)( ∞∑

k=0

( k∑

l=0

(x)l,λS1,λ(k, l)

)
tk

k!

)

=
∞∑

n=0

( n∑

k=0

k∑

l=0

(
n
k

)
(x)l,λS1,λ(k, l)D̃n–k,λ

)
tn

n!
. (20)

By comparing the coefficients of the same powers of tn of (19) and (20), we arrive at the
desired result. �

Theorem 2.3 Let n ∈N0. Then

βn,λ(x) =
n∑

m=0

D̃m,λ(x)S2,λ(n, m).

Proof By changing t to eλ(t) – 1 in (16) we see that

∞∑

m=0

D̃m,λ(x)
1

m!
(
eλ(t) – 1

)m =
t

(1 + λt) 1
λ – 1

(1 + λt)
x
λ

=
∞∑

n=0

βn,λ(x)
tn

n!
. (21)

In addition to expression (21), we have

∞∑

m=0

D̃m,λ(x)
1

m!
(
eλ(t) – 1

)m =
∞∑

m=0

D̃m,λ(x)
∞∑

m=n
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

D̃m,λ(x)S2,λ(n, m)

)
tn

n!
. (22)

Equating (21) and (22) proves the theorem. �
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Theorem 2.4 The new type degenerate Daehee numbers of the second kind are computed
by the recurrence relation

D̃n,λ(1) – D̃n,λ =

⎧
⎨

⎩
0 if n = 0,

λn–1(1)n,1/λ if n ≥ 1.

Proof We first consider

∞∑

n=1

λn–1(1)n,1/λ
tn

n!
= logλ(1 + t) (23)

=
((

1 + λ logλ(1 + t)
) 1

λ – 1
)
)

∞∑

n=0

D̃n,λ
tn

n!

=
logλ(1 + t)

(1 + λ logλ(1 + t))
1
λ – 1

(
1 + λ logλ(1 + t)

) 1
λ –

∞∑

n=0

D̃n,λ
tn

n!

=
∞∑

n=0

(
D̃n,λ(1) – D̃n,λ

) tn

n!
. (24)

By comparing the coefficients at tn

n! we complete the proof. �

We now state the distribution formula.

Theorem 2.5 For d ∈N and n ≥ 0, we have

D̃n,λ(x) =
n∑

m=0

dm–1S1,λ(n, m)
d–1∑

a=0

βm, λd

(
a + x

d

)
.

Proof Using (16), we have

∞∑

n=0

D̃n,λ(x)
tn

n!
=

logλ(1 + t)
(1 + λ logλ(1 + t))

1
λ – 1

(
1 + λ logλ(1 + t)

) x
λ (25)

=
logλ(1 + t)

(1 + λ logλ(1 + t))
d
λ – 1

d–1∑

a=0

(
1 + λ logλ(1 + t)

) a+x
λ

=
1
d

(
d logλ(1 + t)

(1 + λ
d (d logλ(1 + t)))

d
λ – 1

) d–1∑

a=0

(1 +
λ

d
(
d logλ(1 + t)

) ( a+x
d )
λ
d

=
1
d

d–1∑

a=0

∞∑

m=0

βm, λd

(
a + x

d

)
1

m!
(
d logλ(1 + t)

)m

=
1
d

d–1∑

a=0

∞∑

m=0

βm, λd

(
a + x

d

) ∞∑

n=m
dmS1,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

d–1∑

a=0

dm–1βm, λd

(
a + x

d

)
S1,λ(n, m)

)
tn

n!
, (26)

where d ∈N and n ≥ 0. By (25) and (26) we arrive at the desired result. �
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Theorem 2.6 For n ∈ N, m ≥ 0, we have

1
m + 1

(
D̃m+1,λ(n) – D̃m+1,λ

)
=

m∑

j=0

j∑

k=0

n–1∑

l=0

(
m
j

)
(l)k,λS1,λ(j, k)Dm–j,λ.

Proof We first consider the following expression:

logλ(1 + t)
n–1∑

l=0

((
1 + λ logλ(1 + t)

) 1
λ
)l (27)

=
logλ(1 + t)

(1 + λ logλ(1 + t))
1
λ – 1

(
1 + λ logλ(1 + t)

) n
λ –

logλ(1 + t)
(1 + λ logλ(1 + t))

1
λ – 1

=
∞∑

m=0

(
D̃m,λ(n) – D̃m,λ

) tn

n!

= t
∞∑

m=0

( D̃m+1,λ(n) – D̃m+1,λ

m + 1

)
tm

m!
. (28)

Now we proceed (27) with different perspective as follows:

= t
(

logλ(1 + t)
t

) n–1∑

l=0

(
1 + λ logλ(1 + t)

) l
λ

= t

( ∞∑

p=0

dp,λ
tp

p!

)( ∞∑

j=0

( j∑

k=0

n–1∑

l=0

(l)k,λS1,λ(j, k)

)
tj

j!

)

= t
∞∑

m=0

( m∑

j=0

j∑

k=0

n–1∑

l=0

(
m
j

)
(l)k,λS1,λ(j, k)dm–j,λ

)
tm

m!
. (29)

By comparing the coefficients at tn

n! of (27) and (29) we complete the proof. �

We now consider a new type of higher-order degenerate Daehee polynomials of the
second kind.

Definition 2.2 Let r be a positive integer. New type higher-order degenerate Daehee poly-
nomials of the second kind are defined by the following generating function:

∞∑

n=0

D̃(r)
n (x)

tn

n!
=

(
logλ(1 + t)

(1 + λ logλ(1 + t))
1
λ – 1

)r(
1 + λ logλ(1 + t)

) x
λ . (30)

When x = 0, D(r)
n,λ =: D(r)

n,λ(0) are called new type higher-order degenerate Daehee polyno-
mials of the second kind.

It is worth noting that

lim
λ→0

D̃(r)
n,λ(x) = D(r)

n (x),

representing the Daehee polynomials of higher order.
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Theorem 2.7 Let n be a nonnegative integer. Then we have the following summation for-
mula:

D̃(r)
n,λ(x) =

n∑

m=0

β
(r)
m,λ(x)S1,λ(n, m). (31)

Proof Using (30), we have

∞∑

n=0

D̃(r)
n,λ(x)

tn

n!
=

(
logλ(1 + t)

(1 + λ logλ(1 + t))
1
λ – 1

)r(
1 + λ logλ(1 + t)

) x
λ (32)

=
∞∑

m=0

β
(r)
m,λ(x)

1
m!

(
logλ(1 + t)

)m

=
∞∑

m=0

β
(r)
m,λ(x)

∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

β
(r)
m,λS1,λ(n, m)

)
tn

n!
, (33)

where we have used the following series manipulation:

∞∑

m=0

am

∞∑

n=m
bn =

∞∑

n=0

n∑

m=0

ambn.

Since (32) = (33), we arrive at the desired result. �

Theorem 2.8 Let n be a natural number. Then the inversion formula of (31) is given by
the following relation:

β
(r)
m,λ(x) =

n∑

m=0

D̃(r)
m,λS2,λ(n, m).

Proof By replacing t by eλ(t) – 1 in (30) we get

∞∑

m=0

D̃(r)
m,λ(x)

1
m!

(
eλ(t) – 1

)m =
(

t

(1 + λt)
1
λ – 1

)r

(1 + λt)
x
λ

=
∞∑

n=0

β
(r)
n,λ(x)

tn

n!
. (34)

On the other hand, we see that

∞∑

m=0

D̃(r)
m,λ(x)

1
m!

(
eλ(t) – 1

)m =
∞∑

m=0

D̃(r)
m,λ(x)

∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

D̃(r)
m,λ(x)S2,λ(n, m)

)
tn

n!
. (35)

Matching (34) and (35) proves the theorem. �
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Theorem 2.9 Let the variables r and k be natural numbers with r > k. Then we have the
following summation formula:

D̃(r)
n,λ(x) =

n∑

l=0

(
n
l

)
D̃(r–k)

l,λ D̃(k)
n–l,λ(x) (n ≥ 0).

Proof Since

∞∑

n=0

D̃(r)
n,λ(x)

tn

n!
=

(
logλ(1 + t)

(1 + λ logλ(1 + t))
1
λ – 1

)r(
1 + λ logλ(1 + t)

) x
λ , (36)

we have

=
(

logλ(1 + t)
(1 + λ logλ(1 + t))

1
λ – 1

)r–k( logλ(1 + t)
(1 + λ logλ(1 + t))

1
λ – 1

)k(
1 + λ logλ(1 + t)

) x
λ

=

( ∞∑

l=0

D̃(r–k)
l,λ

tl

l!

)( ∞∑

m=0

D̃(k)
m,λ(x)

tm

m!

)

=
∞∑

n=0

( n∑

l=0

(
n
l

)
D̃(r–k)

l,λ D̃(k)
n–l,λ(x)

)
tn

n!
. (37)

Equating (36) and (37) proves the theorem. �

It is well known from [17] that

(
t

logλ(1 + t)

)k

(1 + t)x–1 =
∞∑

n=0

B(n–k+1)
n,λ (x)

tn

n!
(k ∈ Z), (38)

where B(α)
n,λ(x) are called λ-analogue higher-order Bernoulli polynomials, which are given

by the generating function

(
t

λet – 1

)α

ext =
∞∑

n=0

B(α)
n,λ(x)

tn

n!
.

Theorem 2.10 Let n be a natural number. Then we have the following explicit summation
formula:

D̃(r)
n (x) =

n∑

m=0

B(m–k+1)
m,λ

(
x
λ

+ 1
)

S1,λ(n, m).

Proof Changing the parameter t to logλ(1 + t) and x to x
λ

+ 1 in (38) gives

∞∑

m=0

B(m–k+1)
m,λ

(
x
λ

+ 1
)

(logλ(1 + t))m

m!
(39)

=
(

logλ(1 + t)
(1 + λ logλ(1 + t))

1
λ – 1

)r(
1 + λ logλ(1 + t)

) x
λ
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=
∞∑

n=0

D̃(r)
n (x)

tn

n!
. (40)

By (39) we have

∞∑

m=0

B(m–k+1)
m,λ

(
x
λ

+ 1
)

(logλ(1 + t))m

m!
=

∞∑

m=0

B(m–k+1)
m,λ

(
x
λ

+ 1
) ∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

B(m–k+1)
m,λ

(
x
λ

+ 1
)

S1,λ(n, m)

)
tn

n!
. (41)

Matching the coefficients at tn

n! in Eqs. (40) and (41), we obtain

D̃(r)
n (x) =

n∑

m=0

B(m–k+1)
m,λ

(
x
λ

+ 1
)

S1,λ(n, m).

This completes the proof of the theorem. �

In the case where x = 0 in Theorem 2.10, we have

D̃(r)
n =

n∑

m=0

B(m–k+1)
m,λ (1)S1,λ(n, m).

Theorem 2.11 Let n be a natural number. We have the following summation formula:

D̃(r)
n,λ(x) =

n∑

k=0

k∑

m=0

(
n
k

)
(x)m,λS1,λ(k, m)D̃(r)

n–k,λ.

Proof Using (30), we have

∞∑

n=0

D̃(r)
n,λ(x)

tn

n!
=

(
logλ(1 + t)

(1 + λ logλ(1 + t))
1
λ – 1

)r(
1 + λ logλ(1 + t)

) x
λ

=

( ∞∑

l=0

D̃(r)
l,λ

tl

l!

)( ∞∑

k=0

( k∑

m=0

(x)m,λS1,λ(k, m)

)
tk

k!

)

=
∞∑

n=0

( n∑

k=0

k∑

m=0

(
n
k

)
(x)m,λS1,λ(k, m)D̃(r)

n–k,λ

)
tn

n!
.

This completes the proof of the theorem. �

Theorem 2.12 Let n be a natural number. Then the following addition property for D(r)
n,λ(x)

holds:

D̃(r)
n,λ(x + y) =

n∑

k=0

k∑

m=0

(
n
k

)
D̃(r)

n–k,λ(x)S1,λ(k, m)(y)m,λ.
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Proof Observe that

∞∑

n=0

D̃(r)
n,λ(x + y)

tn

n!
=

(
logλ(1 + t)

(1 + λ logλ(1 + t))
1
λ – 1

)r(
1 + λ logλ(1 + t)

) x+y
λ (42)

=

( ∞∑

l=0

D̃(r)
l,λ(x)

tl

l!

)( ∞∑

k=0

( k∑

m=0

(y)m,λS1,λ(k, m)

)
tk

k!

)

=
∞∑

n=0

( n∑

k=0

k∑

m=0

(
n
k

)
D̃(r)

n–k,λ(x)S1,λ(k, m)(y)m,λ

)
tn

n!
. (43)

By equating (42) and (43) we complete the proof of the theorem. �

Theorem 2.13 Let n be a natural number. Then we have following formula:

D̃(–r)
n,λ =

n∑

k=0

k∑

l=0

(n
k
)

(k+r
k

)S2,λ(l + r, r)S1,λ(k + r, l + r)B(n–k–r+1)
n–k,λ (1).

Proof Using (38), we have

∞∑

n=0

D̃(–r)
n,λ

tn

n!
=

(
(1 + λ logλ(1 + t))

1
λ – 1

logλ(1 + t)

)r

=
(

t
logλ(1 + t)

)r r!
tr

1
r!

((
1 + λ logλ(1 + t)

) 1
λ – 1

)r

=

( ∞∑

m=0

B(m–r+1)
m,λ (1)

tm

m!

)
r!
tr

( ∞∑

l=r

S2,λ(l, r)
1
l!
(
logλ(1 + t)

)l
)

=

( ∞∑

m=0

B(m–r+1)
m,λ (1)

tm

m!

)
r!
tr

( ∞∑

l=0

S2,λ(l + r, r)
1

(l + r)!
(
logλ(1 + t)

)l+r
)

=

( ∞∑

m=0

B(m–r+1)
m,λ (1)

tm

m!

)
r!
tr

( ∞∑

k=r

( k–r∑

l=0

S2,λ(l + r, r)S1,λ(k, l + r)

)
tk

k!

)

=

( ∞∑

m=0

B(m–r+1)
m,λ (1)

tm

m!

)( ∞∑

k=0

( k∑

l=0

S2,λ(l + r, r)S1,λ(k + r, l + r)
(k+r

k
)

)
tk

k!

)

=
∞∑

n=0

{ n∑

k=0

k∑

l=0

(n
k
)

(k+r
k

)S2,λ(l + r, r)S1,λ(k + r, l + r)B(n–k–r+1)
n–k,λ (1)

}
tn

n!
.

This completes the proof of the theorem. �

3 Conclusions
The idea of degenerate traces back to Carlitz [1]. The aim of degenerate version is to intro-
duce new special functions, polynomials, and numbers. This is one of ways of introducing
new type special functions, polynomials, and numbers. Another way of introducing new
special functions, polynomials, and numbers is studying q-analogs of special polynomi-
als. As has been seen in the references, Kim and his research team ([2-17, 19-21]) have
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been intensively studying degenerate versions of new special functions, polynomials, and
numbers. In this paper, motivated by the works of Kim and his research team, we have
studied new type degenerate versions of Daehee numbers and polynomials of the second
kind. In this paper, we have derived their explicit, closed, and summation formulae using
their generating functions, series manipulation, and analytical means. It seems that these
types of polynomials will be continued to be studied due to their interesting reflections in
the fields of mathematics, statistics, and sciences.
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