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Abstract
Virotherapy is a therapeutic treatment for cancer. It uses genetically engineered
viruses to selectively infect, replicate in, and destroy cancer cells without damaging
normal cells. In this paper, we present a modified model to include, within the
dynamics of virotherapy, the interaction between uninfected tumor cells and
immune response. The model is analyzed qualitatively to produce five equilibrium
points. One of these equilibriums demonstrates the effect observed in virotherapy,
where the immune system demolishes infected cells as well as viruses. Moreover, the
existence and stability of the equilibrium points are established under certain criteria.
Numerical simulations are performed to display the agreement with the analytical
results. Finally, parameter analysis is carried out to illustrate which parameters in the
model affect the outcome of virotherapy.
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1 Introduction
Cancer is a malignant tumor caused by abnormal division in cells. It infects any part of the
body, damages normal cells, and in many cases metastasizes to other areas in the body.
According to the World Health Organization [1], cancer was responsible for 9.6 million
deaths worldwide in 2018. Traditional therapies for cancer such as surgery, chemotherapy,
and radiation are considered to have low efficacy and high toxicity for patients. There-
fore, efforts for finding new treatments for cancer is a nonstop process. Fortunately, ad-
vances in genetic engineering have paved the way for a new treatment called virotherapy,
which has been intensely investigated by researchers. This therapy uses genetically engi-
neered viruses to specifically infect, replicate in, and eradicate cancer cells without causing
harm to normal cells. Virotherapy seems to be a promising treatment; however, it faces the
challenge of escaping immune cells that destroy the viruses before infecting other cancer
cells [2].

Several mathematical models have addressed the interaction between cancer cells and
oncolytic viruses to gain a broader understanding of the dynamics of virotherapy. Wodarz
[3] formulated a basic model of tumor growth under virotherapy treatment. The model
illustrates the interaction between three state variables: uninfected tumor cells, infected
tumor cells, and free viruses. Later, Bajzer et al. [4] modified this model by introducing a
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generalized logistic growth of tumor cells, as well as incorporating the elimination of free
viruses due to the infection of tumor cells. Also, their model describes the direct infection
of uninfected cells from infected cells. However, Tian’s model in [5] neglected the direct
infection term between uninfected and infected cells and focused on explicitly present-
ing the parameter of virus replicability known as burst size. The analysis of Tian’s model
suggests that at large values of the burst size, tumor cells may decrease. Moreover, Ikawati
et al. [6] modified the model in [5] by replacing the bilinear incident rate with a standard
incident rate because the infection rate depends on the number of cells available at the
time of infection.

Other mathematical models have incorporated the immune response since it is one of
the major obstacles that hinder the effectiveness of viral therapy. In therapy, the presence
of viruses stimulates immune cells against cancer cells due to virus replications within
tumor cells, since these viruses are recognized by the immune system as a foreign body.
Therefore, immunity not only destroys infected cancer cells but also leads to the clearance
of viruses, which counterintuitively minimizes therapy efficiency [2, 7]. Several studies ad-
dress this side effect of the immune response. One of the early studies that investigated
the impact of immune response on tumor-virus dynamics was done by Wodarz [8]. He
proposed three models that describe the interactions between uninfected and infected tu-
mor cells with three immune responses: virus-specific Cytotoxic T Lymphocytes (CTL),
tumor-specific CTL, and both virus and tumor-specific CTL responses. Later, Ashyani et
al. [9] presented a detailed mathematical analysis with simulations of the last model in [8]
after modifying it by considering immune responses to both virus and tumor as one vari-
able in the model. The state variables of the models in [8, 9] are uninfected tumor cells,
infected tumor cells, and immune cells. Phan and Tian [10] added another state variable to
them, which describes the virus-free population. They examined the impact of innate im-
mune response on infected cancer cells and the virus population. They concluded from the
analysis that when the burst size is large the dynamics of the model is similar to [5] without
innate immunity. As for small values of the burst size, the dynamics with innate immunity
produce more equilibria. The stability of the outcome of virotherapy in all previous mod-
els was investigated analytically and numerically, presenting different criteria for tumor
eradication, partial tumor reduction, and therapy failure. Moreover, these models con-
sider the change of cell densities regarding time only. Spatiotemporal dynamics of tumor
cells under virotherapy and radiovirotherapy treatments can be found in [11, 12], where
partial differential equations are involved. Also, more general biological models involving
the diffusion of cell densities are presented in [13–15].

In this paper, we modify the mathematical model in [10] by introducing a more realistic
interaction between the innate immune system and uninfected tumor cells. This is based
on the fact that both tumor and virus-infected cells are recognized by natural killer cells
that are part of the innate immune system [16–20]. Therefore, we incorporate in the model
terms describing the stimulation of immune response due to the presence of tumors as
well as the destruction of tumors due to the release of cytokines from natural killer cells.
The aim of this work is to understand the complex interplay among tumor cells, oncolytic
viruses, and immune response. Thus, dynamical analysis is employed to investigate the
optimal therapeutic strategies for cancer remission.

The paper is organized as follows. In Sect. 2, we formulate the model in a nondimension-
alized form. Then we analyze the model qualitatively in Sect. 3 by presenting the existence
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and stability criteria for equilibrium points. Moreover, in Sect. 4 we support the analytical
results with numerical experiments as well as illustrate numerically parameter sensitivity
of the model. Finally, a brief conclusion is given in Sect. 5.

2 Mathematical model
The model describes the interaction between cancer cells, viral therapy, and immune re-
sponse. When the patient’s body is injected with the virus, the virus infects some of the
cancer cells that are then divided into uninfected and infected cells. The population of the
model consists of the densities within four groups: uninfected cancer cells x(t), infected
cancer cells y(t), free virus v(t), and immune cells z(t). Figure 1 shows a diagram of the
interaction between the different population densities in the model. We assume that un-
infected cells grow logistically with growth rate λ, and carrying capacity C, and die at a
rate d. The death of uninfected tumor cells is considered as a new addition to the model
in [10], thus, the average life span of the uninfected cancer cells is given by 1/d. Moreover,
the oncolytic virus infects the cancer cells at a rate β ; as a result, the infected cells lyse at
a rate δ. Due to lysis, new virion particles are released with burst size b. These free virus
particles decay at a rate γ .

In this model, we consider the role of immune response and its impact on both cancer
cells and free viruses. In [10] the model describes the effect of immune cells on the infected
cells and free viruses. However, here we incorporate the effect of immune response on
both uninfected and infected cancer cells as well as its impact on viruses. Therefore, we
assume that the immune cells kill both types of cancer cells: the uninfected and infected
cells at rates α and μ, respectively. Also, the immune cells destroy free viruses at a rate k.
The existence of both the uninfected and infected cells stimulates the immune response
at rates s2 and s1, respectively. Finally, the immune response decays at a rate ρ . Therefore,
the new parameters in our model are α, d, and s2.

The dynamics of the model are governed by the following system of nonlinear ordinary
differential equations, where all the parameters in the system are nonnegative:

dx
dt

= λx
(

1 –
x + y

C

)
– βxv – αxz – dx,

dy
dt

= βxv – μyz – δy, (1)

Figure 1 Compartmental diagram for the
interaction between different populations for model
(1). x(t) and y(t) are the densities of uninfected and
infected tumor cell populations, respectively. v(t) is
the density of free virus population. z(t) is the
density of immune cells population. The new terms
are shown in red
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dv
dt

= bδy – βxv – kvz – γ v,

dz
dt

= s1yz + s2xz – ρz,

with initial conditions

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, v(0) = v0 ≥ 0, z(0) = z0 ≥ 0.

We nondimensionalize the model to reduce the number of its parameters by setting

t =
1
δ
τ , x = Cx̄, y = Cȳ, v = Cv̄, z = Cz̄,

and renaming the parameters

r1 =
λ

δ
, a =

βC
δ

, h1 =
αC
δ

, d1 =
d
δ

, c =
μC
δ

,

h2 =
kC
δ

, e =
γ

δ
, m1 =

s1C
δ

, m2 =
s2C
δ

, n =
ρ

δ
.

Substituting the above in system (1), we obtain

dx
dt

= r1x
(
1 – (x + y)

)
– axv – h1xz – d1x,

dy
dt

= axv – cyz – y,

dv
dt

= by – axv – h2vz – ev,

dz
dt

= m1yz + m2xz – nz.

(2)

Also, the initial conditions become

x(0) =
x0

C
, y(0) =

y0

C
, v(0) =

v0

C
, z(0) =

z0

C
.

Note that for simplicity we removed all the bars and write τ as t.

3 Qualitative analysis
In this section, we study model (2) qualitatively. First, we determine the positive and
bounded region for the state variables, then we obtain the steady-state solutions of the
model and examine their stability. The main results are given in the following subsections.

3.1 Positivity and boundedness
Theorem 1 All the solutions of system (2) are nonnegative and bounded in some region Γ

subject to nonnegative initial conditions in Γ .

Proof Rewrite the first equation of model (2) as

dx
x

= φ1(x, y, v, z) dt,
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where

φ1(x, y, v, z) = r1
(
1 – (x + y)

)
– av – h1z – d1.

By integrating over [0, t], we can obtain

x(t) = x(0) exp

[∫ t

0
φ1(x, y, v, z) ds

]
.

Since x(0) ≥ 0, we have x(t) ≥ 0 for all t ≥ 0.
From the second equation in (2), we note that

dy
dt

≥ –(cz + 1)y,

then it can be written as

dy
y

≥ φ2(y, z) dt,

where

φ2(y, z) = –(cz + 1).

Integration over [0, t] gives

y(t) ≥ y(0) exp

[∫ t

0
φ2(y, z) ds

]
.

If y(0) ≥ 0, then we have y(t) ≥ 0 for all t ≥ 0.
Similarly, the third equation in (2) may be written as

dv
v

≥ φ3(x, z) dt,

where

φ3(x, z) = –(ax + h2z + e).

Thus,

v(t) ≥ v(0) exp

[∫ t

0
φ3(x, z) ds

]
.

Again, if v(0) ≥ 0, then we have v(t) ≥ 0 for all t ≥ 0.
Finally, we rewrite the last equation in (2) as

dz
z

= φ4(x, y) dt,
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where

φ4(x, y) = (m1y + m2x – n).

Therefore,

z(t) = z(0) exp

[∫ t

0
φ4(x, y) ds

]
.

Also, since z(0) ≥ 0, we have z(t) ≥ 0 for all t ≥ 0. Hence, the solution (x(t), y(t), v(t), z(t))
is nonnegative for nonnegative initial data.

Next, we prove that all solutions will remain bounded. We start by rewriting the first
equation in (2) as follows:

dx
dt

≤ r1x(1 – x).

Now, let us consider the differential equation dU
dt = r1U(1 – U) with the initial condition

U(0) = U0. It is possible to check that it has the following solution:

U(t) =
U0

U0 + (1 – U0)e–r1t .

Hence, limt→∞ sup U(t) = 1.
We know that dx

dt ≤ dU
dt . Thus, limt→∞ sup x(t) ≤ limt→∞ sup U(t). Therefore,

lim
t→∞ sup x(t) ≤ 1.

Also, we note that

dx
dt

+
dy
dt

= r1x
(
1 – (x + y)

)
– h1xz – d1x – cyz – y

≤ r1x
(
1 – (x + y)

)
≤ r1

(
1 – (x + y)

)
,

which gives

lim
t→∞ sup

(
x(t) + y(t)

) ≤ 1.

Again, by rewriting the third equation in (2) as

dv
dt

≤ by – ev

≤ b – ev,

we obtain

lim
t→∞ sup v(t) ≤ b

e
.
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Let

w(t) = x(t) + y(t) +
h
m

z(t),

where h = min(h1, c), m = max(m1, m2). Then

dw
dt

=
dx
dt

+
dy
dt

+
h
m

dz
dt

= r1x
(
1 – (x + y)

)
– h1xz – d1x – cyz – y +

h
m

m1yz +
h
m

m2xz –
h
m

nz

≤ r1x – d1x – y –
h
m

nz

≤ r1 – σ

(
x + y +

h
m

z
)

,

where σ = min(d1, 1, n). Thus,

lim
t→∞ sup w(t) ≤ r1

σ
.

Hence, all the solutions of model (2) are nonnegative and bounded in the following region:

Γ =
{

(x, y, v, z) ∈R
4
+

∣∣∣ x ≤ 1, x + y ≤ 1, v ≤ b
e

, x + y +
h
m

z ≤ r1

σ

}
.

Γ is positively invariant. This means that every solution with initial conditions in Γ re-
mains there for all t >0, that is, model (2) is well posed. �

3.2 Equilibrium points and basic reproduction number
The equilibrium points of the system are the steady-state solutions obtained by setting
the rates of the equations in (2) to zero. We obtain the following five equilibrium points
Ei = (xi, yi, vi, zi), where i = 0, 1, 2, 3, 4:

E0 = (0, 0, 0, 0),

E1 =
(

1 –
d1

r1
, 0, 0, 0

)
,

E2 =
(

e
a(b – 1)

,
e

a(b – 1)

(
a(b – 1)(r1 – d1) – er1

r1e + a(b – 1)

)
,

a(b – 1)(r1 – d1) – er1

a(r1e + a(b – 1))
, 0

)
,

E3 =
(

n
m2

, 0, 0,
r1m2 – (r1n + d1m2)

h1m2

)
,

E4 = (x4, y4, v4, z4),

where E4 satisfies the following equations:

r1
(
1 – (x4 + y4)

)
– av4 – h1z4 – d1 = 0,

y4 =
ax4v4

cz4 + 1
,
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v4 =
by4

ax4 + h2z4 + e
,

m1y4 + m2x4 – n = 0.

The equilibrium points E0, E1, and E2 are similar to those in [10] when d1 = 0. E0 repre-
sents a free equilibrium where all cancer cells, immune cells, and viruses tend to zero. E1

represents a case of no success in treatment when uninfected tumor cells prevail with no
existence of any other cells or viruses. However, E2 denotes a partial victory for virother-
apy treatment where there is coexistence of uninfected and infected cells as well as viruses
as described in the equilibrium. The new equilibrium point that is different from the equi-
libria in [10] is E3, where both the infected cells and free viruses tend to zero. This effect
is observed in virotherapy [2] where the immune system responds quickly to the presence
of viruses and infected cells in the body; as a result, the immune cells destroy the infected
cells as well as viruses. As for E4, the coexistence of all cells and viruses is present.

Basic reproduction number. Here, we consider the basic reproduction number as the
number of secondary cases of infection generated from a single virus in a population where
all tumor cells are susceptible to infection. LetP = (y, x, v, z). Then model (2) can be rewrit-
ten as P ′ = F (P) – V(P), where

F (P) =

⎡
⎢⎢⎢⎣

axv
0
0
0

⎤
⎥⎥⎥⎦ ,

and

V(P) =

⎡
⎢⎢⎢⎣

cyz + y
–r1x(1 – (x + y)) + axv + h1xz + d1x

–by + axv + h2vz + ev
–m1yz – m2xz + nz

⎤
⎥⎥⎥⎦ .

Now, evaluating the Jacobian of F at E1, we have

D
(
F (E1)

)
=

⎡
⎢⎢⎢⎣

0 0 a(1 – d1
r1

) 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ .

Also,

D
(
V(E1)

)
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0
r1 – d1 r1 – d1 a(1 – d1

r1
) h1(1 – d1

r1
)

–b 0 a(1 – d1
r1

) + e 0
0 0 0 –m2(1 – d1

r1
) + n

⎤
⎥⎥⎥⎥⎦ .
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Let F and V be as follows:

F =

⎡
⎢⎣

0 0 a(1 – d1
r1

)
0 0 0
0 0 0

⎤
⎥⎦ ,

and

V =

⎡
⎢⎣

1 0 0
r1 – d1 r1 – d1 a(1 – d1

r1
)

–b 0 a(1 – d1
r1

) + e

⎤
⎥⎦ .

By calculating the next generation matrix [21], we obtain

FV –1 =

⎡
⎢⎣

ab(r1–d1)
a(r1–d1)+er1

0 –a(r1–d1)
a(d1–r1)–er1

0 0 0
0 0 0

⎤
⎥⎦ .

Then, the basic reproduction number R0 is given by

R0 = ρ
(
FV –1) =

ab(r1 – d1)
a(r1 – d1) + er1

,

where ρ(FV –1) denotes the spectral radius of a matrix FV –1.
The equilibrium points have biological meaning, therefore all of its components must

be nonnegative and exist in Γ . One can see that E0 exists always, whereas E1 exists only if
r1 > d1. On the other hand, if the conditions b > 1 and R0 > 1 are satisfied, then E2 exists.
As for E3, its existence condition is m2(r1–d1)

nr1
> 1.

3.3 Stability of equilibria
We investigate the local stability of the equilibrium points by using the linearization
method [22]. The method, in brief, is to evaluate the Jacobian matrix of the nonlinear
system at an equilibrium point and then prove that the eigenvalues of the matrix of the
linearized system are negative. Moreover, we examine the global stability of the equilib-
rium points using Lyapunov functions [23].

Local stability

Theorem 2 The equilibrium point E0 is locally asymptotically stable if r1 < d1.

Proof The Jacobian matrix of system (2) at E0 gives

J(E0) =

⎡
⎢⎢⎢⎣

r1 – d1 0 0 0
0 –1 0 0
0 b –e 0
0 0 0 –n

⎤
⎥⎥⎥⎦ .

Thus, the eigenvalues of J(E0) are

λ1 = r1 – d1, λ2 = –1, λ3 = –e, λ4 = –n.
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Clearly, all eigenvalues are negative and λ1 is negative if r1 < d1. Hence, E0 is locally asymp-
totically stable if r1 < d1. �

Theorem 3 The equilibrium point E1 is locally asymptotically stable if m2(r1–d1)
nr1

< 1 and
R0 < 1.

Proof By evaluating the Jacobian matrix of system (2) at E1, we get

J(E1) =

⎡
⎢⎢⎢⎢⎣

d1 – r1 d1 – r1 –a(1 – d1
r1

) –h1(1 – d1
r1

)
0 –1 a(1 – d1

r1
) 0

0 b –a(1 – d1
r1

) – e 0
0 0 0 m2(1 – d1

r1
) – n

⎤
⎥⎥⎥⎥⎦ .

Solving the characteristic equation |J(E1) – λI| = 0, we obtain the eigenvalues: λ1 =
m2(1 – d1/r1) – n, λ2 = d1 – r1, and λ3,4 satisfy the equation

λ2 + a1λ + a2 = 0,

where

a1 = a
(

1 –
d1

r1

)
+ e + 1,

a2 = a
(

1 –
d1

r1

)
+ e – ba

(
1 –

d1

r1

)
.

It is obvious that λ1 is negative if m2(r1–d1)
nr1

< 1 and λ2 is always negative. By using Routh–
Hurwitz criteria [22], the eigenvalues λ3,4 are negative if a1 > 0 and a2 > 0. Clearly a1 is
positive. As for a2, we have

a2 = a
(

1 –
d1

r1

)
+ e – ba

(
1 –

d1

r1

)

= a
(

1 –
d1

r1

)
(1 – b) + e

=
a
r1

(r1 – d1)(1 – b) + e

=
a
r1

(r1 – d1) –
ab
r1

(r1 – d1) + e.

Thus, for a2 to be positive we must have ab(r1 – d1) < a(r1 – d1) + r1e, that is, R0 < 1. Hence,
E1 is locally asymptotically stable if m2(r1–d1)

nr1
< 1 and R0 < 1. �

Theorem 4 The equilibrium point E2 is locally asymptotically stable if m1y2 + m2x2 < n
and r1 > a.
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Proof The Jacobian matrix of system (2) at E2 is

J(E2) =

⎡
⎢⎢⎢⎣

–r1x2 –r1x2 –ax2 –h1x2

av2 –1 ax2 –cy2

–av2 b –ax2 – e –h2v2

0 0 0 m1y2 + m2x2 – n

⎤
⎥⎥⎥⎦ .

After solving the characteristic equation |J(E2) – λI| = 0, we find one eigenvalue explicitly,
λ1 = m1y2 + m2x2 – n, whereas other eigenvalues λ2,3,4 satisfy the following equation:

λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = r1x2 + 1 + ax2 + e,

a2 = r1x2(1 + ax2 + e) + (r1 – a)y2,

a3 =
(
r1e + a(b – 1)

)
y2.

It is clear that a1 > 0 and a3 > 0 since E2 exists if b > 1. We need to show that a1a2 > a3,
then by using Routh–Hurwitz criteria, we prove that the eigenvalues λ2,3,4 are negative.
Now,

a1a2 – a3 = (r1x2 + 1 + ax2 + e)
(
r1x2 + ar1x2

2 + r1ex2
)

+ y2
((

r2
1 – a2)x2

+ r1 – a(e + b)
)

=
e

a(b – 1)

(
r1e

a(b – 1)
+ 1 +

ae
a(b – 1)

+ e
)(

r1 +
ar1e

a(b – 1)
+ r1e

)

+
y2

a(b – 1)
((

r2
1 – a2)e + r1a(b – 1) – a2(b – 1)(e + b)

)

=
e

a(b – 1)

(
r1e

a(b – 1)
+ 1 +

ae
a(b – 1)

+ e
)(

r1 +
ar1e

a(b – 1)
+ r1e

)

+
y2

a(b – 1)
(
e
(
r2

1 – a2b
)

+ a(b – 1)(r1 – ab)
)
.

Note that we have used x2 = e
a(b–1) . For a1a2 –a3 to be positive, we must have r1 > ab, which

leads to the condition r1 > a since b > 1. Also, λ1 is negative if m1y2 + m2x2 < n. Thus, E2

is locally asymptotically stable if r1 > a and m1y2 + m2x2 < n. �

Theorem 5 The equilibrium point E3 is locally asymptotically stable if

(cz3 + 1)(ax3 + h2z3 + e)
abx3

> 1.
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Proof Evaluating the Jacobian matrix of system (2) at E3, we get

J(E3) =

⎡
⎢⎢⎢⎣

–r1x3 –r1x3 –ax3 –h1x3

0 –cz3 – 1 ax3 0
0 b –ax3 – h2z3 – e 0

m2z3 m1z3 0 0

⎤
⎥⎥⎥⎦ .

The characteristic equation |J(E3) – λI| = 0 gives

(
λ2 + a1λ + a2

)(
λ2 + b1λ + b2

)
= 0,

where

a1 = ax3 + h2z3 + e + cz3 + 1,

a2 = cax3z3 + ax3 – abx3 + ch2z2
3 + h2z3 + cez3 + e,

b1 = r1x3,

b2 = m2h1x3z3.

Then, by Routh–Hurwitz criteria, the characteristic equation has negative roots if a1 > 0,
a2 > 0, b1 > 0, and b2 > 0. Clearly, a1, b1, and b2 are positive, while a2 > 0 if

cax3z3 + ax3 + ch2z2
3 + h2z3 + cez3 + e > abx3,

cz3(ax3 + e) + ax3 + e + h2z3(cz3 + 1) > abx3,

(ax3 + e)(cz3 + 1) + h2z3(cz3 + 1) > abx3,

(cz3 + 1)(ax3 + h2z3 + e)
abx3

> 1.

Thus, E3 is locally asymptotically stable if (cz3+1)(ax3+h2z3+e)
abx3

> 1. �

Theorem 6 The equilibrium point E4 is locally asymptotically stable provided ai > 0,
where i = 1, 2, 3, 4, and a1a2a3 > a2

3 + a2
1a4. Here a1, a2, a3, and a4 are provided in the proof.

Proof Evaluating the Jacobian at the equilibrium point E4 and solving the characteristic
equation |J(E4) – λI| = 0, we obtain the equation

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0,

where

a1 = (a + r1)x4 + (h2 + c)z4 + e + 1,

a2 = (r1x4 + cz4 + 1)(ax4 + h2z4 + e) + r1x4(cz4 + 1 + av4) – abx4 + cm1y4z4

+ h1m2x4z4 – a2x4v4,
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a3 = r1x4(cz4 + 1 + av4)(ax4 + h2z4 + e) – abx4(r1x4 – av4) + am1h2x4v4z4

+ (ax4 + h2z4 + e)(cm1y4z4 + h1m2x4z4) + r1cx4y4z4(m1 – m2) + h1am1x4v4z4

+ h1cm2x4(z4)2 + h1m2x4z4 – a2x4v4(r1x4 + cz4 + 1) – ah2m2x4v4z4,

a4 = ax4(r1x4 – av4)(m1h2v4z4) – ah2m2x4v4z4(r1x4 + cz4 + 1)

+ (ax4 + h2z4 + e)
(
r1cx4y4z4(m1 – m2) + h1am1x4v4z4

+ h1cm2x4(z4)2 + h1m2x4z4
)

– (am1v4z4 + bm2z4)
(
ax4(cy4 + h1x4)

)
.

Clearly, a1 > 0. Hence, by the Routh–Hurwitz criterion, the local asymptotic stability of
E4 is guaranteed under the conditions stated in the theorem. �

Remark 7 Note that if the equilibrium point E0 is stable, then E1 does not exist. Similarly,
if E1 exists, then E0 is unstable. Also, if E1 is stable, then neither E2 nor E3 exists and vice
versa.

Global stability

Theorem 8 The equilibrium point E0 is globally asymptotically stable if r1 < d1 and b < 1.

Proof Define the Lyapunov function as

L(x, y, v, z) =
m2c

m1h1
x + y + v +

c
m1

z.

Clearly, L is a positive definite function. Computing the derivative of L along the solutions
of model (2), we get

L′ =
m2c

m1h1

(
r1x

(
1 – (x + y)

)
– axy – h1xz – d1x

)
+ axv – cyz – y

+ by – axv – h2vz – ev +
c

m1
(m1yz + m2xznz).

Collecting terms, we have

L′ =
m2c

m1h1
(r1 – d1)x –

m2c
m1h1

r1x2 –
m2c

m1h1
r1xy –

m2c
m1h1

axv

+ xz
(

–
m2c
m1

+ m2
c

m1

)
+ yz

(
–c + m1

c
m1

)
+ (b – 1)y – h2vz – ev –

nc
m1

z

≤ m2c
m1h1

(r1 – d1)x + (b – 1)y – ev –
nc
m1

z.

If r1 < d1 and b < 1, then L′ ≤ 0 and L′ = 0 if and only if x = y = v = z = 0. Thus, the largest
invariant set in {(x, y, v, z) ∈ Γ : L′ = 0} is E0. Hence, by La Salle’s invariance principle [23],
E0 is globally asymptotically stable. �

Theorem 9 The equilibrium point E1 is globally stable if 1 – er1
a < b < 1 and R1 < 1, where

R1 = h1m1(1–b)
ncr1x2

1
(x1 + cm2r1x2

1
4m1h1(1–b) )2.
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Proof Define the positive definite Lyapunov function

L(x, y, v, z) =
2(1 – b)

r1x2
1

(x – x1)2 + y + v +
c

m1
z.

By differentiating L and using d1 = r1(1 – x1), we obtain

L′ =
4(1 – b)

r1x2
1

(x – x1)x′ + y′ + v′ +
c

m1
z′

=
4(1 – b)

r1x2
1

(x – x1)
[
–r1x2 – r1xy – axv – h1xz + r1xx1

]

+ axv – cyz – y + by – axv – h2vz – ev +
c

m1
(m1yz + m2xz – nz)

=
4(1 – b)

r1x2
1

(
–r1x(x – x1)2 – (r1y + av)

(
x –

x1

2

)2

+ (r1y + av)
x2

1
4

– h1x2z + h1x1xz
)

+ (b – 1)y – h2vz – ev +
c

m1
(m2xz – nz).

Collecting and simplifying terms, we get

L′ ≤ y
(

b – 1 +
4(1 – b)

r1x2
1

r1x2
1

4

)
+ v

(
4(1 – b)

r1x2
1

ax2
1

4
– e

)

+ z
(

–
4(1 – b)

r1x2
1

h1x2 +
(

4(1 – b)
r1x2

1
h1x1 +

cm2

m1

)
x –

cn
m1

)

= v
(

a(1 – b)
r1

– e
)

–
4(1 – b)

r1x2
1

h1z
(

x –
1
2

(
x1 +

cm2r1x2
1

4m1h1(1 – b)

))2

+
(1 – b)

r1x2
1

h1

(
x1 +

cm2r1x2
1

4m1h1(1 – b)

)2

–
cn
m1

≤ v
(

a(1 – b)
r1

– e
)

+
(1 – b)

r1x2
1

h1

(
x1 +

cm2r1x2
1

4m1h1(1 – b)

)2

–
cn
m1

.

If 1 – er1
a < b < 1 and R1 < 1, then E1 is globally stable. �

Theorem 10 The equilibrium point E2 is globally stable if m2cax2 < h1em1, 1 +
r1(r1e+a(b–1))
a(r1–d1)+er1

< R0 < 1 + r1e(r1e+a(b–1))
ab(a(r1–d1)+er1) , 1 < b < r1e

a , and R2 < 1, where R2 = v2m1
cn (h2 + ce

b–1 ) +
h1m1e

acn .

Proof Define the Lyapunov function as follows:

L(x, y, v, z) =
e

ax2

(
x – x2 – x2 ln

x
x2

)
+ y – y2 – y2 ln

y
y2

+ v – v2 – v2 ln
v
v2

+
c

m1
z.

It is simple to show that L is a positive definite function, since the function f (u) = u – 1 –
ln(u) is positive for all u > 0. Evaluating L′, we have

L′ =
e

ax2

(
1 –

x2

x

)[
r1x

(
1 – (x + y)

)
– axv – h1xz – d1x

]
+

(
1 –

y2

y

)
[axv – cyz – y]

+
(

1 –
v2

v

)
[by – axv – h2vz – ev] +

c
m1

(m1yz + m2xz – nz). (3)
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Since E2 is an equilibrium point to system (2), then

d1 =
1
x2

(
r1x2

(
1 – (x2 + y2)

)
– ax2v2

)
, (4)

0 = –ax2v2 + y2, (5)

e =
1
v2

(by2 – ax2v2). (6)

Substituting (4)–(6) into (3), we get

L′ =
e

ax2

(
1 –

x2

x

)[
–r1xx2

(
x
x2

– 1
)

– r1x2y2

(
xy

x2y2
–

x
x2

)

– ax2v2

(
xv

x2v2
–

x
x2

)
– h1xz

]

+
(

1 –
y2

y

)[
–ax2v2

(
1 –

xv
x2v2

)
– cyz – y2

(
y
y2

– 1
)]

+
(

1 –
v2

v

)[
–by2

(
v
v2

–
y
y2

)

– ax2v2

(
xv

x2v2
–

v
v2

)
– h2vz

]
+

c
m1

(m1yz + m2xz – nz).

Collecting and simplifying terms yields

L′ = –
e
a

r1x
(

1 –
x2

x

)(
x
x2

– 1
)

+
x
x2

[
e
a

(r1y2 + av2) + ax2v2

]
+

y
y2

[
e
a

r1y2 + by2

]

–
e
a

r1y2
xy

x2y2
–

e
a

r1y2 +
v
v2

[ev2 + ax2v2 – by2] +
xv

x2v2
[–ev2 + ax2v2 – ax2v2]

– ev2 +
e

ax2
h1(–xz + x2z) – ax2v2 +

y2

y
ax2v2 –

xvy2

x2v2y
ax2v2

– cyz + cy2z – y2

(
1 –

y2

y

)(
y
y2

– 1
)

+ by2 –
v2y
vy2

by2 – ax2v2 – h2vz + h2v2z +
c

m1
(m1yz + m2xz – nz). (7)

From the inequality of arithmetic and geometric means, we have

(
1 –

x2

x

)(
x
x2

– 1
)

=
x
x2

+
x2

x
– 2 > 0.

Employing this and recollecting terms in (7), we obtain

L′ ≤ x
x2

[
e
a

(r1y2 + av2) + ax2v2

]
+

y
y2

[
e
a

r1y2 + by2

]

–
e
a

r1y2 + by2 +
v
v2

[ev2 + ax2v2 – by2]
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+ xz
(

–
e

ax2
h1 +

c
m1

m2

)
+ z

(
e
a

h1 + cy2 + h2v2 –
c

m1
n
)

– ax2v2

(
1 –

y2

y

)

– y2

(
1 –

y2

y

)(
y
y2

– 1
)

– ax2v2.

Using (5) and (6) and simplifying, we get

L′ ≤ x
x2

[
e

ax2
r1x2y2 + by2

]
+

y
y2

[
e

ax2
r1x2y2 + by2

]

+ y2

(
b –

e
a

r1

)
+ xz

(
–

e
ax2

h1 +
c

m1
m2

)

+ z
(

e
a

h1 + c
e

b – 1
v2 + h2v2 –

c
m1

n
)

. (8)

From (4), we have

e
ax2

r1x2y2 + by2 =
e

ax2

[
r1x2 – r1x2

2 – ax2v2 – d1x2
]

+ by2

≤
(

r1

a
– v2

)
e –

e
a

r1x2 + by2

= –
a(r1 – d1) + er1

a(r1e + a(b – 1))

[
–

r1(r1e + a(b – 1))
a(r1 – d1) + er1

+ R0 – 1
]

–
bx2(a(r1 – d1) + er1)

r1e + a(b – 1)

[
–R0 + 1 +

er1(r1e + a(b – 1))
ab(a(r1 – d1) + er1)

]
.

If m2cax2 < h1em1, 1 + r1(r1e+a(b–1))
a(r1–d1)+er1

< R0 < 1 + r1e(r1e+a(b–1))
ab(a(r1–d1)+er1) , 1 < b < r1e

a , and R2 = v2m1
cn (h2 +

ce
b–1 ) + h1m1e

acn < 1, then L′ ≤ 0. Thus, E2 is globally stable. �

Theorem 11 The equilibrium point E3 is globally stable if b < 1 and h1m1
n > r1

z3
+ ac

e .

Proof Define the Lyapunov function as follows:

L(x, y, v, z) =
n

h1x3

(
x – x3 – x3 ln

x
x3

)
+

m1

c
y +

m1

c
v + z – z3 – z3 ln

z
z3

.

Clearly, L is a positive definite function. Differentiating L, we get

L′ =
n

h1x3

(
1 –

x3

x

)[
r1x

(
1 – (x + y)

)
– axv – h1xz – d1x

]
+

m1

c
[axv – cyz – y]

+
m1

c
[by – axv – h2vz – ev] +

(
1 –

z3

z

)
[m1yz + m2xz – nz]. (9)

Substituting d1 = (r1x3 – r1x2
3 – h1x3z3)/x3 into (9) and simplifying, we have

L′ = –
nr1

h1
x
(

1 –
x3

x

)(
x
x3

– 1
)

–
nr1

h1x3
xy +

nr1

h1
y –

an
h1x3

xv +
an
h1

v –
n
x3

xz

+
n
x3

z3x + nz – nz3 +
m1

c
[axv – cyz – y] +

m1

c
[by – axv – h2vz – ev] + m1yz

+ m2xz – nz – m1yz3 – m2xz3 + nz3. (10)
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Using x3 = n/m2 and collecting terms, we obtain

L′ ≤ y
[

nr1

h1
+

m1

c
(b – 1) – m1z3

]
+ v

[
an
h1

–
m1

c
e
]

+ x
[

n
x3

z3 – m2z3

]
– m2xz + m2xz

=
nz3

h1
y
[

r1

z3
+

m1h1

ncz3
(b – 1) –

h1m1

n

]
+

ne
h1c

v
[

ac
e

–
h1m1

n

]
.

If b < 1 and h1m1
n > r1

z3
+ ac

e , then L′ ≤ 0. Hence, E3 is globally stable. �

4 Numerical analysis
In this section, we solve system (2) numerically and illustrate different simulations of the
model using ode45, a solver in Matlab for ordinary differential equations [27]. Also, we
explore the sensitivity of the parameters to gain more insight into those critical param-
eters that may lead to optimal therapeutic strategies. The values of the parameters are
taken from [10, 24–26] and are shown in Table 1. The numerical simulations are demon-
strated for the nondimensionalized model (2), where all population classes are divided
by the carrying capacity of tumor cells. Therefore, we indicate the classes in the popula-
tion as relative densities of uninfected cells, infected cells, free virus, and immune cells.
Also, we refer to the nondimensionalized time as a relative time where one relative time
is equivalent to 18 hours, that is, one apoptotic cycle for infected cells. The values of the
nondimensionalized parameters are as follows [10]:

r1 = 0.36, a = 0.1, h1 = 0.36, d1 = 0.1278, c = 0.48, b = 2,

h2 = 0.16, e = 0.2, m1 = 0.6, m2 = 0.29, n = 0.036.
(11)

4.1 Numerical experiments
We solve model (2) numerically with the following different initial values:

(a) x(0) = 0.5, y(0) = 0, v(0) = 0.01, z(0) = 0.01;
(b) x(0) = 0.7, y(0) = 0, v(0) = 0.1, z(0) = 0.1;
(c) x(0) = 0.9, y(0) = 0, v(0) = 0.5, z(0) = 0.2.

Table 1 The model parameters, their description and values

Parameter Description Value Units Reference

λ Tumor growth rate 2× 10–2 1/h [24]
d Death rate of uninfected tumor cells 0.0071 1/h [25]
β Infection rate of the virus 7/10× 10–9 mm3/h virus [24]
δ Death rate of infected tumor cells 1/18 1/h [24]
b Burst size of free virus 50 viruses/cell [24]
γ Clearance rate of the virus 0.0119 1/h [26]
α Immune killing rate of uninfected tumor

cells
2× 10–8 mm3/h immune cell estimated

μ Immune killing rate of infected tumor
cells

2× 10–8 mm3/h immune cell [24]

k Immune killing rate of the virus 10–8 mm3/h immune cell [24]
s1 Stimulation rate of the immune response

by infected cells
5.6× 10–7 mm3/h infected cell [24]

s2 Stimulation rate of the immune response
by uninfected cells

5.6× 10–7 mm3/h uninfected cell estimated

ρ Clearance rate of the immune response 0.002 1/h [10]
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Figure 2 Numerical simulations of model (2) showing the time variation in the size of all relative populations
of the model with various initial values. For these simulations, we used the following parameter values:
r1 = 0.36, a = 0.1, h1 = 0.36, d1 = 0.39, c = 0.48, b = 2, h2 = 0.16, e = 0.2,m1 = 0.6,m2 = 0.29, and n = 0.036

Figure 3 Numerical simulations of model (2) showing the time variation in the size of all relative populations
of the model with various initial values. For these simulations, we used the following parameter values:
r1 = 0.3, a = 0.1, h1 = 0.36, d1 = 0.1278, c = 0.48, b = 2, h2 = 0.16, e = 0.2,m1 = 0.6,m2 = 0.29, and n = 0.19

Also, we set the parameters as in (11); however, we may change certain values of the
parameters to satisfy the existence and stability constraints for each equilibrium point.
First, we change the relative death rate to the value d1 = 0.39. Figure 2 shows that the
solution curves tend to the equilibrium point E0 = (0, 0, 0, 0) since its stability condition
r1 < d1 is satisfied. Thus, E0 is locally asymptotically stable for different sets of the ini-
tial conditions. If we change the parameters r1 and n to be 0.3, 0.19, respectively, then
the conditions m2(r1–d1)

nr1
< 1 and R0 < 1 are achieved, and thus, E1 = (0.5740, 0, 0, 0) is lo-

cally asymptotically stable (see Fig. 3). By setting the parameters at b = 9 and n = 0.19,
the criteria for the existence and stability of E2 are fulfilled. Therefore, Fig. 4 illustrates
the local asymptotic stability of E2 = (0.25, 0.0326, 1.3046, 0) with different initial val-
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Figure 4 Numerical simulations of model (2) showing the time variation in the size of all relative populations
of the model with various initial values. For these simulations, we used the following parameter values:
r1 = 0.36, a = 0.1, h1 = 0.36, d1 = 0.1278, c = 0.48, b = 9, h2 = 0.16, e = 0.2,m1 = 0.6,m2 = 0.29, and n = 0.19

Figure 5 Numerical simulations of model (2) showing the time variation in the size of all relative populations
of the model with various initial value. For these simulations, we used the following parameter values:
r1 = 0.36, a = 0.1, h1 = 0.36, d1 = 0.1278, c = 0.48, b = 2, h2 = 0.16, e = 0.2,m1 = 0.6,m2 = 0.29, and n = 0.036

ues. On the other hand, if we keep the parameters set as in (11), then the conditions
for E3 are satisfied and E3 = (0.1241, 0, 0, 0.5209) is locally asymptotically stable as seen
in Fig. 5. Finally, if we change the values of the following parameters: a = 0.3, h1 = 0.6,
c = 0.3, e = 0.1, m2 = 0.1, n = 0.05, then Fig. 6 shows the local asymptotic stability of
E4 = (0.3752, 0.0208, 0.1878, 0.0555). Hence, from these experiments we may say that the
numerical and qualitative results are in good agreement.

4.2 Parameter analysis
In this section, we explore the changes in the dynamics of model (2) by varying two poten-
tial parameters for virotherapy: the burst size (b) and the relative clearance rate of viruses
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Figure 6 Numerical simulations of model (2) showing the time variation in the size of all relative populations
of the model with various initial values. For these simulations, we used the following parameter values:
r1 = 0.36, a = 0.3, h1 = 0.6, d1 = 0.1278, c = 0.3, b = 2, h2 = 0.16, e = 0.1,m1 = 0.6,m2 = 0.1, and n = 0.05

(e). Also, we examine the effect of varying the new parameters in our model on treatment:
that is, the relative immune killing rate of uninfected tumor cells (h1) and the relative stim-
ulation rate of immune response by uninfected cells (m2). The numerical simulations are
carried out when the relative infection rate is low (a = 0.1) and when it is high (a = 0.5). All
parameters are set as in (11) except for the relative clearance rate of immune response, we
set n = 0.16. Also, we set the initial values to be: x(0) = 0.5, y(0) = 0, v(0) = 0.01, z(0) = 0.01.

The burst size (b) represents the number of new viruses resulting from lysis of infected
cancer cells. Figure 7 shows the time variation in the size of all relative populations. We
find that whether the infection rate is low or high when b is small, the model tends to the
equilibrium point E3. This is probably because there are not enough virions, therefore,
the immune cells manage to eliminate all viruses and infected cells. However, when b is
large the model approaches E2. This means that an increase in b leads to partial success
for virotherapy treatment. However, when b increases even more for a high infection rate,
oscillations with decay [28] occur in the solution curves of uninfected cells, infected cells,
and viruses. This effect is also observed in [10, 24].

Next, we vary h1, the relative killing rate of uninfected cancer cells due to immune cells.
Figure 8 illustrates the time variations in each compartment of model (2) with low and
high infection rates. We find that, for low viral infection, whether the value of h1 is small
or large, the model tends to the equilibrium E3. This may be because the infection rate
is small and, thus, the immune cells eradicate infected cells and viruses easily. The larger
the value of h1 the lesser the time the immune cells take to kill tumor cells. As a result,
both tumor and immune cells decrease. On the other hand, for high viral infection, the
model approaches E2 whether h1 is large or small. This reflects the significance of the
high infection rate.

As for the relative viral clearance rate e, we find in Fig. 9 that whether e takes small or
large values, the model tends to the equilibrium E3 when the infection rate is low. Similar
results are illustrated for the high infection rate when e is large. However, for small values
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Figure 7 Numerical simulations of model (2) with initial values: x(0) = 0.5, y(0) = 0, v(0) = 0.01, and z(0) = 0.01,
showing the time variation in each compartment of the model with varying values of b as shown in the
legend (other parameters are set as in (11) except n = 0.16). The simulations are carried out for two cases of
infection rate, (a) low infection (a = 0.1) and (b) high infection (a = 0.5)

of e, the model approaches E2. This means that if the viral clearance rate is not small, then
no matter what the viral infection rate is, the treatment will not be effective.

Finally, we vary m2, the relative rate of stimulating immune response due to uninfected
tumor cells. We find that, for low viral infection, the model tends to E3. As m2 becomes
large, the response of immune cells increases; consequently, the size of uninfected tumor
cells decreases (see Fig. 10). For high viral infection, the model approaches E3 as m2 be-
comes large. However, when m2 is small with a high infection rate, the model tends to E2.
Although E2 represents partial success for virotherapy, it is not the case here as shown in
Fig. 10. The size of tumor cells is much less when m2 is large than when m2 is small. Thus,
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Figure 8 Numerical simulations of model (2) with initial values: x(0) = 0.5, y(0) = 0, v(0) = 0.01, and z(0) = 0.01,
showing the time variation in each compartment of the model with varying values of h1 as shown in the
legend (other parameters are set as in (11) except n = 0.16). The simulations are carried out for two cases of
infection rate, (a) low infection (a = 0.1) and (b) high infection (a = 0.5)

for high viral infection, it is better for the model to reach E3 with large values of m2 than
to reach E2 with low values of m2.

From the above analysis, we conclude that the high infection rate plays a significant role
in controlling tumor size. Alongside with a high infection rate, a low viral clearance rate
leads to partial success in treatment, and a high stimulating immune response reduces the
size of the tumor. Also, a large burst size, whether the viral infection is high or low, leads
to partial success in virotherapy.
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Figure 9 Numerical simulations of model (2) with initial values: x(0) = 0.5, y(0) = 0, v(0) = 0.01, and z(0) = 0.01,
showing the time variation in each compartment of the model with varying values of e as shown in the
legend (other parameters are set as in (11) except n = 0.16). The simulations are carried out for two cases of
infection rate, (a) low infection (a = 0.1) and (b) high infection (a = 0.5)

5 Conclusions
In this paper, we modified the model in [10] so that the dynamics of virotherapy incor-
porates the interaction between uninfected tumor cells and immune response. We have
validated the plausibility of the model by demonstrating positivity and boundedness of
solutions. Moreover, the model was analyzed qualitatively using the stability theory of
nonlinear systems. As a result, five equilibrium points were obtained: E0, indicating suc-
cess in treatment; E1, for failure in treatment; E2, for virus dominance; E3, for immune
dominance; and E4, for coexistence of all state variables. Our model created a new equi-
librium point (E3) different from those in [10]. The importance of this equilibrium point
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Figure 10 Numerical simulations of model (2) with initial values: x(0) = 0.5, y(0) = 0, v(0) = 0.01, and
z(0) = 0.01, showing the time variation in each compartment of the model with varying values ofm2 as
shown in the legend (other parameters are set as in (11) except n = 0.16). The simulations are carried out for
two cases of infection rate, (a) low infection (a = 0.1) and (b) high infection (a = 0.5)

is that it shows the effect observed in virotherapy [2], where the immune system demol-
ishes infected cells as well as viruses. The conditions of the existence and local stability of
the equilibrium points have been determined. Furthermore, numerical experiments have
shown the stability of the equilibrium points for different initial values. Thus, an agree-
ment has been reached with qualitative results. Furthermore, a parameter analysis was
performed on the following parameters: the burst size (b), the relative immune killing rate
of uninfected tumor cells (h1), the relative clearance rate of viruses (e), and the relative
stimulation rate of immune response by uninfected cells (m2). The analysis was carried
out for two cases: low and high relative infection rates. As a result, partial success has
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been achieved in viral therapy provided that the burst size of the virus is large or that the
rate of virus removal is low during high viral infection. Also, it was found that, during high
viral infection, when the stimulation rate of immune response due to uninfected cells is
low, the virus is prevalent and when high, the immune response is dominant. Moreover,
in both cases, the size of the primary tumor decreases to an equilibrium value. Finally, the
model may be extended to include a combination of virotherapy with other treatments to
achieve total success and eradication of tumor cells. Also, the spatial evolution of cancer
cells may be considered in models for future work.
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