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Abstract
No previous study has involved uncertain delay differential equations with jump. In
this paper, we consider the uncertain delay differential equations with V-jump, which
is driven by both an uncertain V-jump process and an uncertain canonical process.
First of all, we give the equivalent integral equation. Next, we establish an existence
and uniqueness theorem of solution to the differential equations we proposed in the
finite domain and the infinite domain, respectively. Once more, the concept of
stability for uncertain delay differential equations with V-jump is proposed. In
addition, the sufficient condition for stability theorem is derived. To judge existence,
uniqueness, and stability briefly, we provide some examples in the end.
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1 Introduction
More than half a century ago, when the Itô’s [1] landmark work “On stochastic differ-
ential equations” (Itô, 1951) came out, the stochastic differential equations (SDEs), as a
new branch of mathematics, aroused great interest in academic circles. After more than
half a century of glorious development, SDEs are famous all over the world. In recent
decades, SDEs have accumulated many results, which played an important role in finan-
cial [2], control theory [3], biomathematics [4], game theory [5], and other models hidden
in the observed data. It is well known that the essences of SDEs are based on an axiomatic
probability theory, and large amounts of sample data are needed to obtain the frequency
of their random disturbances. Furthermore, their distribution functions can be obtained.
However, in reality, people seem to lack data or the size of sample data applied in practice
is smaller in some cases, such as the emerging infectious disease model, the new stock
model, and so on. Although sometimes we have a lot of available sample data, the fre-
quency obtained by sample data is, unfortunately, not close enough to the distribution
function obtained in some practical problems, and we need to invite some domain ex-
perts to evaluate the belief degree that each event may happen in these situations.

Human uncertainty with respect to belief degrees [6] can play an important role in ad-
dressing the issue of an indeterminate phenomenon. In order to describe the evolution of
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an uncertain phenomenon with respect to belief degrees, the uncertain differential equa-
tions were first proposed by Liu [7]. Following that, Liu [8] also proposed the concept of
stability of uncertain differential equations. Later, Chen and Liu [9] proved an existence
and uniqueness theorem for an uncertain differential equation, and Yao et al. [10] proved
some related stability theorems. Besides, a large and growing body of literature [11–15]
about stability theorems for uncertain differential equations has been investigated. Fur-
thermore, Yao and Chen [16] first proposed Euler’s method combined with 99-method or
999-method to obtain the numerical solution of the uncertain differential equation. With
the perfect theory and maturity of numerical methods of the uncertain differential equa-
tion, uncertain differential equations have been successfully applied to many areas such
as optimal control [17], differential game theory [18, 19], wave equation [20–22], financial
systems [23], fractional differential equations [24], and so on. To better understand the
development of uncertain differential equations and applications of numerical methods,
the readers can refer to the book [25].

V -jump uncertain processes proposed by Deng et al. [26] were often used to describe
the evolution of an uncertain phenomenon with jumps, in which the uncertain process
may undergo a sudden change because of emergency such as economic crisis, outbreaks
of infectious diseases, earthquake, war, etc. The definition of V -jump uncertain process is
as follows.

Definition 1 An uncertain process Vk with respect to time k is said to be a V -jump pro-
cess with parameters θ1 and θ2 (0 < θ1 < θ2 < 1) for k ≥ 0 if

(i) V0 = 0,
(ii) Vk has stationary and independent increments,

(iii) for any given time k > 0, every increment Vr+k – Vr is a Z jump uncertain variable
ξ ∼Z(θ1, θ2, k) for ∀r > 0 whose uncertainty distribution is

Φ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if x < 0,
2θ1
k x if 0 ≤ x < k

2 ,

θ2 + 2(1–θ2)
k (x – k

2 ) if k
2 ≤ x < k,

1 if x ≥ k.

Deng et al. [27] proved the existence and uniqueness of a solution to uncertain differen-
tial equation with V -jump under Lipschitz condition and linear growth condition on the
coefficients. The definition of uncertain differential equation with V -jump is as follows.

Definition 2 Suppose that Ck is an uncertain canonical process with respect to time k, Vk

is an uncertain V -jump process with respect to time k, and p1, p2, and p3 are some given
functions. Then

dZk = p1(Zk , k) dk + p2(Zk , k) dCk + p3(Zk , k) dVk

is called an uncertain differential equation with V -jump.

Uncertain differential equations with V -jumps were widely applied to uncertain opti-
mal control with V -jumps, see Refs [28–33]; whereas uncertain delay differential equa-
tions [34–38] were often used to describe such uncertain physical systems that depend
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not only on the present state but also upon their past states. The main interest in the the-
ory of uncertain delay differential equations was related to the existence, uniqueness as
well as stability. Aiming at these phenomena, Barbacioru [34] proposed uncertain delay
differential equations. Ge et al. [35] proved the existence and uniqueness of solutions un-
der Lipschitz condition and linear growth condition on the coefficients. Later, Wang et al.
[36, 37] proposed some concepts of the stability and proved the corresponding stability
theorems. Jia and Sheng [38] proved stability in distribution. The definition of uncertain
delay differential equation is as follows.

Definition 3 Suppose that Ck is a Liu process with respect to time k, and h and p are two
continuous functions. Then

⎧
⎨

⎩

dZk = h(k, Zk , Zk–τ ) dk + p(k, Zk , Zk–τ ) dCk , k ∈ [0, +∞),

Zk = ϕ(k), k ∈ [–τ , 0]
(1)

is called an uncertain delay differential equation, where τ is called time delay. Its equivalent
integral form is as follows:

⎧
⎨

⎩

Zk = Z0 +
∫ k

0 h(r, Zr , Zr–τ ) dr +
∫ k

0 p(r, Zr , Zr–τ ) dCr , k ∈ [0, +∞),

Zk = ϕ(k), k ∈ [–τ , 0].
(2)

However, the uncertain delay differential equations with V -jump have not been studied
so far. For describing the state of an uncertain delay system with jumps more accurately, we
propose uncertain delay differential equations with V -jump. In contrast to earlier results
of Refs [27, 35], we not only combine these two equations, but also prove the existence
and uniqueness of solutions by one-sided local Lipschitz condition rather than the strict
Lipschitz condition on the coefficients. Furthermore, under some reasonable conditions,
we prove the stability.

The remainder of the paper is organized as follows. In Sect. 2, we prove an existence,
uniqueness, and stability theorem of the solution to uncertain delay differential equations
with V -jump and give some examples. Finally, a brief conclusion is given in Sect. 3.

2 Main results
We first give the concept of uncertain delay differential equations with V -jump and an
example.

2.1 Uncertain delay differential equations with V-jump
Definition 4 Suppose that Ck is an uncertain canonical process, Vk is an uncertain V -
jump process with respect to time k, and h(k, z), p(k, z), q(k, z) : [0, T] ×R →R are contin-
uous maps. Then

⎧
⎪⎪⎨

⎪⎪⎩

dZk = h(k, Zk , Zk–τ ) dk + p(k, Zk , Zk–τ ) dCk

+ q(k, Zk , Zk–τ ) dVk , k ∈ [0, +∞),

Zk = ϕ(k), k ∈ [–τ , 0]

(3)
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is called an uncertain differential equation with V -jump. A solution is an uncertain process
Zk that satisfies (3) identically in time k. If τ is finite, the equation with V -jump is called
the one with finite delay; otherwise, the one with infinite delay.

To solve an uncertain delay differential equations with V -jump, we first give an example.
Consider the following uncertain delay differential equation with V -jump:

⎧
⎨

⎩

dZk = mZk–τ dk + μdCk + ν dVk , k ∈ [0, T],

Zk = 1, k ∈ [–τ , 0],
(4)

where τ > 0, m, μ, and ν are constants.
For k ∈ [0, T], there exists n ∈ N such that k ∈ [nτ , (n + 1)τ ]. If n = 0, k ∈ [0, τ ], then

k – τ ∈ [–τ , 0], and Zk–τ = 1. Thus, we have

⎧
⎨

⎩

dZk = m dk + μdCk + ν dVk ,

Z0 = 1,

Zk = Z0 +
∫ k

0
m dr +

∫ k

0
μdCr +

∫ k

0
ν dVr

= 1 + mk + μCk + νVk , k ∈ [0, τ ].

(5)

If n = 1, k ∈ [τ , 2τ ], then k – τ ∈ [0, τ ], and

Zk–τ = 1 + m(k – τ ) + μCk–τ + νVk–τ .

So, we have

⎧
⎨

⎩

dZk = m[1 + m(k – τ ) + μCk–τ + νVk–τ ] dk + μdCk + ν dVk ,

Zτ = 1 + mτ + μCτ + νVτ ,

Zk = Zτ +
∫ k

τ

m
[
1 + m(r – τ ) + μCr–τ

+ νVr–τ

]
dr +

∫ k

τ

μdCr +
∫ k

τ

ν dVr

= 1 + mτ + μCτ + νVτ +
∫ k

τ

m
[
1 + m(r – τ ) + μCr–τ

+ νVr–τ

]
dr + μ(Ck – Cτ ) + ν(Vk – Vτ )

= 1 + mk + m2 (k – τ )2

2
+ μCk + νVk

+ mμ

∫ k

τ

Cr–τ dr + mν

∫ k

τ

Vr–τ dr.

(6)

Continuing this method, we can find the expression for Z(k) on each interval [nτ , (n + 1)τ ]
with n ∈N.
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Remark 1 According to the definition of uncertain canonical Ck(γ ), where γ ∈ Γ defined
in Definition 2.2 [9], almost all sample paths of Ck are Lipschitz continuous functions. That
is, there exists a set Γ0 in Γ with M{Γ0} = 1 such that, for any γ ∈ Γ0, Ck(γ ) is Lipschitz
continuous. To do this simply, we set Γ0 = Γ . Thus, for each γ , by Lemma 4.1 in [9], there
exists a positive number K(γ ) such that

∣
∣Cr(γ ) – Ck(γ )

∣
∣ ≤ K(γ )|r – k|, ∀r, k ≥ 0,

and for each sample γ , it follows from the definition of uncertain V -jump process and
Theorem 3.2 in [27] that

∣
∣Vr(γ ) – Vk(γ )

∣
∣ ≤ |r – k|, ∀r, k ≥ 0.

Besides, the uncertain integrals of Ck and Vk are equivalent to the Riemann–Stieltjes in-
tegral from the point of each sample path. Hence, we can just focus on the following un-
certain delay integral equation with V -jump:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Zk(γ ) = Z0(γ ) +
∫ k

0 h(r, Zr(γ ), Zr–τ (γ )) dr

+
∫ k

0 p(r, Zr(γ ), Zr–τ (γ )) dCr(γ )

+
∫ k

0 q(r, Zr(γ ), Zr–τ (γ )) dVr , k ∈ [0, +∞),

Zk(γ ) = ϕ(k), k ∈ [–τ , 0].

(7)

Our goal is to prove that, for each sample path γ , the uncertain delay integral equation
with V -jump (7) has a unique solution on [0, +∞) under certain reasonable conditions.

First of all, we discuss the existence and uniqueness for uncertain delay differential equa-
tions with V -jump in a local interval [k0, k0 +α] for some positive α. Equation (7) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Zk(γ ) = Zk0 (γ ) +
∫ k

k0
h(r, Zr(γ ), Xr–τ (γ )) dr

+
∫ k

k0
p(r, Zr(γ ), Zr–τ (γ )) dCr(γ )

+
∫ k

k0
q(r, Zr(γ ), Zr–τ (γ )) dVr , k ∈ [k0, k0 + α],

Zk(γ ) = ϕ(k), k ∈ [k0 – τ , k0],

(8)

and the following Theorem 1 will give the result of existence and uniqueness of uncertain
delay integral equation with V -jump (8).

2.2 Existence and uniqueness of the solution
Theorem 1 Fixing γ ∈ Γ , the uncertain delay integral equation with V -jump (8) has a
unique solution in [k0, k0 + α] if the coefficients h, p, and q are locally Lipschitz continuous
of z. In other words, for each

D =
{

(k, z, ẑ)|k ∈ [k0, k0 + a], z ∈ [
Zk0 (γ ) – b, Zk0 (γ ) + b

]
, ẑ ∈R

}
,

there exists a positive constant LD such that

∣
∣h(k, z1, ẑ) – h(k, z2, ẑ)

∣
∣ ∨ ∣

∣p(k, z1, ẑ) – p(k, z2, ẑ)
∣
∣ ∨ ∣

∣q(k, z1, ẑ) – q(k, z2, ẑ)
∣
∣ ≤ LD|z1 – z2|,
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where a > 0, b > 0, (k, z1, ẑ) ∈ D, (k, z2, ẑ) ∈ D, and

Q = max
D

{∣
∣h(k, z, ẑ)

∣
∣ + K(γ )

∣
∣p(k, z, ẑ)

∣
∣ +

∣
∣q(k, z, ẑ)

∣
∣
}

,

K(γ ) is the Lipschitz constant to Ck(γ ), and α = min{a, b/Q, τ }.

Proof By using successive approximations, we will prove this theorem in three steps.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(0)
k (γ ) = Zk0 (γ )

Z(0)
k–τ (γ ) = Zk0–τ (γ )

Z(n+1)
k (γ ) = Zk0 (γ ) +

∫ k
k0

h(r, Z(n)
r (γ ), Z(n)

r–τ (γ )) dr

+
∫ k

k0
p(r, Z(n)

r (γ ), Z(n)
r–τ (γ )) dCr(γ )

+
∫ k

k0
q(r, Z(n)

r (γ ), Z(n)
r–τ (γ )) dVr , k ∈ [k0, k0 + α],

Zk(γ ) = ϕ(k), k ∈ [k0 – τ , k0].

(9)

It is easy to find that {Z(n)
k (γ )} is continuous in time k for any n ≥ 0.

Step 1. (existence) In this step, we will prove that

(
k, Z(n)

k (γ ), Z(n)
k–τ (γ )

) ∈ D, n ≥ 0,

when k ∈ [k0, k0 + α].
Here, we use mathematical induction. When n = 0,

⎧
⎪⎪⎨

⎪⎪⎩

k ∈ [k0, k0 + a],

Z(0)
k (γ ) = Zk0 (γ ) ∈ [Zk0 (γ ) – b, Zk0 (γ ) + b],

Z(0)
k–τ (γ ) = Zk0–τ (γ ) ∈R.

(10)

Thus the conclusion is obviously established. Assume that

(
k, Z(n)

k (γ ), Z(n)
k–τ (γ )

) ∈ D, n ≥ 0,

when k ∈ [k0, k0 + α], we have

∣
∣Z(n+1)

k (γ ) – Zk0 (γ )
∣
∣

=
∣
∣
∣
∣

∫ k

k0

h
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dr +

∫ k

k0

p
(
r, X(n)

r (γ ), Z(n)
r–τ (γ )

)
dCr(γ )

+
∫ k

k0

q
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dVr

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ k

k0

h
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dr

∣
∣
∣
∣ + K(γ )

∣
∣
∣
∣

∫ k

k0

p
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ k

k0

q
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dr

∣
∣
∣
∣

=
∫ k

k0

∣
∣h

(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)∣
∣ + K(γ )

∣
∣p

(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)∣
∣
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+
∣
∣q

(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)∣
∣dr

≤ Q · |k – k0|
≤ Q · α ≤ b,

and

Z(n+1)
k–τ (γ ) ∈R.

This indicates that (k, Z(n)
k (γ ), Z(n)

k–τ (γ )) ∈ D for n = 0, 1, 2, . . . , when k ∈ [k0, k0 + α].
Step 2. In this step, we will prove that the sequence {Z(n)

k (γ )}+∞
n=0 given by (9) converges

uniformly to the solution of equation (8) on [k0, k0 + α] as n → ∞.
First, we will prove

∣
∣Z(n+1)

k (γ ) – Z(n)
k (γ )

∣
∣ ≤ Q(2LD + K(γ )LD)n

(n + 1)!
|k – k0|n+1.

Similar to Step 1, in this step, we also use mathematical induction. When n = 0,

∣
∣Z(1)

k (γ ) – Z(0)
k (γ )

∣
∣

=
∣
∣
∣
∣

∫ k

k0

h
(
r, Z(0)

r (γ ), Z(0)
r–τ (γ )

)
dr +

∫ k

k0

p
(
r, Z(0)

r (γ ), Z(0)
r–τ (γ )

)
dCr(γ )

+
∫ k

k0

q
(
r, Z(0)

r (γ ), Z(0)
r–τ (γ )

)
dVr

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ k

k0

h
(
r, Z(0)

r (γ ), Z(0)
r–τ (γ )

)
dr

∣
∣
∣
∣ + K(γ )

∣
∣
∣
∣

∫ k

k0

p
(
r, Z(0)

r (γ ), Z(0)
r–τ (γ )

)
dr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ k

k0

q
(
r, Z(0)

r (γ ), Z(0)
r–τ (γ )

)
dr

∣
∣
∣
∣

≤
∫ k

k0

∣
∣h

(
r, Z(0)

r (γ ), Z(0)
r–τ (γ )

)∣
∣ + K(γ )

∣
∣p

(
r, Z(0)

r (γ ), Z(0)
r–τ (γ )

)∣
∣

+
∣
∣q

(
r, Z(0)

r (γ ), Z(0)
r–τ (γ )

)∣
∣dr

≤ Q · |k – k0|.

Assume that

∣
∣Z(n)

k (γ ) – Z(n–1)
k (γ )

∣
∣

≤ Q(2LD + K(γ )LD)n–1

n!
|k – k0|n,

when k ∈ [k0, k0 + α], we have

∣
∣Z(n+1)

k (γ ) – Z(n)
k (γ )

∣
∣

=
∣
∣
∣
∣

∫ k

k0

h
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dr +

∫ k

k0

p
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dCr(γ )
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+
∫ k

k0

q
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dVr –

∫ k

k0

h
(
r, Z(n–1)

r (γ ), Z(n–1)
r–τ (γ )

)
dr

–
∫ k

k0

p
(
r, Z(n–1)

r (γ ), Z(n–1)
r–τ (γ )

)
dCr(γ ) –

∫ k

k0

q
(
r, Z(n–1)

r (γ ), Z(n–1)
r–τ (γ )

)
dVr

∣
∣
∣
∣

≤
∫ k

k0

∣
∣
∣
∣h

(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dr –

∫ k

k0

h
(
r, Z(n–1)

r (γ ), Z(n–1)
r–τ (γ )

)
∣
∣
∣
∣dr

+
∫ k

k0

∣
∣
∣
∣p

(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dCr(γ ) –

∫ k

k0

p
(
r, Z(n–1)

r (γ ), Z(n–1)
r–τ (γ )

)
∣
∣
∣
∣dCr(γ )

+
∫ k

k0

∣
∣
∣
∣q

(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dVr –

∫ k

k0

q
(
r, Z(n–1)

r (γ ), Z(n–1)
r–τ (γ )

)
∣
∣
∣
∣dVr

≤
∫ k

k0

LD
∣
∣Z(n)

r (γ ) – Z(n–1)
r (γ )

∣
∣dr + K(γ )

∫ k

k0

LD
∣
∣Z(n)

r (γ ) – Z(n–1)
r (γ )

∣
∣dr

+
∫ k

k0

LD
∣
∣Z(n)

r (γ ) – Z(n–1)
r (γ )

∣
∣dr

≤ LD
(
2 + K(γ )

)
∫ k

k0

∣
∣Z(n)

r (γ ) – Z(n–1)
r (γ )

∣
∣dr

≤ LD
(
2 + K(γ )

)
∫ k

k0

Q(2LD + K(γ )LD)n–1

n!
|k – k0|n dr

≤ Q(2LD + K(γ )LD)n

n!

∫ k

k0

|r – k0|n dr

≤ Q(2LD + K(γ )LD)n

(n + 1)!
|k – k0|n+1.

The above inequality gives an upper bound of

∣
∣Z(n+1)

k (γ ) – Z(n)
k (γ )

∣
∣

on [k0, k0 + α] for n = 0, 1, 2, . . . . Obviously, for any ε > 0, there exists an integer N (N > 0)
such that

∑

n≥N

∣
∣Z(n+1)

k (γ ) – Z(n)
k (γ )

∣
∣

≤
∑

n≥N

Q(2LD + K(γ )LD)n

(n + 1)!
|k – k0|n+1

=
Q

2LD + K(γ )LD

∑

n≥N

(2LD + K(γ )LD)n+1

(n + 1)!
|k – k0|n+1

≤ Q
2LD + K(γ )LD

∑

n≥N

(2LD + K(γ )LD)n+1

(n + 1)!
αn+1

≤ Q
2LD + K(γ )LD

∑

n≥N

(αLD(2 + K(γ )))n+1

(n + 1)!

< ε,
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where the last inequality from

lim
n→+∞

an+1

(n + 1)!
= 0.

Because

Zn
k (γ ) = Z0

k (γ ) +
n∑

i=1

(
Zi

k(γ ) – Zi–1
k (γ )

)
,

the above inequality indicates that Zn
k (γ ) converges uniformly on [k0, k0 + α] as n → +∞.

Thus, we have

Z(n+1)
k (γ ) = Zk0 (γ ) +

∫ k

k0

h
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dr

+
∫ k

k0

p
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dCr(γ )

+
∫ k

k0

q
(
r, Z(n)

r (γ ), Z(n)
r–τ (γ )

)
dVr(γ ).

Denote Zk(γ ) = limn→+∞ Zn
k (γ ). Taking the limit on both sides of the above equation, it

holds that

Zk(γ ) = Zk0 (γ ) +
∫ k

k0

h
(
r, Zr(γ ), Zr–τ (γ )

)
dr

+
∫ k

k0

p
(
r, Zr(γ ), Zr–τ (γ )

)
dCr(γ ) +

∫ k

k0

q
(
r, Zr(γ ), Zr–τ (γ )

)
dVr(γ ).

That is, the sequence {Zn
k (γ )} given by (9) converges uniformly to the solution of equation

(8) on [k0, k0 + α] as n → +∞.
Because each {Zn

k (γ )} is continuous, Zk(γ ) is also continuous on [k0, k0 + α]. The proof
of existence is completed.

Step 3. (uniqueness) Step 3 will prove that Zk(γ ) obtained in Step 2 is the unique solution
of equation (8) on [k0, k0 + α].

Assume that Z̃k(γ ) is another solution of equation (8), i.e.,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Z̃k(γ ) = Zk0 (γ ) +
∫ k

k0
h(r, Z̃r(γ ), Z̃r–τ (γ )) dr

+
∫ k

k0
p(r, Z̃r(γ ), Z̃r–τ (γ )) dCr(γ )

+
∫ k

k0
q(r, Z̃r(γ ), Z̃r–τ (γ )) dVr , k ∈ [k0, k0 + β],

Z̃k(γ ) = ϕ(k), k ∈ [k0 – τ , k0],

(11)

where 0 < β ≤ α.
Following the local Lipschitz condition, we have

∣
∣Zk(γ ) – Z̃k(γ )

∣
∣

=
∣
∣
∣
∣

∫ k

k0

h
(
r, Zr(γ ), Zr–τ (γ )

)
dr +

∫ k

k0

p
(
r, Zr(γ ), Zr–τ (γ )

)
dCr(γ )
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+
∫ k

k0

q
(
r, Zr(γ ), Zr–τ (γ )

)
dVr –

∫ k

k0

h
(
r, Z̃r(γ ), Z̃r–τ (γ )

)
dr

–
∫ k

k0

p
(
r, Z̃r(γ ), Z̃r–τ (γ )

)
dCr(γ ) –

∫ k

k0

q
(
r, Z̃r(γ ), Z̃r–τ (γ )

)
dVr

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ k

k0

h
(
r, Zr(γ ), Zr–τ (γ )

)
dr –

∫ k

k0

h
(
r, Z̃r(γ ), Z̃r–τ (γ )

)
dr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ k

k0

p
(
r, Zr(γ ), Zr–τ (γ )

)
dCr(γ ) –

∫ k

k0

p
(
r, Z̃r(γ ), Z̃r–τ (γ )

)
dCr(γ )

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ k

k0

q
(
r, Zr(γ ), Zr–τ (γ )

)
dVr –

∫ k

k0

q
(
r, Z̃r(γ ), Z̃r–τ (γ )

)
dVr

∣
∣
∣
∣

≤
∫ k

k0

LD
∣
∣Zr(γ ) – Z̃r(γ )

∣
∣dr + K(γ )

∫ k

k0

LD
∣
∣Zr(γ ) – Z̃r(γ )

∣
∣dr

+
∫ k

k0

LD
∣
∣Zr(γ ) – Z̃r(γ )

∣
∣dr

= LD
(
2 + K(γ )

)
∫ k

k0

∣
∣Zr(γ ) – Z̃r(γ )

∣
∣dr.

By Gronwall’s inequality of [39], we have

∣
∣Zk(γ ) – Z̃k(γ )

∣
∣ ≤ 0 · exp

(
k
(
LD

(
2 + K(γ )

)))
= 0.

That is to say, Zk(γ ) = Z̃k(γ ) for any [k0, k0 + α]. The proof of uniqueness is completed.
Until now, we have completed the proof of Theorem 1. �

According to Theorem 1, the uncertain delay integral equation with V -jump (8) has a
unique solution on the local interval [k0, k0 + α]. Next, Theorem 2 will prove that the solu-
tion of uncertain delay integral equation with V -jump (8) can be extended to the infinite
domain [0, +∞).

Theorem 2 Fixing γ ∈ Γ , the uncertain delay integral equation with V -jump (8) has a
unique solution on [0, +∞) if the coefficients h, p, and q satisfy one-sided local Lipschitz
condition of Theorem 1 and the local linear growth condition. In other words, for each T > 0,
there exists a constant MT such that

∣
∣h(k, z, ẑ)

∣
∣ ∨ ∣

∣p(k, z, ẑ)
∣
∣ ∨ ∣

∣q(k, z, ẑ)
∣
∣

≤ MT
(
1 + |z| + |ẑ|), ∀z, ẑ ∈R, k ∈ [0, T].

Proof Define ρ = {k | uncertain delay integral equation with V -jump (7) has a unique con-
tinuous solution on [0, k)}, and ρ = sup�. According to Theorem 1, the set ρ is nonempty.

We will prove that ρ = +∞. Assume that ρ < +∞. By the definition, Zk(γ ) is the unique
solution of equation (7) on [0,ρ). Then we have

∣
∣Zk(γ )

∣
∣ +

∣
∣Zk–τ (γ )

∣
∣

=
∣
∣
∣
∣Z0(γ ) +

∫ k

0
h
(
r, Zr(γ ), Zr–τ (γ )

)
dr +

∫ k

0
p
(
r, Zr(γ ), Zr–τ (γ )

)
dCr(γ )
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+
∫ k

0
q
(
r, Zr(γ ), Zr–τ (γ )

)
dVr

∣
∣
∣
∣ +

∣
∣
∣
∣Z–τ (γ ) +

∫ k–τ

–τ

h
(
r, Zr(γ ), Zr–τ (γ )

)
dr

+
∫ k–τ

–τ

p
(
r, Zr(γ ), Zr–τ (γ )

)
dCr(γ ) +

∫ k–τ

–τ

q
(
r, Zr(γ ), Zr–τ (γ )

)
dVr

∣
∣
∣
∣

≤ ∣
∣Z0(γ )

∣
∣ +

∣
∣
∣
∣

∫ k

0
h
(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣ + K(γ )

∣
∣
∣
∣

∫ k

0
p
(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ k

0
q
(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣ +

∣
∣Z–τ (γ )

∣
∣ +

∣
∣
∣
∣

∫ k–τ

–τ

h
(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣

+ K(γ )
∣
∣
∣
∣

∫ k–τ

–τ

p
(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ k–τ

–τ

q
(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣

=
∣
∣Z0(γ )

∣
∣ +

∣
∣Z–τ (γ )

∣
∣ +

∣
∣
∣
∣

∫ 0

–τ

h
(
r, Zr(γ ), Zr–τ (γ )

)
+ K(γ )p

(
r, Zr(γ ), Zr–τ (γ )

)

+ q
(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ k–τ

0
h
(
r, Zr(γ ), Zr–τ (γ )

)

+ K(γ )p
(
r, Zr(γ ), Zr–τ (γ )

)
+ q

(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ k

0
h
(
r, Zr(γ ), Zr–τ (γ )

)
+ K(γ )p

(
r, Zr(γ ), Zr–τ (γ )

)
+ q

(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣

≤ ∣
∣Z0(γ )

∣
∣ +

∣
∣Z–τ (γ )

∣
∣ + � + Mρ

(
2 + K(γ )

)
∫ k–τ

0
1 +

∣
∣Zr(γ )

∣
∣ +

∣
∣Zr–τ (γ )

∣
∣dr

+ Mρ

(
2 + K(γ )

)
∫ k

0
1 +

∣
∣Zr(γ )

∣
∣ +

∣
∣Zr–τ (γ )

∣
∣dr

≤ ∣
∣Z0(γ )

∣
∣ +

∣
∣Z–τ (γ )

∣
∣ + � + 2ρMρ

(
2 + K(γ )

)

+ 2Mρ

(
2 + K(γ )

)
∫ k

0

∣
∣Zr(γ )

∣
∣ +

∣
∣Zr–τ (γ )

∣
∣dr

for any k ∈ [0,ρ), where

� =
∣
∣
∣
∣

∫ 0

–τ

h
(
r, Zr(γ ), Zr–τ (γ )

)
+ K(γ )p

(
r, Zr(γ ), Zr–τ (γ )

)
+ q

(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣.

Set

A =
∣
∣Z0(γ )

∣
∣ +

∣
∣Z–τ (γ )

∣
∣ + � + 2ρMρ

(
2 + K(γ )

)
.

By Gronwall’s inequality [39], we have

∣
∣Zk(γ )

∣
∣ +

∣
∣Zk–τ (γ )

∣
∣ ≤ A · exp

(
2Mρ

(
2 + K(γ )

))
ρ = N0 < +∞, ∀k ∈ [0,ρ).

That is to say, |Zk(γ )| + |Zk–τ (γ )| is bounded on [0,ρ).
Thus, we have

∣
∣Zk1 (γ ) – Zk2 (γ )

∣
∣

=
∣
∣
∣
∣Z0(γ ) +

∫ k1

0
h
(
r, Zr(γ ), Zr–τ (γ )

)
dr +

∫ k1

0
p
(
r, Zr(γ ), Zr–τ (γ )

)
dCr(γ )
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+
∫ k1

0
q
(
r, Zr(γ ), Zr–τ (γ )

)
dVr – Z0(γ ) –

∫ k2

0
h
(
r, Zr(γ ), Zr–τ (γ )

)
dr

–
∫ k2

0
p
(
r, Zr(γ ), Zr–τ (γ )

)
dCr(γ ) –

∫ k2

0
q
(
r, Zr(γ ), Zr–τ (γ )

)
dVr

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ k2

k1

h
(
r, Zr(γ ), Zr–τ (γ )

)
dr

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ k2

k1

p
(
r, Zr(γ ), Zr–τ (γ )

)
dCr(γ )

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ k2

k1

q
(
r, Zr(γ ), Zr–τ (γ )

)
dVr

∣
∣
∣
∣

≤
∫ k2

k1

∣
∣h

(
r, Zr(γ ), Zr–τ (γ )

)∣
∣dr + K(γ )

∫ k2

k1

∣
∣p

(
r, Zr(γ ), Zr–τ (γ )

)∣
∣dr

+
∫ k2

k1

∣
∣q

(
r, Zr(γ ), Zr–τ (γ )

)∣
∣dr

≤ Mρ

∫ k2

k1

1 +
∣
∣Zr(γ )

∣
∣ +

∣
∣Zr–τ (γ ))

∣
∣dr

+ MρK(γ )
∫ k2

k1

1 +
∣
∣Zr(γ )

∣
∣ +

∣
∣Zr–τ (γ ))

∣
∣dr

+ Mρ

∫ k2

k1

1 +
∣
∣Zr(γ )

∣
∣ +

∣
∣Zr–τ (γ ))

∣
∣dr

= Mρ

(
2 + K(γ )

)
∫ k2

k1

1 +
∣
∣Zr(γ )

∣
∣ +

∣
∣Zr–τ (γ ))

∣
∣dr

≤ Mρ

(
2 + K(γ )

)
∫ k2

k1

(1 + N0) dr

≤ Mρ

(
2 + K(γ )

)
(1 + N0)|k1 – k2|,∀k1, k2 ∈ [0,ρ).

It holds that limk→ρ– Zk(γ ) exists. Set Zρ(γ ) = limk→ρ– Zk(γ ). Thus Zk(γ ) is continuous
on the interval [0,ρ], and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Zk(γ ) = Z0(γ ) +
∫ k

0 h(r, Zr(γ ), Zr–τ (γ )) dr

+
∫ k

0 p(r, Zr(γ ), Zr–τ (γ )) dCr(γ )

+
∫ k

0 q(r, Zr(γ ), Zr–τ (γ )) dVr , k ∈ [0,ρ],

Zk(γ ) = ϕ(k), k ∈ [–τ , 0].

(12)

Consider the following uncertain delay integral equation with V -jump:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zk(γ ) = Zρ(γ ) +
∫ k
ρ

h(r, Zr(γ ), Zr–τ (γ )) dr

+
∫ k
ρ

p(r, Zr(γ ), Zr–τ (γ )) dCr(γ )

+
∫ k
ρ

q(r, Zr(γ ), Zr–τ (γ )) dVr , k ∈ (ρ, +∞),

Zk(γ ) = Z0(γ ) +
∫ k

0 h(r, Zr(γ ), Zr–τ (γ )) dr

+
∫ k

0 p(r, Zr(γ ), Zr–τ (γ )) dCr(γ )

+
∫ k

0 q(r, Zr(γ ), Zr–τ (γ )) dVr , k ∈ [0,ρ],

Zk(γ ) = ϕ(k), k ∈ [–τ , 0].

(13)
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Theorem 1 means that there exists a positive number α such that uncertain delay with
V -jump integral equation (13) has a unique continuous solution Z̃k(γ ) on the interval
[ρ,ρ + α].

Thus, setting the function

Ẑk(γ ) =

⎧
⎨

⎩

Zk(γ ), if k ∈ [0,ρ],

Z̃k(γ ), if k ∈ (ρ,ρ + α],
(14)

Ẑk(γ ) is the unique continuous solution of equation (8) on the interval [0,ρ + α]. We get
a contradiction from ρ = sup� < +∞. So, ρ = +∞, and the solution of uncertain delay
integral equation with V -jump (7) can be extended uniquely to [0, +∞). So we complete
the proof of Theorem 2. �

Remark 2 When the functions h, p, and q in the uncertain delay differential equation with
V -jump (3) are independent with the present state Zk , then (3) is written as

⎧
⎪⎪⎨

⎪⎪⎩

dZk = h(k, Zk–τ ) dk + p(k, Zk–τ ) dCk

+ q(k, Zk–τ ) dVk , k ∈ [0, +∞),

Zk(γ ) = ϕ(k), k ∈ [–τ , 0].

(15)

For the uncertain delay differential equation with V -jump (15), it is not difficult to find
that

Zk = Z0 +
∫ k

0
h(r, Zr–τ ) dr +

∫ k

0
p(r, Zr–τ ) dCr +

∫ k

0
q(r, Zr–τ ) dVr

for any 0 ≤ k ≤ τ .
Then, for τ ≤ k ≤ 2τ , we have

Zk = Zτ +
∫ k

τ

h(r, Zr–τ ) dr +
∫ k

τ

p(r, Zr–τ ) dCr +
∫ k

τ

q(r, Zr–τ ) dVr .

Repeat this procedure over the intervals [2τ , 3τ ], [3τ , 4τ ], etc. Finally, we can obtain the
explicit solution of uncertain delay differential equation with V -jump (15).

2.3 Stability of the solution
Definition 5 The uncertain delay differential equation with V -jump (8) is said to be stable
in measure if, for any two solutions Zk and Ẑk with different initial states,respectively, we
have

lim
supr∈[–τ ,0] |Zr–Ẑr |→0

M
{∣
∣Zk(γ ) – Ẑk(γ )

∣
∣ > ε

}
= 0, ∀k > 0 (16)

for any given number ε > 0, where M is uncertain measure.

To illustrate the concept of stability, we first give an example. Consider the following
uncertain delay differential equation with V -jump:

dZk = aZk–τ dk + b dCk + c dVk , k ∈ [0, +∞). (17)
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Obviously, the coefficients h(k, z, ẑ) = aẑ, p(k, z, ẑ) = b, and q(k, z, ẑ) = c are one-sided local
Lipschitz continuous.

∣
∣h(k, z, ẑ)

∣
∣ ∨ ∣

∣p(k, z, ẑ)
∣
∣ ∨ ∣

∣q(k, z, ẑ)
∣
∣ = |aẑ| ∨ |b| ∨ |c|

= max
(|a|, |b|, |c|)(1 + |z| + |ẑ|), ∀z, ẑ ∈R, k ∈ [0, T].

By using Theorem 2, it has a unique continuous solution. We can get that Zk and Ẑk are
two solutions of (17) with different initial states ϕ(k) and ψ(k)(k ∈ [–τ , 0]), respectively.

Zk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ(k), k ∈ [–τ , 0],

ϕ(0) + a
∫ k

0 ϕ(r – τ ) dr + bCk + cVk , k ∈ (0, τ ],

Zτ + a
∫ t
τ

Zr–τ dr + b(Ck – Cτ ) + c(Vk – Vτ ), k ∈ (τ , 2τ ],

· · · · · ·

(18)

and

Ẑk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ(k), k ∈ [–τ , 0],

ψ(0) + a
∫ k

0 ψ(r – τ ) dr + bCk + cVk , k ∈ (0, τ ],

Ẑτ + a
∫ k
τ

Ẑr–τ dr + b(Ck – Cτ ) + c(Vk – Vτ ), k ∈ (τ , 2τ ],

· · · · · ·

(19)

respectively.
Then

|Zk – Ẑk| =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|ϕ(k) – ψ(k)|, k ∈ [–τ , 0],

|ϕ(0) – ψ(0)| + a
∫ k

0 |ψ(r – τ ) – ψ(r – τ )|dr, k ∈ (0, τ ],

|Zτ – Ẑτ | + a
∫ k
τ

|Zr–τ – Ẑr–τ |dr, k ∈ (τ , 2τ ],

· · · · · ·

(20)

Therefore,

lim
supr∈[–τ ,0] |Zr–Ẑr |→0

M
{∣
∣Zk(γ ) – Ẑk(γ )

∣
∣ > ε

}
= 0, ∀k > 0 (21)

for any given number ε > 0, and the uncertain delay differential equation with V -jump
(17) is stable in measure by Definition 5.

Theorem 3 Assume that the uncertain delay differential equation with V -jump (3) has a
unique solution for each given initial state. Then it is stable in measure if the coefficients
h(k, z, ẑ), p(k, z, ẑ), and q(k, z, ẑ) satisfy

∣
∣h(k, z1, ẑ) – h(k, z2, ẑ)

∣
∣ ∨ ∣

∣p(k, z1, ẑ) – p(k, z2, ẑ)
∣
∣ ∨ ∣

∣q(k, z1, ẑ) – q(k, z2, ẑ)
∣
∣

≤ Nk|z1 – z2|, ∀z1, z2, ẑ ∈R, k ≥ 0, (22)



Jia et al. Advances in Difference Equations        (2020) 2020:440 Page 15 of 21

where Nk is a bounded function satisfying

∫ +∞

0
Nk dk < +∞.

Proof We suppose that Zk and Ẑk are two solutions of (3) with different initial states ϕ(k)
and ψ(k)(k ∈ [–τ , 0]), respectively. That is,

⎧
⎪⎪⎨

⎪⎪⎩

dZk = h(k, Zk , Zk–τ ) dk + p(k, Zk , Zk–τ ) dCk

+ q(k, Zk , Zk–τ ) dVk , k ∈ [0, +∞),

Zk(γ ) = ϕ(k), k ∈ [–τ , 0],

(23)

and

⎧
⎪⎪⎨

⎪⎪⎩

dẐk = h(k, Ẑk , Ẑk–τ ) dk + p(k, Ẑk , Ẑk–τ ) dCk

+ q(k, Ẑk , Ẑk–τ ) dVk , k ∈ [0, +∞),

Ẑk(γ ) = ϕ(k), k ∈ [–τ , 0].

(24)

Then, for a Lipschitz continuous sample Ck(γ ) and Vk(γ ), it holds that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Zk(γ ) = Z0 +
∫ k

0 h(r, Zr(γ ), Zr–τ (γ )) dr

+
∫ k

0 p(r, Zr(γ ), Zr–τ (γ )) dCr(γ )

+
∫ k

0 q(r, Zr(γ ), Zr–τ (γ )) dVr(γ ), k ∈ [0, +∞),

Zk(γ ) = ϕ(k), k ∈ [–τ , 0],

(25)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẑk(γ ) = Ẑ0 +
∫ k

0 h(r, Ẑr(γ ), Ẑr–τ (γ )) dr

+
∫ k

0 p(r, Ẑr(γ ), Ẑr–τ (γ )) dCr(γ )

+
∫ k

0 q(r, Ẑr(γ ), Ẑr–τ (γ )) dVr(γ ), k ∈ [0, +∞),

Ẑk(γ ) = ϕ(k), k ∈ [–τ , 0].

(26)

By condition (22), Lemma 4.1 in [9], and Theorem 3.2 in [27], we have

∣
∣Zk(γ ) – Ẑk(γ )

∣
∣

≤
∣
∣
∣
∣Z0 – Ẑ0 +

∫ k

0
h
(
r, Zr(γ ), Zr–τ (γ )

)
– h

(
r, Ẑr(γ ), Ẑr–τ (γ )

)
dr

+
∫ k

0
p
(
r, Zr(γ ), Zr–τ (γ )

)
– p

(
r, Ẑr(γ ), Ẑr–τ (γ )

)
dCr(γ )

+
∫ k

0
q
(
r, Zr(γ ), Zr–τ (γ )

)
– q

(
r, Ẑr(γ ), Ẑr–τ (γ )

)
dVr(γ )

∣
∣
∣
∣

≤ |Z0 – Ẑ0| +
∣
∣
∣
∣

∫ k

0
h
(
r, Zr(γ ), Zr–τ (γ )

)
– h

(
r, Ẑr(γ ), Ẑr–τ (γ )

)
dr

∣
∣
∣
∣
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+
∣
∣
∣
∣

∫ k

0
p
(
r, Zr(γ ), Zr–τ (γ )

)
– p

(
r, Ẑr(γ ), Ẑr–τ (γ )

)
dCr(γ )

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ k

0
q
(
r, Zr(γ ), Zr–τ (γ )

)
– q

(
r, Ẑr(γ ), Ẑr–τ (γ )

)
dVr(γ )

∣
∣
∣
∣

≤ |Z0 – Ẑ0| +
∫ k

0
Nr

∣
∣Zr(γ ) – Ẑr(γ )

∣
∣dr

+ K(γ )
∫ k

0
Nr

∣
∣Zr(γ ) – Ẑr(γ )

∣
∣dr +

∫ k

0
Nr

∣
∣Zr(γ ) – Ẑr(γ )

∣
∣dr

= |Z0 – Ẑ0| +
∫ k

0

(
2 + K(γ )

)
Nr

∣
∣Zr(γ ) – Ẑr(γ )

∣
∣dr,

where K(γ ) is the Lipschitz constant of Ck(γ ).
According to Gronwall’s inequality, we have

∣
∣Zk(γ ) – Ẑk(γ )

∣
∣ ≤|Z0 – Ẑ0| exp(

(

2 + K(γ )
∫ k

0
Nr dr

)

≤|Z0 – Ẑ0| exp

(
(
2 + K(γ )

)
∫ +∞

0
Nr dr

)

≤ sup
r∈[–τ ,0]

|Zr – Ẑr| exp

(
(
2 + K(γ )

)
∫ +∞

0
Nr dr

)

, ∀k > 0.

Thus we have

∣
∣Zk(γ ) – Ẑk(γ )

∣
∣ ≤ sup

r∈[–τ ,0]
|Zr – Ẑr| exp

(
(
2 + K(γ )

)
∫ +∞

0
Nr dr

)

, ∀k > 0.

Thus, by Theorem 2 in [10], we have

lim
x→+∞M

{
γ ∈ Γ |K(γ ) ≤ x

}
= 1.

Then there exists a positive number H such that

M
{
γ ∈ Γ |K(γ ) ≤ H

} ≥ 1 – ε

for any given ε > 0. Because

∫ +∞

0
Ns ds < +∞,

take

δ = exp

(

–
(
2 + K(γ )

)
∫ +∞

0
Nr dr

)

ε.

Then |Zk(γ ) – Ẑk(γ )| ≤ ε provided that

sup
r∈[–τ ,0]

|Zr – Ẑr| ≤ δ

and K(γ ) ≤ H .
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Hence,we have |Zk – Ẑk| → 0 as long as supr∈[–τ ,0] |Zr – Ẑr| → 0, which implies that

M
{∣
∣Zk(γ ) – Ẑk(γ )

∣
∣ ≤ ε

}
= 1 – ε, ∀k > 0.

In other words,

lim
sup

r∈[–τ ,0]
|Zr–Ẑr |→0

M
{∣
∣Zk(γ ) – Ẑk(γ )

∣
∣ > ε

}
= 0, ∀k > 0.

So the uncertain delay differential equation with V -jump (3) is stable in measure according
to Definition 5. This completes the proof. �

Corollary 1 Supposing that uik , vik , and ηik (i = 1, 2, 3) are real-valued functions, the linear
uncertain delay differential equations with V -jump

dZk = (u1kZk + v1kZk–τ + η1k) dk + (u2kZk + v2kZk–τ + η2k) dCk

+ (u3kZk + v3kZk–τ + η3k) dVk (27)

is stable in measure if uik , vik , and ηik (i = 1, 2, 3) are bounded and satisfy
∫ +∞

0
u1k dk < +∞

and
∫ +∞

0
u2k dk < +∞,

and
∫ +∞

0
u3k dk < +∞.

Proof Take h(k, z, ẑ) = u1kz + v1kẑ + η1k , p(k, z, ẑ) = u2kz + v2kẑ + η2k , and q(k, z, ẑ) = u3kz +
v3kẑ + η3k . Let Q denote a common upper bound of |uik|, |vik|, and |ηik| (i = 1, 2, 3). The
inequalities

∣
∣h(k, z, ẑ)

∣
∣ ∨ ∣

∣p(k, z, ẑ)
∣
∣ ∨ ∣

∣q(k, z, ẑ)
∣
∣ ≤ Q

(
1 + |z| + |ẑ|)

and

∣
∣h(k, z1, ẑ) – h(k, z2, ẑ)

∣
∣ ∨ ∣

∣p(k, z1, ẑ) – p(k, z2, ẑ)
∣
∣ ∨ ∣

∣q(k, z1, ẑ) – q(k, z2, ẑ)
∣
∣

≤ (u1k ∨ u2k ∨ u3k)|z1 – z2| ≤ Q|z1 – z2|

hold.
According to Theorem 2, we have that the linear uncertain delay differential equation

with V -jump (27) with initial states has a unique solution. Since

∣
∣h(k, z1, ẑ) – h(k, z2, ẑ)

∣
∣ ∨ ∣

∣p(k, z1, ẑ) – p(k, z2, ẑ)
∣
∣ ∨ ∣

∣q(k, z1, ẑ) – q(k, z2, ẑ)
∣
∣

≤ (u1k ∨ u2k ∨ u3k)|z1 – z2|,
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we take Nk = u1k ∨ u2k , which is integrable on [0, +∞), since we have

∫ +∞

0
u1k dk < +∞

and
∫ +∞

0
u2k dk < +∞,

and
∫ +∞

0
u3k dk < +∞.

By using Theorem 3, the linear uncertain delay differential equation with V -jump (27) is
stable in measure. �

2.4 Some examples
Example 1 Consider an uncertain delay differential equation with V -jump

dZk = adk + bZk–τ dCk + c dVk .

Obviously, the coefficients h(k, z, ẑ) = a, p(k, z, ẑ) = bẑ, and q(k, z, ẑ) = c are one-sided local
Lipschitz continuous.

In addition,
∣
∣h(k, z, ẑ)

∣
∣ ∨ ∣

∣p(k, z, ẑ)
∣
∣ ∨ ∣

∣q(k, z, ẑ)
∣
∣

= |a| ∨ |bẑ| ∨ |c|
= max

(|a|, |b|, |c|)(1 + |z| + |ẑ|), ∀z, ẑ ∈R, k ∈ [0, T].

By using Theorem 2, it has a unique continuous solution.
In fact, the analytical solution of dZk = adk + bZk–τ dCk + c dVk with the initial states

φ(k)(k ∈ [–τ , 0]) is

Zk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(k), k ∈ [–τ , 0],

φ(0) + ak + b
∫ k

0 φ(r – τ ) dCr + cVk , k ∈ (0, τ ],

Zτ + a(k – τ ) + b
∫ k
τ

Zr–τ dCr + c(Vk – Vτ ), k ∈ (τ , 2τ ],

· · · · · ·

(28)

Example 2 Consider an uncertain delay differential equation with V -jump

dZk = adk + bdCk + cZk–τ dVk .

Obviously, the coefficients h(k, z, ẑ) = a, p(k, z, ẑ) = b, and q(k, z, ẑ) = cẑ are one-sided local
Lipschitz continuous.

∣
∣h(k, z, ẑ)

∣
∣ ∨ ∣

∣p(k, z, ẑ)
∣
∣ ∨ ∣

∣q(k, z, ẑ)
∣
∣ = |a| ∨ |b| ∨ |cẑ|

= max
(|a|, |b|, |c|)(1 + |z| + |ẑ|), ∀z, ẑ ∈R, k ∈ [0, T].
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By using Theorem 2, it has a unique continuous solution.
In fact, the analytical solution of dZk = adk + bZk–τ dCk + c dVk with the initial states

φ(k)(k ∈ [–τ , 0]) is

Zk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(k), k ∈ [–τ , 0],

φ(0) + ak + bCk + c
∫ k

0 φ(r – τ ) dVr , k ∈ (0, τ ],

Zτ + a(k – τ ) + +b(Ck – Cτ ) + c
∫ k
τ

Zr–τ dVr , k ∈ (τ , 2τ ],

· · · · · ·

(29)

Example 3 Consider an uncertain delay differential equation with V -jump

dZk = aZk–τ dk + bZk–τ dCk + cZk–τ dVk .

Obviously, the coefficients h(k, z, ẑ) = aẑ, p(k, z, ẑ) = bẑ, and q(k, z, ẑ) = cẑ are one-sided
local Lipschitz continuous.

∣
∣h(k, z, ẑ)

∣
∣ ∨ ∣

∣p(k, z, ẑ)
∣
∣ ∨ ∣

∣q(k, z, ẑ)
∣
∣ = |az| ∨ |bẑ| ∨ |cẑ|

= max
(|a|, |b|, |c|)(1 + |z| + |ẑ|),∀z, ẑ ∈ R, k ∈ [0, T].

By using Theorem 2, it has a unique continuous solution.
In fact, the analytical solution of dZk = aZk–τ dk + bZk–τ dCk + cZk–τ dVk with the initial

states φ(k)(k ∈ [–τ , 0]) is

Zk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(k), k ∈ [–τ , 0],

φ(0) + a
∫ k

0 φ(r – τ ) dr + b
∫ k

0 φ(r – τ ) dCr

+ c
∫ k

0 φ(r – τ ) dVr , k ∈ (0, τ ],

Zτ + a
∫ k
τ

Zr–τ dr

+ b
∫ k
τ

Zr–τ dCr + c
∫ t
τ

Zr–τ dVr , k ∈ (τ , 2τ ],

· · · · · ·

(30)

Example 4 Consider an uncertain delay differential equation with V -jump

dZk =
(
exp(–k)Zk–τ + μ

)
dk + σ dCk + ν dCk , k ∈ [0, +∞). (31)

It follows from conditions that real-valued functions exp(–k), |μ|, |σ |, and |ν| are bounded
on the interval [0, +∞). Since

∫ +∞

0
exp(–k) dk = 1 < +∞,

according to Corollary 1, the linear uncertain delay differential equation with V -jump (31)
is stable in measure.
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3 Conclusions
In this paper, we propose uncertain delay differential equations with V -jump and establish
the existence, uniqueness, and stability theorem of solution for the uncertain differential
equations with V -jump. One source of weakness in our study of uncertain delay differen-
tial equations with V -jump is the lack of numerical methods and applications; these will
be the focus of our future research.
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