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Abstract
In this paper, the extended Kalman filtering scheme in a distributed manner is
presented for state-saturated nonlinear systems (SSNSs), where the randomly
occurring cyberattacks (ROCAs) with uncertain occurring probabilities (UOPs) are
taken into account. In particular, a novel cyberattack model is constructed by the
consideration of false data-injection attacks (FDIAs) and denial-of-service attacks
(DoSAs) simultaneously. The ROCAs are described by a series of Bernoulli distributed
stochastic variables, where the so-called UOPs are considered and described by the
nominal mathematical expectations and error bounds. The major effort is to develop
a novel DEKF strategy for SSNSs with consideration of state delay and ROCAs with
UOPs. In what follows, an upper bound with respect to the filtering error covariance is
derived and minimized by selecting the suitable filter parameter. Besides, the
concrete expression of the filter parameter is formed by solving matrix difference
equations (MDEs). Meanwhile, a sufficient condition under certain constraints is
proposed to testify the boundedness regarding the given upper bound. Finally, we
use the experiments and corresponding comparisons to verify the feasibility of the
designed extended Kalman filtering approach in a distributed way.

Keywords: Distributed extended Kalman filtering; State-saturated systems; Time
delay; Uncertain occurring probabilities; Randomly occurring cyberattacks

1 Introduction
During the past few decades, the dynamical networks have been extensively applied to
the modeling in a wealth of areas such as air cooperative monitoring, seismic sensing, tar-
get tracking and so forth, see, e.g., [1–6] for more details. Accordingly, a wireless sensor
network (WSN) comprises a majority of intelligent nodes, which are capable of sensing,
monitoring, collecting data information, and communicating with their adjacent nodes at
the same time. In order to reduce production costs, each intelligent node normally has
small size and limited power in practical engineering systems. Thus, the traditional filter-
ing method, which requires that every node transmits the information to the fusion center
or other sensor nodes, has certain application limitations [7, 8]. To handle this issue, the
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distributed filtering (DF) whose core idea is to estimate the target’s state on account of
the local information performs better to some extent. To name a few works in this area,
the H∞ filtering problem in a distributed setting has been tackled in [9] for Markovian
jump systems by solving some matrix inequalities. In addition, the DF schemes with fad-
ing measurements and redundant channels have been presented in [10] and [11], respec-
tively. And in [12], the DF issue has been addressed for nonlinear systems with switching
topology and multiplicative link noises, where the filter parameters have been obtained by
means of handling convex optimization problems.

It should be noted that the state saturation occurs frequently in the practical engineer-
ing, which can reflect the limitation of systems’ state or the protection of the machinery
equipment. Generally speaking, the state variables of the physical target are constrained
in a bounded set [13, 14]. If the state saturation is not aptly addressed, the desired per-
formance of dynamic systems cannot be always ensured. So far, many efforts have been
devoted to the studies of synthesis and analysis for state saturated systems [15, 16]. For in-
stance, the state-saturated filtering issue has been solved in [17] via certain mathematical
computations. In [18], a set-membership filtering algorithm has been studied for state-
saturated systems in light of dealing with some linear matrix inequalities. The DF strat-
egy has been proposed in [19] for state-saturated systems under fading measurements
and quantization in terms of the feasibility of certain matrix difference equations (MDEs).
Moreover, the nonlinearities are ubiquitous in actual world, which should be tackled in a
proper way [20–24]. For instance, a new filtering algorithm by considering the event-based
communication criterion has been proposed in [25] for nonlinear systems. Nevertheless,
it should be noted that few approaches are available to tackle the DF problem for time-
varying saturated nonlinear systems, which is one motivation of this paper.

Accompanied with the broad utilizations of open but unprotected shared networks, the
sensor networks are extremely vulnerable to attacks, see, e.g., [26, 27]. In fact, the funda-
mental goal of these attacks is to break data information through the shared communica-
tion network so as to drive the physical plant to become oscillating or even instable. In [28],
the recursive filtering method has been proposed for state-saturated systems under decep-
tion attacks, where the attacks have been characterized by a series of Bernoulli stochastic
variables with a known occurrence probability. It is worthwhile to notice that the behav-
iors of attacks might be irregularly intercepted by the protection equipment, namely the
attacks generally occur in a random manner. In [29], the extended Kalman filtering is-
sue has been addressed for stochastic systems under randomly occurring cyberattacks
(ROCAs). Unfortunately, it should be pointed out that the occurrence probability of the
attacks is commonly supposed to be deterministic among the existing results, where such
a situation cannot be guaranteed always and restricts its applications. Recently, the recur-
sive filtering method under the variance-constraint criterion has been developed in [30]
to attenuate the impacts caused by multiple missing measurements with uncertain miss-
ing probabilities. However, there are few studies about the cyberattacks with uncertain
occurring probabilities (UOPs) and the state saturation in the existing literature, which
deserves further investigations in order to develop the corresponding filtering algorithms
with potential robustness. Moreover, time delay unavoidably exists in practical systems,
see, e.g., [31–33]. Accordingly, the performance of the system might be destroyed if the
time delay cannot be effectively handled [34, 35]. In [36], the variance-constrained filtering
method has been established for stochastic genetic regulatory networks subject to state
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delay. Nevertheless, it should be noticed that few methods can be found that handle the
delayed time-varying stochastic systems with state saturation, not to mention the pres-
ence of ROCAs with UOPs. Hence, the goal of this paper is to fill such a gap by designing
a novel distributed extended Kalman filtering (DEKF) strategy for the addressed problem.

Inspired by the aforementioned discussions, we attempt to provide a DEKF algorithm for
state-saturated nonlinear systems (SSNSs) subject to state delay and ROCAs with UOPs.
The phenomena of cyberattacks are adequately considered and characterized by a se-
quence of nominal means, error upper bounds, as well as the bound of the attack signal.
The key motivations/challenges can be mentioned from three aspects: (i) How to com-
prehensively take the state saturation, time-delay and ROCAs with UOPs into account
when conducting the design problem of DEKF? (ii) How to design the proper filter gain
with an easy-to-implement form to realize the expected DEKF performance requirement?
(iii) How to evaluate the estimation method performance and ensure the boundedness
requirement regarding the upper bound matrix of the filtering error covariance. In or-
der to better answer the above questions, an effective optimal DEKF method is estab-
lished, where the accurate expression of the filter gain is presented by solving two MDEs.
The main contributions can be summarized as follows: (1) the constructed dynamic sys-
tem model is fairly comprehensive and contains nonlinearity disturbance, state saturation,
time-delay, and ROCAs with UOPs, thus better reflecting the practical engineering situa-
tions; (2) a matrix simplification technology is exploited to cope with the design difficulty
of filter gain caused by the sparseness of the fixed topology; (3) a sufficient condition is
devised to guarantee the boundedness of the proposed upper bound matrix; and (4) the
newly proposed DEKF scheme can be applied for online implementations. Finally, the use-
fulness of the main results is certified by a few simulations.

Now, we outline the rest of the paper. The DEKF problem is formulated in Sect. 2 for
state-saturated systems under a given network topology. In Sect. 3, the upper bound for the
state estimation error covariance is obtained firstly and then the proper filter parameter is
chosen to minimize such an upper bound. Moreover, the boundedness is analyzed and the
proof is provided under an assumption. Two numerical simulations are utilized in Sect. 4
to demonstrate the usefulness of our main theoretical results. Finally, we summarize the
conclusions in Sect. 5.

Notations The symbols utilized throughout the paper are standard. The n-dimensional
Euclidean space is denoted by Rn. The symbol C ≥ D, where C and D are both symmetric
matrices, implies that C – D is positive semi-definite. For a matrix W , ‖W‖, ρ(W ), W T ,
σmax(W ) and tr{W } stand for the spectral norm of matrix W , the spectral radius of matrix
W , the transpose of matrix W , the largest singular value of matrix W , and the trace of ma-
trix W , respectively; col{W1, W2, . . . , WN } represents [W T

1 W T
2 · · · W T

N ]T ; ◦ denotes the
Hadamard product operator, with [P◦Q]ij = PijQij; diag{·} is a block-diagonal matrix; I rep-
resents an identity matrix with proper dimension. Furthermore, matrices are assumed to
have suitable dimensions for the mathematical operations if they are not explicitly pointed
out.

2 Problem formulation
The DEKF problem with attacks is drawn in Fig. 1. From the diagram, it is easy to see
that the outputs are measured by some sensor nodes. Meanwhile, the information can be
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Figure 1 The DEKF problem under attacks

collected from the individual and the neighboring nodes according to a certain topological
structure. Additionally, the cyberattacks randomly occur in the shared communication
networks between the sensors and the remote filters.

The topological structure of the WSN is modeled by a graph G = (U ,E ,A), where the
set of nodes, the set of edges, as well as the weighted adjacency matrix are denoted by
U = {1, 2, . . . , N}, E ⊆ U × U , and A = [αij]N×N with αij > 0, respectively. An edge of G
is given by (i, j). Also αij > 0 ⇐⇒ (i, j) ∈ E which shows that there is an edge from j to i.
Besides, Ni = {j ∈ U : αij > 0} represents the set of adjacent nodes for node i, including
itself.

In this paper, the considered SSNSs are described by the following dynamical equations:

xk+1 = μ
(
Akxk + f (xk–d)

)
+ Bkωk , (1)

yi,k = hi(xk) + νi,k , (2)

where xk ∈ R
n depicts the state vector that cannot be directly measured, the initial value

of xk has mean x̄0 and covariance P0, and yi,k ∈ R
my (i = 1, 2, . . . , N ) is the output signal

collected by sensors. The random parameters ωk ∈ R
nw and νi,k ∈ R

my are the process
and measurement noises with zero mean and known covariances, Rk > 0 and Qi,k > 0,
respectively. The known positive integer d depicts the time delay. The system matrices
Ak and Bk are known with proper dimensions. The nonlinearities f (·) and hi(·) are both
supposed to be continuously differentiable.

The nonlinearity hi(xk) : Rn 
→R
my satisfies the following condition:

∥∥hi(xk)
∥∥≤ δ1‖xk‖ + δ2, (3)

where δ1 and δ2 are nonnegative scalars.
The saturation function μ(·) : Rn 
→R

n can be defined as

μ(ς ) =
[
μ1(ς1) μ2(ς2) · · · μn(ςn)

]T
, (4)

where

μi(ςi) = sign(ςi) min
{
ςi,max, |ςi|

}
, (5)
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ςi,max stands for the ith element of the saturation level ςmax, ςi denotes the real value, and
μi(ςi) represents the value under the saturation constraint.

The real measured output of the ith node, which might be subject to ROCAs, is modeled
by

yi,k = γi,kyi,k + (1 – γi,k)λi,kξi,k , (6)

where yi,k ∈ R
my stands for the output signal with potential attacks; ξi,k ∈R

my is the attack
signal transmitted by malicious attackers satisfying ξT

i,kξi,k ≤ ξ̄k . The mutually independent
Bernoulli distributed variables γi,k and λi,k are utilized to describe the switch behavior of
different cyberattacks, where the statistical features are given as:

Prob{λi,k = 1} = λ̄i,k + �λi,k , Prob{λi,k = 0} = 1 – (λ̄i,k + �λi,k), (7)

Prob{γi,k = 1} = γ̄i,k + �γi,k , Prob{γi,k = 0} = 1 – (γ̄i,k + �γi,k), (8)

where γ̄i,k + �γi,k and λ̄i,k + �λi,k both belong to [0, 1], γ̄i,k and λ̄i,k are known scalars, �γi,k

and �λi,k are introduced to describe the UOPs, |�γi,k| ≤ ρi,k and |�λi,k| ≤ ρ̄i,k with ρi,k and
ρ̄i,k being known scalars. Furthermore, we assume that γi,k , λi,k , ωk , and νi,k are mutually
uncorrelated for any i and k.

Remark 1 In accordance with (6), the different values of λi,k and γi,k can describe different
cases. To be more specific, it is easy to see that the measurement output model in (6)
mainly includes the following three cases: (1) if γi,k = 1, the measurement signals can be
transmitted successfully, i.e., the behaviors of attacks cannot occur; (2) when γi,k = 0 and
λi,k = 1, the systems encounter the false data-injection attacks (FDIAs); and (3) when γi,k =
0 and λi,k = 0, the systems suffer from the denial-of-service attacks (DoSAs).

Remark 2 On the one hand, it is worth noticing that the UOPs are characterized by (7)
and (8), where �γi,k and �λi,k denote the UOPs subject to the certain probability error
bounds with a hope to reflect the practical engineering environments. On the other hand,
the fuzzy uncertainty method can be considered. In fact, the choice of membership func-
tions is crucial for the realization of purpose, which is commonly dependent on the expe-
rience for different systems. Compared with the modeling of fuzzy uncertainty, we adopt
another method to model the UOPs described by the nominal means and error upper
bounds. Moreover, the new modeling way contains the existing ROCAs as a special one
when setting �λi,k = 0 and �γi,k = 0.

The following distributed filter is designed for addressed SSNSs:

x̂i,k+1|k = μ
(
Akx̂i,k|k + f (x̂i,k–d|k–d)

)
, (9)

x̂i,k+1|k+1 = x̂i,k+1|k +
∑

j∈Ni

αijGij,k+1
(
yj,k+1 – γ̄j,k+1hj(x̂j,k+1|k)

)
, (10)

where x̂i,k+1|k is the one-step prediction, x̂i,k+1|k+1 is the filter. In the sequel, the matrix
Gij,k+1 is the desirable time-varying filter parameter.
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Now, we devote to state the major objectives of this paper. Firstly, a new DEKF method
is proposed for SSNSs under ROCAs with UOPs. Secondly, the boundedness is analyzed
for the newly designed DEKF scheme.

Before proceeding, we provide the following lemmas, which are helpful for the further
theoretical derivations.

Lemma 1 ([11]) For ∀u, v ∈R, there is a scalar εi ∈ [0, 1] satisfying

μi(u) – μi(v) = εi(u – v), i = 1, 2, . . . , N ,

where μi(·) is defined in (4)–(5).

Lemma 2 ([19]) Let N = diag{n1, n2, . . . , np} be a random diagonal matrix and M =
[mij]p×p be a real-valued matrix. Then, it can shown that the following relationship holds:

E
{

NMNT} =

⎡

⎢
⎢⎢
⎢
⎣

E{n2
1} E{n1n2} · · · E{n1np}

E{n2n1} E{n2
2} · · · E{n2np}

...
...

. . .
...

E{npn1} E{npn2} · · · E{n2
p}

⎤

⎥
⎥⎥
⎥
⎦

◦ M.

Lemma 3 ([29]) Consider matrices C , M, ℘ , and an unknown matrix F satisfying
FFT ≤ I . If there are ℵ > 0 and ζ > 0 such that ζ –1I – ℘ℵ℘T > 0, then we have

(C + MF℘)ℵ(C + MF℘)T ≤ C
(ℵ–1 – ζ℘T℘

)–1CT + ζ –1MMT .

3 DEKF algorithm design and error boundedness discussion
In this section, a DEKF algorithm will be given for SSNSs subject to state delay and RO-
CAs with UOPs. Firstly, we analyze the nonlinearities f (xk–d) and hj(xk+1) by employing the
Taylor series expansion, where the high-order terms induced by the linearization process
are approximately estimated. Secondly, a major effort is made on looking for a minimal up-
per bound matrix with respect to the state estimation error covariance, where the matrix
simplification technique (MST) is adopted to obtain the proper filter parameter with an
easy-to-implement manner. Finally, the performance evaluation issue is addressed, where
a new sufficient criterion under certain constraint conditions is given in order to charac-
terize the boundedness of the estimation error covariance.

3.1 DEKF algorithm design
To begin, the prediction error and filtering error are expressed as

ei,k+1|k = xk+1 – x̂i,k+1|k , ei,k+1|k+1 = xk+1 – x̂i,k+1|k+1.

Then, in light of the Taylor series expansion for f (xk–d) around x̂i,k–d|k–d , one has

f (xk–d) = f (x̂i,k–d|k–d) + Ei,k–dei,k–d|k–d + o
(|ei,k–d|k–d|

)
, (11)
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where

Ei,k–d =
∂f (xk–d)
∂xk–d

∣
∣∣∣
xk–d=x̂i,k–d|k–d

.

Moreover, the high-order term o(|ei,k–d|k–d|) by using the Taylor series expansion is ap-
proximately expressed by

o
(|ei,k–d|k–d|

)
= Bi,k–dΘi,k–dei,k–d|k–d, (12)

where Bi,k–d is supposed to be a scaling matrix with regard to the specific issue and Θi,k–d

is an unknown matrix that symbols the linearization error with Θi,k–dΘ
T
i,k–d ≤ I .

Along the same lines, the following equation can be obtained:

hj(xk+1) = hj(x̂j,k+1|k) + Fj,k+1ej,k+1|k + o
(|ej,k+1|k|

)
, (13)

where Fj,k+1 = ∂hj(xk+1)
∂xk+1

|xk+1=x̂j,k+1|k , o(|ej,k+1|k|) = Cj,k+1Ωj,k+1ej,k+1|k , and Ωj,k+1Ω
T
j,k+1 ≤ I .

From Lemma 1, (1), (9), and (11)–(12), we have

ei,k+1|k = Πi,kAkei,k|k + Πi,k(Ei,k–d + Bi,k–dΘi,k–d)ei,k–d|k–d + Bkωk , (14)

where Πi,k = diag{ε(1)
i,k , ε(2)

i,k , . . . , ε(n)
i,k }, ε(ς )

i,k ∈ [0, 1] (ς = 1, 2, . . . , n).
Together with (1), (10), and (13), we have

ei,k+1|k+1 = ei,k+1|k –
∑

j∈Ni

αijGij,k+1
{

(γj,k+1 – γ̄j,k+1 – �γj,k+1)hj(xk+1)

+ γ̄j,k+1(Fj,k+1 + Cj,k+1Ωj,k+1)ej,k+1|k +
[
(1 – γj,k+1)λj,k+1

– (1 – γ̄j,k+1 – �γj,k+1)(λ̄j,k+1 + �λj,k+1)
]
ξj,k+1

+ (1 – γ̄j,k+1 – �γj,k+1)(λ̄j,k+1 + �λj,k+1)ξj,k+1

+ γj,k+1νj,k+1 + �γj,k+1hj(xk+1)
}

. (15)

To facilitate subsequent derivations, we define

ek|k = colN {ei,k|k}, ek–d|k–d = colN {ei,k–d|k–d}, Ξ̄ = max{ξ̄k},
ek+1|k = colN {ei,k+1|k}, Λk = diagN {λi,kI}, Āk = diagN {Ak},
B̄k = colN {Bk}, x̄k = colN {xk}, Ti = diag{αi1I, . . . ,αiN I},
Qk = diagN {Qi,k}, Ek–d = diagN {Ei,k–d}, Θk–d = diagN {Θi,k–d},
Bk–d = diagN {Bi,k–d}, Fk+1 = diagN {Fi,k+1}, νk = colN {νi,k},
Ck+1 = diagN {Ci,k+1}, Ωk+1 = diagN {Ωi,k+1}, Πk = diagN {Πi,k},
Ξk = colN {ξi,k}, Γk = diagN {γi,kI}, h̄(xk+1) = colN

{
hi(xk+1)

}
,

Hi = diag{0, . . . , 0︸ ︷︷ ︸
i–1

, I, 0, . . . , 0︸ ︷︷ ︸
N–i

}, Gk = [Gij,k]N×N .
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Then, the one-step prediction error in (14) and filtering error in (15) in the compact form
can be described by:

ek+1|k = ΠkĀkek|k + Πk(Ek–d + Bk–dΘk–d)ek–d|k–d + B̄kωk , (16)

ek+1|k+1 =

[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]

ek+1|k

–
N∑

i=1

HiGk+1TiΓ̃k+1h̄(xk+1) –
N∑

i=1

HiGk+1TiΓ̌k+1h̄(xk+1)

–
N∑

i=1

HiGk+1Ti
[
(I – Γk+1)Λk+1 – (I – Γ̂k+1)Λ̂k+1

]
Ξk+1

–
N∑

i=1

HiGk+1TiΓk+1νk+1 –
N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1Ξk+1, (17)

where

Γ̃k+1 = Γk+1 – Γ̂k+1,

Γ̂k+1 = diag
{

(γ̄1,k+1 + �γ1,k+1)I, (γ̄2,k+1 + �γ2,k+1)I,

. . . , (γ̄N ,k+1 + �γN ,k+1)I
}

,

Γ̌k+1 = diag{�γ1,k+1I,�γ2,k+1I, . . . ,�γN ,k+1I},
Γ̄k+1 = diag{γ̄1,k+1I, γ̄2,k+1I, . . . , γ̄N ,k+1I},
Λ̃k+1 = Λk+1 – Λ̂k+1,

Λ̂k+1 = diag
{

(λ̄1,k+1 + �λ1,k+1)I, (λ̄2,k+1 + �λ2,k+1)I,

. . . , (λ̄N ,k+1 + �λN ,k+1)I
}

,

Λ̌k+1 = diag{�λ1,k+1I,�λ2,k+1I, . . . ,�λN ,k+1I},
Λ̄k+1 = diag{λ̄1,k+1I, λ̄2,k+1I, . . . , λ̄N ,k+1I}.

Subsequently, we will give the concrete forms of Pk+1|k = E{ek+1|keT
k+1|k} and Pk+1|k+1 =

E{ek+1|k+1eT
k+1|k+1}, where the detailed calculation derivations are omitted for conciseness.

Lemma 4 The prediction error covariance matrix Pk+1|k can be shown to be

Pk+1|k = E
{
ΠkĀkek|keT

k|kĀT
k ΠT

k
}

+ Ak + B̄kRkB̄T
k + Bk + BT

k , (18)

where

Ak = E
{
Πk(Ek–d + Bk–dΘk–d)ek–d|k–deT

k–d|k–d(Ek–d + Bk–dΘk–d)TΠT
k
}

,

Bk = E
{
ΠkĀkek|keT

k–d|k–d(Ek–d + Bk–dΘk–d)TΠT
k
}

.
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Lemma 5 The filtering error covariance matrix Pk+1|k+1 obeys

Pk+1|k+1

= E

{[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]

ek+1|keT
k+1|k

×
[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]T}

+ E

{( N∑

i=1

HiGk+1TiΓ̃k+1

)

h̄(xk+1)h̄T (xk+1)

( N∑

i=1

HiGk+1TiΓ̃k+1

)T}

+ E

{( N∑

i=1

HiGk+1TiΓ̌k+1

)

h̄(xk+1)h̄T (xk+1)

( N∑

i=1

HiGk+1TiΓ̌k+1

)T}

+ E

{( N∑

i=1

HiGk+1Ti
[
(I – Γk+1)Λk+1 – (I – Γ̂k+1)Λ̂k+1

]
)

× Ξk+1Ξ
T
k+1

( N∑

i=1

HiGk+1Ti
[
(I – Γk+1)Λk+1 – (I – Γ̂k+1)Λ̂k+1

]
)T}

+ E

{( N∑

i=1

HiGk+1TiΓk+1

)

νk+1ν
T
k+1

( N∑

i=1

HiGk+1TiΓk+1

)T}

+ E

{[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]

Ξk+1Ξ
T
k+1

×
[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]T}

– Ck+1 – CT
k+1

– Dk+1 – DT
k+1 + Ek+1 + ET

k+1, (19)

where

Ck+1 = E

{[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]

ek+1|kh̄T (xk+1)

×
( N∑

i=1

HiGk+1TiΓ̌k+1

)T}

,

Dk+1 = E

{[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]

ek+1|kΞT
k+1

×
[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]T}

,

Ek+1 = E

{ N∑

i=1

HiGk+1TiΓ̌k+1h̄(xk+1)ΞT
k+1

[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]T}

.
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Note that the uncertain terms exist in (18)–(19), and hence it is impossible to get their
precise values. In the sequel, an alternative method is utilized, where a recursive method
will be given to obtain the optimized upper bound matrix by designing a suitable filter
gain.

Theorem 1 For the given system (1), (2), and (6), let ε1 > 0, ε2 > 0, and θκ > 0 (κ = 1, 2, . . . , 5)
be given. If there exist Σk+1|k > 0 and Σk+1|k+1 > 0 satisfying initial condition Σ0|0 = P0|0 > 0
and meeting the following MDEs:

Σk+1|k = min{Uk , 4N�}I + B̄kRkB̄T
k (20)

and

Σk+1|k+1 = (1 + θ3 + θ4)

[(

I –
N∑

i=1

HiGk+1TiΓ̄k+1Fk+1

)
(
Σ–1

k+1|k – ε2I
)–1

×
(

I –
N∑

i=1

HiGk+1TiΓ̄k+1Fk+1

)T

+ ε–1
2

( N∑

i=1

HiGk+1Ti

)

Γ̄k+1Ck+1

× CT
k+1Γ̄

T
k+1

( N∑

i=1

HiGk+1Ti

)T]

+

( N∑

i=1

HiGk+1Ti

)

(Γ̆k+1 ◦ Vk+1)

×
( N∑

i=1

HiGk+1Ti

)T

+
(
1 + θ–1

3 + θ5
)
ρ2 tr{Vk+1}

( N∑

i=1

HiGk+1Ti

)

×
( N∑

i=1

HiGk+1Ti

)T

+

( N∑

i=1

HiGk+1Ti

)
{[

(I – Pk+1)Qk+1
]{

I

–
[
(I – Pk+1)Qk+1

]T} ◦ Ξ̄ I
}
( N∑

i=1

HiGk+1Ti

)T

+

( N∑

i=1

HiGk+1Ti

)

× (Pk+1 ◦ Qk+1)

( N∑

i=1

HiGk+1Ti

)T

+
(
1 + θ–1

4 + θ–1
5
)

tr
{

(I – Pk+1)

× Qk+1Ξ̄QT
k+1(I – Pk+1)T}

( N∑

i=1

HiGk+1Ti

)( N∑

i=1

HiGk+1Ti

)T

(21)

subject to two inequality conditions

ε–1
1 I – Σk–d|k–d > 0,

ε–1
2 I – Σk+1|k > 0,

(22)

where

Uk =
(
1 + θ–1

1
)

tr
{

Ek–d
(
Σ–1

k–d|k–d – ε1I
)–1ET

k–d + ε–1
1 Bk–dBT

k–d
}

+ (1 + θ1) tr
{

ĀkΣk|kĀT
k
}

, � =
n∑

i=1

s2
i,max,
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Vk+1 = 2
(
δ2

1 tr{Φk+1|k} + δ2
2
)
I, ρ = max{ρi,k+1}, ρ̃ = max{ρ̄i,k+1},

Ī = colN {I}, Φk+1|k = (1 + θ2)Σk+1|k +
(
1 + θ–1

2
)
x̂k+1|kx̂T

k+1|k , (23)

Γ̆k+1 = diag
{

(γ̄1,k+1 + ρ)(1 – γ̄1,k+1 + ρ)I, . . . , (γ̄N ,k+1 + ρ)

× (1 – γ̄N ,k+1 + ρ)I
}

, Qk+1 = Λ̄k+1 – ρ̃I,

Pk+1 = Γ̄k+1 + ρI, Pk+1 = Γ̄k+1 – ρI, Qk+1 = Λ̄k+1 + ρ̃I,

then, one can find an upper bound matrix, i.e.,

Pk+1|k+1 ≤ Σk+1|k+1. (24)

Proof Based on the property of trace and Lemma 3, the first two terms of (18) can be
expressed as

E
{
ΠkĀkek|keT

k|kĀT
k ΠT

k
}≤ E

{‖Ākek|k‖2}I = tr
{

ĀkPk|kĀT
k
}

I (25)

and

Ak ≤ E
{∥∥(Ek–d + Bk–dΘk–d)ek–d|k–d

∥∥2}I

≤ tr
{

Ek–d
(
P–1

k–d|k–d – ε1I
)–1ET

k–d + ε–1
1 Bk–dBT

k–d
}

I, (26)

where ε1 is a positive scalar. By means of an elementary inequality, the cross-term Bk +BT
k

in (18) can be handled as

Bk + BT
k ≤ θ1E

{
ΠkĀkek|keT

k|kĀT
k ΠT

k
}

+ θ–1
1 Ak , (27)

with θ1 being a positive constant. Furthermore, from the perspective of saturation level,
the following relationship can be established:

Pk+1|k = E

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎢
⎢⎢
⎢
⎣

μ(Akxk + f (xk–d)) – μ(Akx̂1,k|k + f (x̂1,k–d|k–d))
μ(Akxk + f (xk–d)) – μ(Akx̂2,k|k + f (x̂2,k–d|k–d))

...
μ(Akxk + f (xk–d)) – μ(Akx̂N ,k|k + f (x̂N ,k–d|k–d))

⎤

⎥
⎥⎥
⎥
⎦

×

⎡

⎢⎢
⎢⎢
⎣

μ(Akxk + f (xk–d)) – μ(Akx̂1,k|k + f (x̂1,k–d|k–d))
μ(Akxk + f (xk–d)) – μ(Akx̂2,k|k + f (x̂2,k–d|k–d))

...
μ(Akxk + f (xk–d)) – μ(Akx̂N ,k|k + f (x̂N ,k–d|k–d))

⎤

⎥⎥
⎥⎥
⎦

T⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ B̄kRkB̄T
k

≤ 4N�I + B̄kRkB̄T
k . (28)

Substituting (25)–(28) into (18), one has

Pk+1|k ≤ min{Wk , 4N�}I + B̄kRkB̄T
k , (29)

with Wk = (1 + θ1) tr{ĀkPk|kĀT
k } + (1 + θ–1

1 ) tr{Ek–d(P–1
k–d|k–d – ε1I)–1ET

k–d + ε–1
1 Bk–dBT

k–d}.
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In the sequel, we are ready to discuss the covariance matrix Pk+1|k+1 and look for an
upper bound. By virtue of Lemma 3, the first term of (19) can be bounded as

E

{[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]

ek+1|keT
k+1|k

×
[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]T}

≤
[(

I –
N∑

i=1

HiGk+1TiΓ̄k+1Fk+1

)
(
P–1

k+1|k – ε2I
)–1
(

I –
N∑

i=1

HiGk+1TiΓ̄k+1Fk+1

)T]

+ ε–1
2

( N∑

i=1

HiGk+1TiΓ̄k+1

)

Ck+1CT
k+1

( N∑

i=1

HiGk+1TiΓ̄k+1

)T

, (30)

with ε2 being a positive constant. Next, according to Lemma 2, we obtain

E

{( N∑

i=1

HiGk+1Ti

)

Γ̃k+1h̄(xk+1)h̄T (xk+1)Γ̃ T
k+1

( N∑

i=1

HiGk+1Ti

)T}

=

( N∑

i=1

HiGk+1Ti

)
(
�k+1 ◦E{h̄(xk+1)h̄T (xk+1)

})
( N∑

i=1

HiGk+1Ti

)T

, (31)

where

�k+1 = diag
{

(γ̄1,k+1 + �γ1,k+1)
[
1 – (γ̄1,k+1 + �γ1,k+1)

]
I,

(γ̄2,k+1 + �γ2,k+1)
[
1 – (γ̄2,k+1 + �γ2,k+1)

]
I,

. . . , (γ̄N ,k+1 + �γN ,k+1)
[
1 – (γ̄N ,k+1 + �γN ,k+1)

]
I
}

.

Due to |�γi,k| ≤ ρi,k , we have

�k+1 ≤ diag
{

(γ̄1,k+1 + ρ1,k+1)(1 – γ̄1,k+1 + ρ1,k+1)I,

. . . , (γ̄N ,k+1 + ρN ,k+1)(1 – γ̄N ,k+1 + ρN ,k+1)I
}

≤ Γ̆k+1, (32)

where Γ̆k+1 is given in (23). Additionally, it can be obtained from (3) that

E
{

h̄(xk+1)h̄T (xk+1)
} ≤ E

{(
δ1‖x̄k+1‖ + δ2

)2}I

≤ (2δ2
1E
{‖x̄k+1‖2} + 2δ2

2
)
I

= 2
(
δ2

1 tr
{
E
{

x̄k+1x̄T
k+1
}}

+ δ2
2
)
I. (33)

Using an elementary inequality, we have

E
{

x̄k+1x̄T
k+1
}≤ Ψk+1|k (34)
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with Ψk+1|k = (1 + θ2)Pk+1|k + (1 + θ–1
2 )x̂k+1|kx̂T

k+1|k and θ2 being a positive constant. Besides,
we have

E
{
Γ̃k+1h̄(xk+1)h̄T (xk+1)Γ̃ T

k+1
}≤ Γ̆k+1 ◦ Jk+1, (35)

where Jk+1 = 2(δ2
1 tr{Ψk+1|k} + δ2

2)I . Thus, we have

E
{
Γ̌k+1h̄(xk+1)h̄T (xk+1)Γ̌ T

k+1
} ≤ E

{∥∥Γ̌k+1h̄(xk+1)
∥
∥2}I

≤ tr
{
Γ̌k+1Jk+1Γ̌

T
k+1
}

I

≤ ρ2 tr{Jk+1}I. (36)

From ξT
i,k+1ξi,k+1 ≤ ξ̄k+1, we get

Ξk+1Ξ
T
k+1 ≤ ‖Ξk+1‖2I = ΞT

k+1Ξk+1I ≤ Ξ̄ I. (37)

Subsequently, one has

E
{
Ξk+1Ξ

T
k+1
}≤ Ξ̄ I. (38)

Therefore, the fourth term of (19) is estimated as follows:

E

{( N∑

i=1

HiGk+1Ti

)
[
(I – Γk+1)Λk+1 – (I – Γ̂k+1)Λ̂k+1

]
Ξk+1

× ΞT
k+1
[
(I – Γk+1)Λk+1 – (I – Γ̂k+1)Λ̂k+1

]T
( N∑

i=1

HiGk+1Ti

)T}

≤
( N∑

i=1

HiGk+1Ti

)
{[

(I – Γ̂k+1)Λ̂k+1
]{

I –
[
(I – Γ̂k+1)Λ̂k+1

]} ◦ Ξ̄ I
}

×
( N∑

i=1

HiGk+1Ti

)T

≤
( N∑

i=1

HiGk+1Ti

)
{

(I – Pk+1)Qk+1
[
I – (I – Pk+1)Qk+1

] ◦ Ξ̄ I
}

×
( N∑

i=1

HiGk+1Ti

)T

. (39)

Moreover, we get

E
{
Γk+1νk+1ν

T
k+1Γ

T
k+1
}≤ Γ̂k+1 ◦ Qk+1 ≤ Pk+1 ◦ Qk+1. (40)
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The last quadratic term of (19) can be readily calculated as

E

{[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]

Ξk+1Ξ
T
k+1

×
[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]T}

≤
( N∑

i=1

HiGk+1Ti

)

E
{∥∥(I – Γ̂k+1)Λ̂k+1Ξk+1

∥∥2}
( N∑

i=1

HiGk+1Ti

)T

≤ tr
{

(I – Pk+1)Qk+1Ξ̄QT
k+1(I – Pk+1)T}

×
( N∑

i=1

HiGk+1Ti

)( N∑

i=1

HiGk+1Ti

)T

. (41)

The relevant cross-terms in (19) are computed as follows:

–Ck+1 – CT
k+1 ≤ θ3E

{[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]

ek+1|k

× eT
k+1|k

[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1Ck+1Ωk+1)

]T}

+ θ–1
3 E

{( N∑

i=1

HiGk+1TiΓ̌k+1

)

h̄(xk+1)h̄T (xk+1)

×
( N∑

i=1

HiGk+1TiΓ̌k+1

)T}

,

–Dk+1 – DT
k+1 ≤ θ4E

{[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]

ek+1|k

× eT
k+1|k

[

I –
N∑

i=1

HiGk+1TiΓ̄k+1(Fk+1 + Ck+1Ωk+1)

]T}

(42)

+ θ–1
4 E

{[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]

Ξk+1Ξ
T
k+1

×
[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]T}

,

Ek+1 + ET
k+1 ≤ θ5E

{( N∑

i=1

HiGk+1TiΓ̌k+1

)

h̄(xk+1)

× h̄T (xk+1)

( N∑

i=1

HiGk+1TiΓ̌k+1

)T}
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+ θ–1
5 E

{[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]

Ξk+1

× ΞT
k+1

[ N∑

i=1

HiGk+1Ti(I – Γ̂k+1)Λ̂k+1

]T}

,

where θ3, θ4 and θ5 are positive scalars. Consequently, we arrive at

Pk+1|k+1

≤ (1 + θ3 + θ4)

[(

I –
N∑

i=1

HiGk+1TiΓ̄k+1Fk+1

)
(
P–1

k+1|k – ε2I
)–1

×
(

I –
N∑

i=1

HiGk+1TiΓ̄k+1Fk+1

)T

+ ε–1
2

( N∑

i=1

HiGk+1Ti

)

Γ̄k+1Ck+1

× CT
k+1Γ̄

T
k+1

( N∑

i=1

HiGk+1Ti

)T]

+

( N∑

i=1

HiGk+1Ti

)

(Γ̆k+1 ◦ Jk+1)

×
( N∑

i=1

HiGk+1Ti

)T

+
(
1 + θ–1

3 + θ5
)
ρ2 tr{Jk+1}

( N∑

i=1

HiGk+1Ti

)

×
( N∑

i=1

HiGk+1Ti

)T

+

( N∑

i=1

HiGk+1Ti

)
{[

(I – Pk+1)Qk+1
]{

I

–
[
(I – Pk+1)Qk+1

]T} ◦ Ξ̄ I
}
( N∑

i=1

HiGk+1Ti

)T

+

( N∑

i=1

HiGk+1Ti

)

× (Pk+1 ◦ Qk+1)

( N∑

i=1

HiGk+1Ti

)T

+
(
1 + θ–1

4 + θ–1
5
)

tr
{

(I – Pk+1)

× Qk+1Ξ̄QT
k+1(I – Pk+1)T}

( N∑

i=1

HiGk+1Ti

)( N∑

i=1

HiGk+1Ti

)T

. (43)

From (20), (23), and (29), we know Pk+1|k ≤ Σk+1|k . Thus, one has

(
P–1

k+1|k – ε2I
)–1 ≤ (Σ–1

k+1|k – ε2I
)–1. (44)

Next, in terms of (43), (44), and by utilizing the mathematical induction method, we have
Pk+1|k+1 ≤ Σk+1|k+1, which ends the proof of Theorem 1. �

Remark 3 In Theorem 1, the upper bound has been constructed based on the given Gk+1.
Subsequently, we aim to choose a suitable filter parameter Gk+1 in order to optimize such
an upper bound. However, it should be noted that the sensors only transmit information
with their neighbors, which causes the matrix Ti to be noninvertible. Hence, it induces
some difficulties for the later filtering developments. Here, an MST is adopted to cope
with this problem.
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To proceed, some notations are introduced, which are necessary to the subsequent
derivations:

Ok+1 = (1 + θ3 + θ4)
(
Σ–1

k+1|k – ε2I
)–1FT

k+1Γ̄
T

k+1 =
[
O(i)

k+1
]

N×1,

Ḡ(i)
k+1 = O(i)

k+1L̄i
(
L̄T

i Lk+1L̄i
)–1L̄T

i , Li = diag{√αijI},
Lk+1 = (1 + θ3 + θ4)Γ̄k+1Fk+1

(
Σ–1

k+1|k – ε2I
)–1FT

k+1Γ̄
T

k+1

+ (1 + θ3 + θ4)ε–1
2 Γ̄k+1Ck+1CT

k+1Γ̄
T

k+1 + Pk+1 ◦ Qk+1

+ Γ̆k+1 ◦ Vk+1 +
(
1 + θ–1

3 + θ5
)
ρ2 tr{Vk+1}I

+
[
(I – Pk+1)Qk+1

]{
I –
[
(I – Pk+1)Qk+1

]T} ◦ Ξ̄ I

+
(
1 + θ–1

4 + θ–1
5
)

tr
{

(I – Pk+1)Qk+1Ξ̄QT
k+1(I – Pk+1)T}I,

G(i)
k+1 = [Gij,k+1]1×N , Ḡ(i)

k+1 = [Ḡij,k+1]1×N , Gk+1 =
[
G(i)

k+1
]

N×1.

(45)

In what follows, we aim to provide the design approach of filter parameter by using the
MST and optimize the given upper bound accordingly.

Theorem 2 Consider the filter (9) and (10). Then tr{Σk+1|k+1} is minimized by utilizing the
following filter parameter:

Gij,k+1 =

⎧
⎨

⎩
Ḡij,k+1α

–1
ij if αij �= 0,

0 otherwise.
(46)

Proof In light of (21) and the following equality

tr
{

HiMHT
j
}

= tr
{

HT
j HiM

}
= 0, (47)

then we obtain

tr{Σk+1|k+1}

= (1 + θ3 + θ4) tr

{
(
Σ–1

k+1|k – ε2I
)–1 –

N∑

i=1

HiGk+1TiΓ̄k+1Fk+1

× (Σ–1
k+1|k – ε2I

)–1 –
(
Σ–1

k+1|k – ε2I
)–1
( N∑

i=1

HiGk+1TiΓ̄k+1Fk+1

)T

+
N∑

i=1

(HiGk+1TiΓ̄k+1Fk+1)
(
Σ–1

k+1|k – ε2I
)–1(HiGk+1TiΓ̄k+1Fk+1)T

+ ε–1
2

N∑

i=1

(HiGk+1TiΓ̄k+1)Ck+1CT
k+1(HiGk+1TiΓ̄k+1)T

}

+ tr

{ N∑

i=1

(HiGk+1Ti)(Γ̆k+1 ◦ Vk+1)(HiGk+1Ti)T

}

+
(
1 + θ–1

3 + θ5
)

× tr

{ N∑

i=1

(HiGk+1Ti)ρ2 tr{Vk+1}(HiGk+1Ti)T

}

+ tr

{ N∑

i=1

(HiGk+1Ti)
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× {[(I – Pk+1)Qk+1
][

I –
[
(I – Pk+1)Qk+1

]T] ◦ Ξ̄ I
}

(HiGk+1Ti)T

}

+ tr

{ N∑

i=1

(HiGk+1Ti)(Pk+1 ◦ Qk+1)(HiGk+1Ti)T

}

+
(
1 + θ–1

4 + θ–1
5
)

× tr

{ N∑

i=1

(HiGk+1Ti) tr
{

(I – Pk+1)Qk+1Ξ̄QT
k+1(I – Pk+1)T}

× (HiGk+1Ti)T

}

. (48)

Subsequently, we aim to derive the expression form of the filter parameter Gk+1. In par-
ticular, take the partial derivative of tr{Σk+1|k+1} with respect to Gk+1. By setting the result
be zero, the following equation can be obtained:

∂ tr{Σk+1|k+1}
∂Gk+1

= –2(1 + θ3 + θ4)
N∑

i=1

Hi
(
Σ–1

k+1|k – ε2I
)–1FT

k+1Γ̄
T

k+1TT
i + 2(1 + θ3 + θ4)

N∑

i=1

Hi

× Gk+1TiΓ̄k+1Fk+1
(
Σ–1

k+1|k – ε2I
)–1FT

k+1Γ̄
T

k+1TT
i + 2(1 + θ3 + θ4)ε–1

2

×
N∑

i=1

HiGk+1TiΓ̄k+1Ck+1CT
k+1Γ̄

T
k+1TT

i + 2
N∑

i=1

HiGk+1Ti(Γ̆k+1 ◦ Vk+1)TT
i

+ 2
(
1 + θ–1

3 + θ5
)
ρ2

N∑

i=1

HiGk+1Ti tr{Vk+1}TT
i + 2

N∑

i=1

HiGk+1Ti
{[

(I – Pk+1)

× Qk+1
]{

I –
[
(I – Pk+1)Qk+1

]T} ◦ Ξ̄ I
}

TT
i + 2

N∑

i=1

HiGk+1Ti(Pk+1 ◦ Qk+1)TT
i

+ 2
(
1 + θ–1

4 + θ–1
5
) N∑

i=1

HiGk+1Ti tr
{

(I – Pk+1)Qk+1Ξ̄QT
k+1(I – Pk+1)T}TT

i

= 2
N∑

i=1

HiGk+1TiLk+1TT
i – 2

N∑

i=1

HiOk+1TT
i

= 0. (49)

On the basis of (49), we have

G(i)
k+1TiLk+1TT

i = O(i)
k+1TT

i . (50)

Noting Ti = L̄iL̄T
i , we arrive at

G(i)
k+1L̄iL̄T

i Lk+1L̄iL̄T
i = O(i)

k+1L̄iL̄T
i . (51)

We know that L̄T
i has full row rank and L̄T

i Lk+1L̄i is invertible, thus it can be derived that

G(i)
k+1L̄i = O(i)

k+1L̄i
(
L̄T

i Lk+1L̄i
)–1. (52)
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According to (45) and (52), one has

Ḡ(i)
k+1 = G(i)

k+1Ti, (53)

and then the filter parameter can be computed by:

Gij,k+1 =

⎧
⎨

⎩
Ḡij,k+1α

–1
ij , j ∈Ni,

0, j /∈Ni,
(54)

which ends the proof of Theorem 2. �

3.2 Error boundedness discussion
In the subsection, the boundedness analysis regarding the trace of the upper bound for
filtering error covariance is conducted. Before further developments, the following as-
sumption is essential to be introduced.

Assumption 1 For the matrices Bk and Rk , there exist a scalar ϑ > 0 and a positive
semidefinite matrix R ∈R

nω×nω such that σmax(Bk) ≤ ϑ and Rk ≤ R hold.

Theorem 3 For the SSNSs (1), (2), and (6) with (9)–(10), it follows from Assumption 1 that
tr{Σk+1|k+1} is bounded.

Proof Based on (45) and (48), one gets

tr{Σk+1|k+1}

= tr

{ N∑

i=1

(HiGk+1Ti)Lk+1(HiGk+1Ti)T

}

– (1 + θ3 + θ4) tr

{ N∑

i=1

HiGk+1Ti

× Γ̄k+1Fk+1
(
Σ–1

k+1|k – ε2I
)–1 +

(
Σ–1

k+1|k – ε2I
)–1
( N∑

i=1

HiGk+1TiΓ̄k+1Fk+1

)T

–
(
Σ–1

k+1|k – ε2I
)–1
}

. (55)

For the first term of (55), one has

tr

{ N∑

i=1

(HiGk+1Ti)Lk+1(HiGk+1Ti)T

}

= tr

{ N∑

i=1

HiOk+1(HiGk+1Ti)T

}

= (1 + θ3 + θ4) tr

{
(
Σ–1

k+1|k – ε2I
)–1FT

k+1Γ̄
T

k+1

( N∑

i=1

HiGk+1Ti

)T}

. (56)
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Substituting (56) into (55) leads to

tr{Σk+1|k+1}

= –(1 + θ3 + θ4) tr

{ N∑

i=1

HiGk+1TiΓ̄k+1Fk+1
(
Σ–1

k+1|k – ε2I
)–1
}

+ (1 + θ3 + θ4) tr
{(

Σ–1
k+1|k – ε2I

)–1}

= –(1 + θ3 + θ4) tr

{ N∑

i=1

HiOk+1L̄i
(
L̄T

i Lk+1L̄i
)–1L̄T

i Γ̄k+1Fk+1

× (Σ–1
k+1|k – ε2I

)–1
}

+ (1 + θ3 + θ4) tr
{(

Σ–1
k+1|k – ε2I

)–1}. (57)

In view of (20), we have

tr{Σk+1|k} ≤ 4nN2
� + tr

{
B̄kRkB̄T

k
}

= 4nN2
� + tr

{
B̄T

k B̄kRk
}

. (58)

In particular, by considering the properties of the trace and Assumption 1, one gets

tr
{

B̄T
k B̄kRk

}≤ ρ
(
B̄T

k B̄k
)

tr{Rk} ≤ Nϑ2 tr{R}, (59)

and then

tr{Σk+1|k} ≤ 4nN2
� + Nϑ2 tr{R}. (60)

On the other hand, it is not difficult to check that

Σk+1|k ≤ λmax(Σk+1|k)I ≤ tr{Σk+1|k}I, (61)

and further, one has

Σ–1
k+1|k – ε2I ≥

(
1

tr{Σk+1|k} – ε2

)
I. (62)

Next, in view of the matrix operations, the following inequality can be written:

(
Σ–1

k+1|k – ε2I
)–1 ≤ 1

1
tr{Σk+1|k } – ε2

I. (63)

For the second term of (57), combining (60) with (63), we arrive at

(1 + θ3 + θ4) tr
{(

Σ–1
k+1|k – ε2I

)–1}

≤ (1 + θ3 + θ4) tr

{
1

1
4nN2�+Nϑ2 tr{R} – ε2

I
}

. (64)

Finally, it can be observed that the second term of (57) is bounded and the first term
is nonpositive. Thereby, it can be shown that tr{Σk+1|k+1} is bounded, which finishes the
proof of Theorem 3. �
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Remark 4 So far, the DEKF issue has been handled for SSNSs subject to ROCAs with
UOPs. In particular, a novel DEKF algorithm has been established to analyze the impact
of ROCAs with UOPs, and a recursive filtering scheme has been given to choose the fil-
ter parameter matrix. Furthermore, the boundedness of the estimation performance has
been discussed, which further clarifies the performance analysis of the proposed filtering
method from the theoretical viewpoint. It should be noticed that the proposed filtering
method has the time-varying distributed manner, which has a potential advantage in the
online implementation/application. Moreover, it is worthwhile to mention that some in-
teresting and effective methods have been given in [37–42] for fractional systems, which
motivate the further investigation on the DF problem for fractional nonlinear systems un-
der ROCAs.

4 Two illustrative simulations
In this section, we will present two examples and discuss the effectiveness of the proposed
DEKF scheme. In particular, comparative experiments for different cases are provided.

Example 1 Consider the SSNSs (1) with state delay d = 1 and real measurement output
(6). The related system parameters are given as:

Ak =

[
0.15 + 0.45 sin(0.1k) –1.7 – 0.2 cos(0.98k)

0.05 –0.3 – 0.65 cos(0.7k)

]

, Bk =

[
0.3

0.35

]

.

The WSN depicted in Fig. 2 is characterized by G = (U ,E ,A) with U = {1, 2, 3, 4}, E =
{(1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 3), (4, 4)} and

A =

⎡

⎢
⎢⎢
⎣

1 1 0 1
0 1 1 0
1 1 1 0
0 0 1 1

⎤

⎥
⎥⎥
⎦

.

The nonlinear function f (xk–d) with state delay is expressed as

f (xk–d) =

[
0.12 – 2.15 cos(x2,k–d)

0.24x1,k–d – 1.15 sin(x2,k–d)

]

.

The nonlinear functions hi(xk) are given by:

h1(xk) = 2.4 + 0.1 sin(x1,k),

h2(xk) = 5.6 + 0.1 cos(x2,k),

Figure 2 The topological graph of WSNs
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h3(xk) = 1.7 + 0.1 cos(x1,k),

h4(xk) = 5.1 + 0.1 sin(x2,k).

The covariance of process noise is Rk = 0.25. The covariances of the measurement noises
are Qi,k = 0.15 (i = 1, 2, 3, 4). Other parameters are chosen as ς1,max = 6, ς2,max = 4,
θ1 = θ3 = θ4 = θ5 = 0.1, θ2 = 1.5, Ξ̄ = 2, γ̄i,k = 0.5, λ̄i,k = 0.55, ρ = ρ̃ = 0.01, δ1 = 0.17,
δ2 = 5, Bi,k–d = diag{0.1, 0.25}, and Cj,k+1 = diag{0.1, 0.2}. The initial values are set as
x̄0 = [0 0]T , P0 = diag{2, 2}, x̄–1 = [0 0]T , P–1 = diag{1.5, 2}, x̂1,0|0 = x̂1,–1|–1 = [–2.8 2.5]T ,
x̂2,0|0 = x̂2,–1|–1 = [–2.3 2.2]T , x̂3,0|0 = x̂3,–1|–1 = [–2.3 2.3]T , x̂4,0|0 = x̂4,–1|–1 = [–2.2 2.5]T ,
Σ1,0|0 = diag{15, 15}, Σ2,0|0 = diag{20, 20}, Σ3,0|0 = diag{25, 25}, and Σ4,0|0 = diag{30, 30}.
Based on (20)–(21) and (46), the optimal upper bound can be obtained at each sampling
time.

In order to evaluate the algorithm accuracy of the new DEKF strategy, the mean square
error (MSE) is utilized, which can be calculated by

MSEk =
1
M

E

{ M∑

�=1

(
x(�)

k – x̂(�)
k|k
)T(x(�)

k – x̂(�)
k|k
)
}

.

Here, M represents the experimental number of runs. Accordingly, the main results are
proposed in Figs. 3–7 with M = 200. In particular, Figs. 3–4 show the trajectories of the
estimates and the actual state xk . We discover that the MSE is indeed below the upper
bound in Fig. 5. Figure 6 exhibits the successful time of cyberattacks in detail. Figure 7
describes the curves of the upper bound affected by the different occurrence probabilities
of cyberattacks, and it can be easily seen that the upper bound will increase when the
occurring probabilities of cyberattacks increase. To sum up, those above simulation results
show that the designed filtering strategy possesses good performance for addressed SSNSs
under ROCAs with UOPs.

Next, we consider a 3-dimensional system in order to propose a comparative experiment
and further testify the validity of the proposed DEKF algorithm.

Figure 3 The actual state x1,k and the corresponding estimates
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Figure 4 The actual state x2,k and the corresponding estimates

Figure 5 Log(MSE) and the upper bound

Figure 6 The successful attacks time
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Figure 7 Upper bound with different λ̄i,k

Example 2 The corresponding parameters are given as follows:

Ak =

⎡

⎢
⎣

0.15 + 0.45 sin(0.1k) –1.7 – 0.2 cos(0.98k) 0
0.05 –0.3 – 0.65 cos(0.7k) 0

0 0 –0.7 sin(k)

⎤

⎥
⎦ ,

Bk =

⎡

⎢
⎣

0.3
0.35
0.4

⎤

⎥
⎦ , f (xk–d) =

⎡

⎢
⎣

0.12 – 2.15 cos(x2,k–d)
0.24x1,k–d – 1.15 sin(x2,k–d)

0.12 – 2.15 cos(x3,k–d)

⎤

⎥
⎦ .

The initial values are set as x̄0 = [0 0 0]T , P0 = diag{2, 2, 2}, x̄–1 = [0 0 0]T , P–1 =
diag{1.5, 2, 2.5}, x̂1,0|0 = x̂1,–1|–1 = [–2.8 2.5 2]T , x̂2,0|0 = x̂2,–1|–1 = [–2.3 2.2 2.1]T , x̂3,0|0 =
x̂3,–1|–1 = [–2.3 2.3 2.1]T , x̂4,0|0 = x̂4,–1|–1 = [–2.2 2.5 2]T , Σ1,0|0 = diag{15, 15, 15}, Σ2,0|0 =
diag{25, 25, 25}, Σ3,0|0 = diag{35, 35, 35}, and Σ4,0|0 = diag{45, 45, 45}; ς3,max = 4. The other
parameters are same as in Example 1.

Again, the corresponding simulations can be obtained by implementing the proposed
DEKF algorithm. Accordingly, Figs. 8–10 plot the trajectories of the real state and their
estimates, respectively. It is clear that the newly presented estimation algorithm performs
well. Moreover, in order to illustrate the differences for system with different dimensions,
it is observed that the CPU time in Example 1 is 182 s and the CPU time in Example 2
is 193 s. Then, it is not difficult to find that the processing time will increase when the
system dimension increases. The major reason is that the complex coupling relationships
of nodes are involved and additional computations should be made.

5 Conclusions
In this paper, the problems of DEKF scheme and its algorithm performance evaluation
have been discussed for SSNSs subject to state delay and ROCAs with UOPs. In particu-
lar, the attacks including FDIAs and DoSAs have been considered and the case of UOPs
has been depicted by the combination of nominal means and error upper bounds. Sub-
sequently, the major effort has been made to design a filter in a distributed manner and
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Figure 8 The actual state x1,k and the corresponding estimates

Figure 9 The actual state x2,k and the corresponding estimates

Figure 10 The actual state x3,k and the corresponding estimates
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look for an optimized upper bound matrix regarding the filtering error covariance. Fur-
thermore, a suitable filter parameter has been designed at each time step to minimize the
obtained upper bound matrix in the sense of matrix trace. Besides, the boundedness anal-
ysis has been certified for the DEKF algorithm by exploiting the elaborate mathematical
methods. Finally, we have utilized two illustrative examples and comparative results to
demonstrate the usefulness and advantages of the new DEKF approach.
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